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Abstract: The inter-satellite relative navigation method—based on radio frequency (RF) range and
angle measurements—offers good autonomy and high precision, and has been successfully applied
to two-satellite formation missions. However, two main challenges occur when this method is
applied to multi-microsatellite formations: (i) the implementation difficulty of the inter-satellite RF
angle measurement increases significantly as the number of satellites increases; and (ii) there is no
high-precision, scalable RF measurement scheme or corresponding multi-satellite relative navigation
algorithm that supports multi-satellite formations. Thus, a novel multi-satellite relative navigation
scheme based on inter-satellite RF range and angle measurements is proposed. The measurement
layer requires only a small number of chief satellites, and a novel distributed multi-satellite range
measurement scheme is adopted to meet the scalability requirement. An inter-satellite relative
navigation algorithm for multi-satellite formations is also proposed. This algorithm achieves high-
precision relative navigation by fusing the algorithm and measurement layers. Simulation results
show that the proposed scheme requires only three chief satellites to perform inter-satellite angle
measurements. Moreover, with the typical inter-satellite measurement accuracy and an inter-satellite
distance of around 1 km, the proposed scheme achieves a multi-satellite relative navigation accuracy
of ~30 cm, which is about the same as the relative navigation accuracy of two-satellite formations.
Furthermore, decreasing the number of chief satellites only slightly degrades accuracy, thereby
significantly reducing the implementation difficulty of multi-satellite RF angle measurements.

Keywords: multi-satellite relative navigation; radio frequency measurement; distributed multi-
satellite range measurement; inter-satellite angle measurement; extended Kalman filter

1. Introduction

Microsatellites are relatively low cost and have a short development cycle and excellent
flexibility. Thus, they are a perfect substitute for traditional large satellites in multi-satellite
missions such as satellite formations, especially for large-scale applications. Missions
that cannot be achieved using a single satellite can be accomplished with multi-satellite
formations through inter-satellite cooperation. Consequently, microsatellite formations are
widely employed in a number of space missions.

Inter-satellite relative measurement and navigation are the premise and basis for inter-
satellite cooperation in the formation. The traditional method based on ground telemetry,
tracking, and command (TT&C) network suffers from limited observation time, low preci-
sion, and poor real-time performance, and therefore cannot satisfy the relative navigation
application demands for general satellite formations. To meet the high-precision, real-time
operations and autonomy requirements of satellite formations, most measurement methods
for inter-satellite relative navigation use global navigation satellite systems (GNSS), radar,
inter-satellite radio frequency (RF), and optical measurements [1]. Overall, GNSS and RF
measurement methods provide the best performance (Table 1) and are widely used. The
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GNSS-based method has achieved great success, and centimeter-level real-time relative
navigation accuracy can be achieved with the carrier phase differential GNSS (CDGNSS)
technique for satellite formations in low earth orbit (LEO) [2]. However, the application of
the GNSS-based method is restricted because highly accurate measurement cannot be guar-
anteed in orbits above LEO. This method also offers limited autonomy because the GNSS
constellation depends on the ground TT&C network. The inter-satellite RF measurements,
which are independent of satellite orbital altitude and are almost independent of any
external systems, not only have the potential to achieve higher measurement accuracy than
CDGNSS, but also have excellent autonomy. Thus, RF measurements play an important
role in the increasing number of satellite formation missions.

Table 1. Advantages and limitations of different relative navigation approaches [1]. Reproduced
with permission from IFAC Proceedings Volumes; published by Elsevier, 2011.

Cost Size, Weight, & Power Range Reliability Accuracy

Radar ++ ++ ++ - –
Laser – – + o ++

Binocular + o - - +
3D-TOF
camera o - - + +

GNSS ++ + ++ + +
RF ranging ++ + + + +

++, very good; +, good; o, average; -, bad; –, very bad.

Unlike GNSS, which supports three-dimensional navigation, inter-satellite RF mea-
surement is a one-dimensional approach. Thus, RF angle measurements are conventionally
combined with RF range measurements to achieve inter-satellite relative navigation.

Two-satellite relative navigation based on a single inter-satellite relative measurement
(inter-satellite range measurement, angle measurement, or range-rate measurement) has
been extensively studied. For angles-only relative navigation, David C. Woffinden et al. [3]
studied the observability criteria; Francisco J. Franquiz et al. [4] proposed optimal range
observability maneuvers and trajectory planning methods for spacecraft formations under
constrained relative orbital motion; Jianjun Luo et al. [5] developed angles-only relative
navigation and guidance coupling algorithm in the context of Clohessy–Wiltshire and
Tschauner–Hempel dynamics; and Baichun Gong et al. [6] studied the angles-only relative
navigation problem for spacecraft proximity operations when the camera offset from the
vehicle center-of-mass allows for range observability. For range-only relative navigation,
John A. Christian [7] explored the observability of range-only relative navigation and
revealed the multiplicities of possible relative trajectories of various special relative orbits;
Yanghe Shen et al. [8] conducted relative orbit determination with quantum ranging,
which provides more accurate range measurement than traditional methods; and Daan C.
Massen et al. [9] and Frank R. Chavez et al. [10] utilized relative orbital elements instead of
Hill coordinates for relative orbit determination. Besides, Cagri Kilic et al. [11] explored the
relative navigation of a formation of small satellites using only range-rate measurements
that may be acquired using radio hardware already on the spacecraft.

Multi-satellite absolute navigation based on inter-satellite measurements has also been
studied by several researchers. Yunpeng Hu et al. [12] proposed a novel solution for au-
tonomous orbit determination for three spacecraft with inertial angles-only measurements,
and analyzed the observability. Wei Kang et al. [13] developed the observability theory
and estimation algorithms for multi-satellite systems.

However, these navigation algorithms have various limitations, such as strict require-
ments on the satellite orbit type, which restricts their practical application. For satellite
formation missions, NASA developed an RF-based autonomous formation flying (AFF) sen-
sor and applied it to the Space-Technology 3 (ST-3) mission. The AFF sensor can achieve an
inter-satellite range measurement accuracy of better than 5 mm and an inter-satellite angle
measurement accuracy of better than 1 arcmin (0.017 deg) over a range of 50–1010 m [14].
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However, the relative navigation accuracy has not been reported. The PRISMA mission
successfully verified the inter-satellite relative navigation based on RF range and angle
measurements. The inter-satellite range measurement accuracy was 1 cm, angle measure-
ment accuracy was 0.2 deg, and relative navigation accuracy was approximately 70 cm
over a range of 2–4 km [15].

Although relative navigation methods based on inter-satellite RF range and angle
measurements have been studied and applied, almost all are for two-satellite formations.
Relative navigation methods for multi-satellite formations have barely been studied, which
significantly hinders the development of satellite formations.

There are two critical problems in the application of RF-based multi-satellite relative
navigation. First, although the current inter-satellite RF angle measurement technology
is relatively mature, its implementation is significantly more complex than inter-satellite
RF range measurement. For multi-satellite formations, the number of inter-satellite angle
measurements soars in power series with the number of satellites. Thus, implementing
multi-satellite RF angle measurement becomes difficult when using a microsatellite plat-
form due to the extremely limited computational resources. In a formation consisting
of N satellites, if inter-satellite angle measurement is required between any two satel-
lites, the number of inter-satellite angle measurements increases dramatically to N(N − 1).
Wang et al. [16] proposed a multi-satellite relative navigation method based on inter-
satellite range and angle measurements. Their approach selects one chief satellite, with the
others being deputy satellites, and performs inter-satellite angle measurements between
the chief and deputy satellites. This method reduces the difficulty of implementing angle
measurements to some extent. However, when the number of satellites is large, it is still
challenging to achieve angle measurements between the chief and deputy satellites. Second,
there is no multi-satellite RF measurement scheme and corresponding multi-satellite rela-
tive navigation algorithm. Although multi-satellite navigation methods were previously
studied, they focused on the navigation algorithm layer instead of the measurement layer.
Without a feasible multi-satellite RF measurement framework, such navigation algorithms
are far from practical application.

To overcome these two problems, a novel multi-satellite relative navigation scheme
based on RF measurements is proposed. This scheme uses the concept of dividing a satellite
formation into deputy satellites and a small number of chief satellites. The inter-satellite
range measurements are performed among all the satellites, whereas the inter-satellite
angle measurements are conducted only among the chief satellites. As the number of inter-
satellite angle measurements is simply related to the pre-specified number of chief satellites,
and is therefore independent of the total number of satellites, the difficulty of achieving
inter-satellite angle measurements is significantly reduced and the scalability of the satellite
formation is not affected. According to previous research by several of the authors [17], a
multi-satellite measurement scheme based on time division multiple access (TDMA) could
be adopted to achieve high-precision inter-satellite range measurements while effectively
solving the scalability problem of frequency division multiple access (FDMA)-based or
code division multiple access (CDMA)-based measurement schemes. Such a scheme would
fully satisfy the application requirements of multi-satellite relative navigation described
above. Based on this RF measurement scheme and the idea of measuring angles among
a small number of chief satellites, a multi-satellite relative navigation algorithm could
be designed to construct a high-precision multi-satellite autonomous relative navigation
scheme for the large-scale applications of microsatellites.

2. Proposed Multi-Satellite Relative Navigation Scheme

The proposed multi-satellite relative navigation scheme employs inter-satellite range
and angle measurements. The chief satellites perform both inter-satellite range and angle
measurements, while the deputy satellites only perform inter-satellite range measurements.
For the range measurements, a distributed multi-satellite measurement scheme proposed
by the authors [18] is adopted. Accordingly, K time slots are assigned to K nodes and the
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measurement signal is broadcast within each time slot by the corresponding node. At the
same time, inter-satellite angle measurements are performed among the chief satellites.
The angle and range measurements between two satellites are assumed to be measured
simultaneously, which can be achieved with the radio frequency measurement method [15].
The relative state estimation for the chief satellites, accomplished based on the range and
angle measurements, provides a spatial position reference for the multi-satellite formation.

Under the assumption that time synchronization, which can be performed with the
radio frequency measurement method [18], has been completed among the formation
satellites, the relative states of the deputy satellites can be estimated using the trilateral
positioning method. Specifically, inter-satellite angle measurements are carried out among
the chief satellites (C1 − C3), and inter-satellite range measurements are conducted among
all satellites (Figure 1).
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Figure 1. The multi-satellite relative navigation scheme.

2.1. Reference Frame and Relative Orbital Dynamics Modeling

Clohessy–Wiltshire (CW) equations are widely used to express the linearized space-
craft dynamics in the Hill frame [19]. As shown in Figure 2, the Hill frame is centered on a
chief satellite, with the x-axis (radius unit vector) aligned with the orbit radius vector, the
z-axis (normal unit vector) aligned with the orbit angular momentum vector, and the y-axis
(tangential unit vector) directed so that a right-handed Cartesian reference frame is formed.
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The choice of CW dynamics comes with three assumptions: first, the chief satellite’s
orbit is approximately circular; second, no disturbing forces are acting on either the chief
satellite or the deputy satellites; and third, the spacecraft separation is much smaller than
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the semi-major axis of the chief satellite’s orbit. The linearized relative orbital dynamics
can be expressed with the CW equations in the Hill frame as:

..
x− 2n

.
x− 3n2x = ax..

y + 2n
.
x = ay..

z + n2z = az

(1)

where (x, y, z)T , (
.
x,

.
y,

.
z)T , and (

..
x,

..
y,

..
z)T denote the relative positions, velocities, and accel-

erations, respectively. ax, ay, az are the perturbing accelerations in the corresponding x-, y-
and z-directions. n is the orbital mean motion of the chief spacecraft, which is defined as

n =

√
µ

a3 (2)

with µ and a respectively denoting Earth’s gravitational constant and the semi-major axis
of the chief satellite’s orbit. To obtain the homogeneous solution of Equation (1), ax, ay, az
are set to zero, and Equation (1) can be rewritten as

.
X(t) = AX(t) (3)

where x = (r, v)T = (x, y, z,
.
x,

.
y,

.
z)T and

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 0 −n2 0 0

 (4)

The state transition matrix (STM), mapping the state at time t0 = 0 to the state at time
t, is easily obtained as

Φ(t, 0) = eAt =



4− 3cnt 0 0 snt
n

2(1−cnt)
n 0

6(snt − nt) 1 0 2(cnt−1)
n

4snt
n − 3t 0

0 0 cnt 0 0 snt
n

3nsnt 0 0 cnt 2snt 0
6n(cnt − 1) 0 0 −2snt 4cnt − 3 0

0 0 −nsnt 0 0 cnt


(5)

where snt = sin(nt) and cnt = cos(nt).
Considering the limitations of the CW dynamics, some correction methods have

been proposed to obtain more precise forms [20–22]. These modified CW dynamics
can be considered when the CW equations are inappropriate for describing the relative
orbital dynamics.

2.2. Measurement Modeling

In the proposed multi-satellite relative navigation scheme, inter-satellite angle mea-
surements are performed by the chief satellites and inter-satellite range measurements
are performed by both the chief and deputy satellites. The inter-satellite range and angle
measurements between the chief and the deputy satellites in the chief’s Hill frame are
presented in Figure 3.
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2.2.1. Range Measurements

The distributed multi-satellite range measurement scheme is intended to achieve
centimeter-level inter-satellite measurements for microsatellite formations, making it suit-
able for use in a multi-satellite relative navigation algorithm. A brief description of the
measurement scheme is as follows.

In the distributed multi-satellite measurement scheme, a TDMA-based distributed
broadcast protocol is employed in the media access control layer, integrated with the
asymmetric double-sided two-way ranging method in the physical layer [17,23]. As shown
in Figure 4, the range measurement between nodes i and j is

Mij =
Troundi × Troundj − Treplyi × Treplyj

Troundi + Troundj + Treplyi + Treplyj
(6)

where Treplyi = T′i − Rj; Troundi = Rj − Ti; Treplyj = Tj − Ri; Troundj = R′i − Tj; Ti, Tj,
T′i are the signal transmission times; and Ri, Rj, R′i are the signal reception times.
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The inter-satellite range measurement equation is

f (X) = ρ =
√

x2 + y2 + z2 (7)

where ρ is the inter-satellite range. Our previous numerical simulation results demonstrate
that the distributed multi-satellite range measurement scheme achieves high precision and
has good scalability [17]. The frequency deviation of the frequency source has a significant
effect on the measurement accuracy. Utilizing the miniaturized oven-controlled crystal
oscillator (OCXO), commonly used in microsatellite platforms, sub-centimeter-level range
measurement accuracy can be achieved. In preliminary ground testing, the measurement
accuracy was better than 5 cm (a prototype of the RF range measurement equipment for
ground testing is shown in Figure 5), providing a basis for in-orbit application in the
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future. In Section 4, the range measurement noise parameters are set according to the
pre-simulation test results.
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2.2.2. Angle Measurements

The bearing angles θ (azimuth angle) and ϕ (pitch angle) can be used to define the
angle measurements, in which the output function is{

θ = arctan( y
x )

ϕ = arcsin( z√
x2+y2+z2

) (8)

Inter-satellite RF measurement accuracy is related to the carrier frequency. At a dis-
tance of 30 km, the inter-satellite angle measurement accuracy can reach 0.1 deg at the
L-band frequency and 1 arcmin (0.017 deg) at the Ka-band frequency [14]. Additionally,
optional infrared and laser angle measurement methods are available, potentially pro-
viding an angle measurement accuracy of 1 arcsec (0.00028 deg) [24,25]. In Section 4,
the angle measurement noise parameters are set according to the aforementioned angle
measurement accuracy.

3. Multi-Satellite Relative Navigation Algorithm

Assuming that a satellite network consists of N chief satellites (Ci, i = 1 : N) and
K deputy nodes (Dj, j = 1 : K), the inter-satellite angle and range measurement vector
between the chief satellite Ci and other chief satellites is expressed as

hCi = [hT
CiC1

, . . . , hT
CiCj

, . . . , hT
CiCN

]
T

, hCiCj
= [ρCiCj

, θCiCj
, ϕCiCj

]T , i 6= j (9)

where hCiCj is the measurement vector from Ci to Cj; ρCiCj , θCiCj , and ϕCiCj are the range, az-
imuth angle, and pitch angle, respectively, and are assumed to be measured synchronously.
The inter-satellite range measurement vector between deputy satellite Di and the other
satellites is

hDi = [hT
DiC

, hT
Di D

]
T

hDiC = [ρDiC1 , ρDiC2 , . . . , ρDiCN ]
T , hDi D = [ρDi D1 , . . . , ρDi Dj , . . . , ρDi DK ]

T , i 6= j
(10)

The range measurements are completed using the TDMA-based distributed multi-
satellite range measurement scheme, which leads to asynchronization. Thus, epoch nat-
uralization is used to synchronize the range measurements to a reference time. In the
proposed relative navigation scheme, the reference time is the end time of the range
measurement period.
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Any chief satellite can be the origin of the Hill frame. To describe the relative states of
the other satellites, C1 is adopted as the origin of the Hill frame discussed in Section 2.

At time tk, the relative state of satellite S is denoted by Xk
S = XS(tk) in the Hill frame;

the a priori state estimate and estimated state error covariance matrix are denoted by

Xk
S = XS(tk) and Pk

S = PS(tk), respectively, and the a posteriori state estimate and esti-

mation error covariance matrix are denoted by X̂k
S = X̂S(tk) and P̂k

S = P̂S(tk), respectively.
The relative state of C1 in its own Hill frame is zero, i.e., XC1 = (0, 0, 0, 0, 0)T .

The procedure of the multi-satellite relative navigation algorithm, as shown in
Figure 6, involves the following four steps:

• Step 1. Estimate the relative states of the chief satellites based on their range and angle
measurements;

• Step 2. Propagate the relative states of the chief and deputy satellites to a refer-
ence time;

• Step 3. Obtain the range measurements at the reference time by applying epoch
naturalization to the range measurements of all the deputy satellites;

• Step 4. Estimate the relative states of the deputy satellites.

The following pseudo-code describes the process of the multi-satellite relative naviga-
tion algorithm in detail (Algorithm 1).

Algorithm 1. Multi-satellite relative navigation algorithm.

Input:
1. The relative state estimates X̂k−1

Ci
(i = 2:N) and X̂k−1

Dj
(j = 1:K) and the corresponding state error covariance matrices P̂k−1

Ci
and P̂k−1

Di

at the last epoch tk−1;
2. The angle and range measurement vector hC1Ci =

{
ρC1Ci , ϕC1Ci , θC1Ci

}
between the chief satellite C1 and Ci (i = 2:N), the

corresponding measurement time is tC1Ci ;
3. The range measurement vector of deputy satellite hDj (j = 1:K), the corresponding measurement time of range measurement
between Dj and S is tDjS;
4. The reference time tre f , which is the end time of the current range measurement period;
5. The a priori standard deviation of range and angle measurement noise σρ,σϕ,σθ and the process noise covariance matrix Q.
Output:
1. Relative state estimates of all the satellites X̂Ci

(
tre f

)
(i = 2:N) and X̂Dj

(
tre f

)
(j = 1:K), and the state error covariance matrices

P̂Ci

(
tre f

)
and P̂Dj

(
tre f

)
at the reference time tre f ;

Initialize X̂0
Ci

(i = 2:N), X̂0
Dj

(j = 1:K), P̂0
Ci

, X̂0
Dj

, σρ, σϕ, σθ , and Q.
for each chief satellite Ci (i = 2:N) do
Estimate the relative state X̂Ci

(
tC1Ci

)
and the corresponding covariance matrix P̂Ci

(
tC1Ci

)
with the relative navigation algorithm for

chief satellite;
Propagate the relative state X̂Ci

(
tC1Ci

)
to the reference time tre f using the CW STM;

Output the relative state X̂Ci

(
tre f

)
and the corresponding covariance matrix P̂Ci

(
tre f

)
.

end
for each deputy satellite Dj (j = 1:K) do

Propagate the relative state X̂k−1
Dj

to the reference time tre f using the CW STM
end
for each deputy satellite Dj (j = 1:K) do
Interpolate the range measurement vector hDj to reference time tre f with the polynomial interpolation method. The new range

measurements are denoted by hDj

(
tre f

)
;

Estimate the relative state of Dj based on the interpolated range measurement vector hDj

(
tre f

)
, relative states X̂Di

(
tre f

)
(i = 1:N),

and state error covariance matrices P̂Di

(
tre f

)
of the chief satellites;

Output the relative state X̂Ci

(
tre f

)
and state error covariance matrix P̂Ci

(
tre f

)
.

end
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As it uses the distributed multi-satellite range measurement scheme, the multi-
satellite relative navigation algorithm is decentralized. That is, each satellite can in-
dependently determine its relative state while the other satellites are broadcasting the
relative state information.

Regarding the relative navigation algorithm for the chief satellites, both inter-satellite
RF range and angle measurements are used. This is the same as the traditional inter-satellite
relative navigation algorithm for two-satellite formations. Therefore, the performance of
the proposed multi-satellite relative navigation scheme will be demonstrated by compar-
ing the relative navigation simulation results of the deputy satellites with those for the
chief satellites.
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3.1. Relative Navigation Algorithm for Chief Satellites

The inter-satellite measurements between chief satellites Ci and C1 (the origin of the
Hill frame) are:

hCiC1
= [ρCiC1

, θCiC1
, ϕCiC1

]T , i 6= j (11)

The Jacobian matrix of the observation equation is

HCi
=

∂hCi C1

∂XCi

∣∣∣∣∣
XCi

=XCi

(12)

The Kalman filter is an optimal linear estimator when the process noise and the
measurement noise can be modeled by white Gaussian noise, and the nonlinear problems
can be solved with the extended Kalman filter (EKF). Linearization of EKF is carried out
through partial derivatives of nonlinear state functions or Taylor series expansion. An
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alternative to the EKF is the Unscented Kalman Filter (UKF), a recursive estimation filter
that meets the requirements of strongly nonlinear systems [26]. While the UKF has drawn
more attention and been applied for navigation algorithm [8,13], the EKF, which is widely
used in various navigation algorithms, is adopted for the relative navigation of the chief
satellites. The state and covariance can be propagated using the analytic solution of the
CW STM in the time-update process:

Xk
Ci
= Φk−1,kX̂k−1

Ci
(13)

Pk
Ci
= Φk−1,kP̂k−1

Ci
ΦT

k−1,k + Q (14)

where Φk−1,k = Φ(tk, tk−1) and Q is the process noise covariance matrix. The nonlinear
measurements are used to update the state and covariance in the measurement-update
process according to

K = Pk
Ci

HT
Ci
(W−1 + HCi (P

k
Ci
)
−1

HT
Ci
) (15)

X̂k
Ci

= Xk
Ci
+ K(hCiC1 − f (Xk

Ci
)) (16)

P̂k
Ci

= (I−KHCi )P
k
Ci

(17)

where W denotes the measurement noise, K is the Kalman gain, I is the unit matrix, and
f (.) is the output function of the range measurement.

3.2. Epoch Naturalization

The distributed multi-satellite range measurement scheme will result in asynchroniza-
tion of the range measurements among all the satellites. Epoch naturalization is therefore
adopted to ensure that the asynchronous range measurements can be used to estimate
the relative state of the deputy satellites. For this, polynomial interpolation methods such
as Lagrange interpolation, Aitken interpolation, and Newton’s interpolation method are
often used [27]. The satellite formation maintenance and control system ensures that the
inter-satellite distance is kept within a specific range for a long time. Thus, the range-rate
of the inter-satellite distance is very small and remains almost constant over short periods
for typical satellite formation-flying configurations (e.g., leader–follower, cartwheel, space-
circle) [28]. The Lagrange interpolation method has the advantage of simplicity and is
therefore adopted here. The k-degree Lagrange interpolation formula can be expressed as

L(x) = ∏k
j=0 yilj(x), lj(x) = ∏k

i=0,i 6=j
x− xi
xj − xi

, yi = f (xi) (18)

where x is the independent variable of the interpolation point, (xi, yi) is the i-th distinct
point for interpolation, and f (x) is a mapping function.

A space-circle formation based on seven-satellite formation is designed for simulations
and explained in detail in Section 4. A pre-simulation of interpolation for inter-satellite
distance is performed to clarify the impact of interpolation on range measurement accu-
racy. In the space-circle formation with a space-circle radius of 10 km, the inter-satellite
distance between two satellites varies around 17.3 km (Figure 7). The interpolation error
is significantly affected by the interpolation interval, which is not greater than the range
measurement period. The range measurement period (T) varies with the length of the time
slot (tslot) and the number of satellites in the formation (M), specifically, T = 2Mtslot. Thus,
the distance interpolation simulation is performed to show the effect of the interpolation
time interval on the interpolation error. The five-degree Lagrange interpolation is applied
in the simulation, and the simulation result is shown in Figure 8.
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In Section 4, the time slot in the distributed multi-satellite range measurement scheme
is set to 1 s and the number of satellites in the formation is seven. Therefore, the range mea-
surement period is 14 s. As the interpolation interval is not greater than one measurement
period, the maximum interpolation time interval is 14 s. When the measurement period is
less than 14 s, the interpolation error is within 1 mm (Figure 8), which is negligible in the
simulation scenario. Based on the pre-simulation results, five-degree Lagrange interpola-
tion can be adapted to make epoch naturalization in the relative navigation algorithm for
deputy satellites.

3.3. Relative Navigation Algorithm for Deputy Satellites

The range measurements of each deputy satellite Si are updated after the epoch
naturalization and are expressed as

hDi = [ρDiC1
, ρDiC2

, . . . , ρDiCN
, ρDi D1

, . . . , ρDi Dj
, . . . , ρDi DK

]T , j = 1 : K, j 6= i (19)

where C1 is the origin of the Hill frame. The Jacobian matrix of the observation equation is

HDi =
∂hDi

∂XDi

∣∣∣∣∣
XDi

=XDi

(20)
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As the aforementioned procedure in Section 3.1, EKF is also adopted to achieve relative
navigation for the deputy satellites.

Factors such as angle and range measurement accuracy and the satellites’ spatial
configuration affect the relative navigation accuracy of the deputy satellites. Geometric
dilution of precision (GDOP) is a term widely used in satellite navigation and geomatics
engineering to describe the error propagation of satellites’ geometry on positional measure-
ment precision. It is a critical factor for evaluating the quality of the spatial distribution of
the formation satellites and can be obtained from the Jacobian matrix of the observation
equation H as

GDOP =

√
tr((HT H)

−1
) (21)

where tr(·) denotes the trace of the matrix. GDOP builds a connection between the mea-
surement error and the position error through the relation

σP = GDOP·σURE (22)

where σP denotes the position estimation error and σURE is the sum of measurement
errors [29]. Herein, σURE is the sum of the range measurement error σρ of the deputy
satellite and the position estimation error σe of the chief satellite:

σ2
URE = σ2

ρ + σ2
e (23)

Due to the lack of precise information, σe can be estimated through the trace of the
state covariance matrix as

σ2
e = tr(Pp). (24)

Therefore, the error covariance matrix of the range measurements can be repre-
sented as

RDi = diag
{

σ2
UREC1

, . . . , σ2
URECN

, σ2
URED1

, . . . , σ2
UREDj

, . . . , σ2
UREDK

}
, j = 1 : K, i 6= j (25)

where C1, . . . , CN and D1, . . . , Dj, . . . , DK represent the corresponding satellites.

4. Numerical Simulation

The space-circle formation is a typical satellite formation-flying configuration in which
three satellites compose a projected circular formation centered at a reference satellite. To
verify the effectiveness of the proposed multi-satellite relative navigation scheme and to
evaluate the accuracy of the multi-satellite relative navigation algorithm, we designed a
seven-satellite space-circle formation. Precisely, the seven-satellite space-circle formation
consists of a reference satellite S1 and two space-circle formations (Figure 9). Three of the
seven satellites, S2, S3, S4, are in one relative orbit, with the initial phases being 0 deg,
120 deg, and 240 deg, respectively. The remaining three satellites, S5, S6, S7, are in the
other relative orbit, and their initial phases are 0 deg, 120 deg, and 240 deg, respectively.
The orbits of the seven-satellite space-circle formation were calculated for a space-circle
radius of 1 km and a radius of 10 km. The results are presented in Tables 2 and 3.
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10 km).

Table 2. Orbit elements of the seven-satellite space-circle formation (space-circle radius of 1 km).

Orbit Elements a/km e i/deg Ω/deg ω/deg M/deg

S1 6878.14 0 97 0 0 0.8348
S2 6878.14 7.2695 × 10−5 97 0.0073 180.0009 180.8348
S3 6878.14 7.2694 × 10−5 97.0062 359.9964 60.0002 300.8341
S4 6878.14 7.2694 × 10−5 96.9938 359.9964 299.9989 60.8355
S5 6878.14 7.2695 × 10−5 97 359.9927 179.9991 180.8348
S6 6878.14 7.2694 × 10−5 96.9938 0.0036 60.0011 300.8341
S7 6878.14 7.2694 × 10−5 97.0062 0.0036 299.9998 60.8355

Table 3. Orbit elements of the seven-satellite space-circle formation (space-circle radius of 10 km).

Orbit Elements a/km e i/deg Ω/deg ω/deg M/deg

S1 6878.14 0 97 0 0 0.8348
S2 6878.14 7.2694 × 10−4 97 0.0727 180.0089 180.8348
S3 6878.14 7.2694 × 10−4 97.0625 359.9637 59.9956 300.8347
S4 6878.14 7.2694 × 10−4 96.9375 359.9637 299.9955 60.8349
S5 6878.14 7.2694 × 10−4 97 359.9273 179.9911 180.8348
S6 6878.14 7.2694 × 10−4 96.9375 0.0363 60.0045 300.8347
S7 6878.14 7.2694 × 10−4 97.0625 0.0363 300.0044 60.8349

The number of chief satellites determines the difficulty of achieving inter-satellite
angle measurement in a large-scale satellite network. To clarify the influence of the number
of chief satellites, simulations were conducted with 2–6 chief satellites:

Case a: 6 chief satellites (S2, S3, S4, S5, S6, S7) and 1 deputy satellite (S1);
Case b: 5 chief satellites (S3, S4, S5, S6, S7) and 2 deputy satellites (S1, S2);
Case c: 4 chief satellites (S4, S5, S6, S7) and 3 deputy satellites (S1, S2, S3);
Case d: 3 chief satellites (S5, S6, S7) and 4 deputy satellites (S1, S2, S3, S4);
Case e: 2 chief satellites (S6, S7) and 5 deputy satellites (S1, S2, S3, S4, S5).
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In Case e, as there are only two chief satellites, no spatial position reference is available,
and so the relative navigation algorithm for the deputy satellites diverges according to the
theory. Case e is used to validate this inference further.

The measurement accuracy determines the relative navigation accuracy. Pre-simulation
analysis and ground tests have shown that sub-centimeter-level range measurement ac-
curacy can be achieved. With the RF measurement method, angle accuracy of 1 arcmin
(0.017 deg) to 0.1 deg can be achieved at a working distance of more than 30 km. With
the infrared and laser measurement methods, inter-satellite angle measurement accuracy
reaches 1 arcsec (0.00028 deg), where the working distance can be up to 30 km for the
infrared measurement method and less than 1 km for the laser measurement method.

Inter-satellite RF measurement accuracy is related to factors such as the frequency
source, the signal-to-noise ratio, and the inter-satellite distance. To ensure generalization of
the simulation results, the range measurement error σρ is set to

σρ ∈ {0.01 cm, 0.1 cm, 1 cm, 10 cm}

and the angle measurement errors σθ and σϕ are set to

σθ = σϕ ∈ {1 arcsec, 0.01 deg, 0.1 deg}

Although the inter-satellite angle is measured among all the chief satellites, only the
angle measurements between one chief satellite and the other chief satellites are used.
Consequently, the redundancy of the angle measurements could be exploited to provide
backup information or to improve the navigation accuracy. This is not discussed in the
present paper. Without a loss of generality, chief satellite S7 is set as the origin of the Hill
frame in all the simulations, and the angle measurements between S7 and the remaining
chief satellites are used.

4.1. GDOP Analysis

As the structure of the seven-satellite space-circle formation is symmetrical, the ge-
ometric locations of satellites S2–S7 can be considered to be equivalent. Take S2 as an
example. The GDOP values of satellites S2 and S1 are compared in Figure 10. The mean
GDOP value of S1 is 1.45, which is significantly smaller than that of S2 (mean GDOP
value = 1.78). The effect of GDOP on the relative navigation accuracy of deputy satellites is
analyzed later.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 24 
 

 

In Case e, as there are only two chief satellites, no spatial position reference is avail-

able, and so the relative navigation algorithm for the deputy satellites diverges according 

to the theory. Case e is used to validate this inference further. 

The measurement accuracy determines the relative navigation accuracy. Pre-simula-

tion analysis and ground tests have shown that sub-centimeter-level range measurement 

accuracy can be achieved. With the RF measurement method, angle accuracy of 1 arcmin 

(0.017 deg) to 0.1 deg can be achieved at a working distance of more than 30 km. With the 

infrared and laser measurement methods, inter-satellite angle measurement accuracy 

reaches 1 arcsec (0.00028 deg), where the working distance can be up to 30 km for the 

infrared measurement method and less than 1 km for the laser measurement method. 

Inter-satellite RF measurement accuracy is related to factors such as the frequency 

source, the signal-to-noise ratio, and the inter-satellite distance. To ensure generalization 

of the simulation results, the range measurement error �� is set to 

{0.01 cm,  0.1 cm,  1 cm,  10 cm}   

and the angle measurement errors �� and �� are set to 

{1 arcsec,  0.01 deg  0.1 deg}    ，  

Although the inter-satellite angle is measured among all the chief satellites, only the 

angle measurements between one chief satellite and the other chief satellites are used. 

Consequently, the redundancy of the angle measurements could be exploited to provide 

backup information or to improve the navigation accuracy. This is not discussed in the 

present paper. Without a loss of generality, chief satellite �� is set as the origin of the Hill 

frame in all the simulations, and the angle measurements between �� and the remaining 

chief satellites are used. 

4.1. GDOP Analysis 

As the structure of the seven-satellite space-circle formation is symmetrical, the geo-

metric locations of satellites ��– �� can be considered to be equivalent. Take �� as an ex-

ample. The GDOP values of satellites �� and �� are compared in Figure 10. The mean 

GDOP value of �� is 1.45, which is significantly smaller than that of �� (mean GDOP 

value = 1.78). The effect of GDOP on the relative navigation accuracy of deputy satellites 

is analyzed later. 

 

Figure 10. Time history of GDOP of �� and ��. 

  

Figure 10. Time history of GDOP of S1 and S2.



Sensors 2021, 21, 3725 15 of 22

4.2. Simulation of Multi-Satellite Relative Navigation Algorithm

The Satellite Tool Kit (STK) software [30] is used to generate data for the seven-satellite
space-circle formation. The initial state error of satellite Si (i = 1 : 6) is set to

∆X0
Si
= (10, 10, 10, 0.01, 0.01, 0.01)T

The initial state covariance matrix is

P0
Si
= diag

{
102, 102, 102, 0.012, 0.012, 0.012

}
The measurement error covariance matrix of the chief satellite is

RM = diag
{

σ2
ρ , σ2

θ , σ2
ϕ

}
and the measurement error covariance matrix of deputy satellite Si is

RSi = diag
{

σ2
URES1

, . . . , σ2
URESi−1

, σ2
URESi+1

, . . . , σ2
URES7

}
The time slot of the distributed multi-satellite measurement scheme is 1 s and the

measurement period is 14 s for the seven-satellite formation. The process noise covariance
matrix is

Q = diag
{

0.062, 0.062, 0.062, 0.00242, 0.00242, 0.00242
}

Focusing on a typical simulation scenario with a space-circle radius of 1 km and
three chief satellites (Case d: S5, S6, S7), the simulation results for the chief satellites S5,
S6 and the deputy satellites S1, S2, S3, S4 are shown in Figures 11–16. S7 is the origin of
the Hill frame, and the relative state is XS7 = (0, 0, 0, 0, 0)T , which does not need to be
determined. For brevity, only the statistical results are given for the other cases in the
remainder of this paper.
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Figure 15. Relative navigation errors of S5 (simulated scenario: Case d, space-circle formation radius of 1 km).

The inter-satellite RF angle measurement accuracy can reach 0.01 deg, and the inter-
satellite RF range measurement accuracy is at the centimeter-level for the distributed
multi-satellite measurement scheme. Under this condition, the relative navigation results
shown in Figures 11–16 are summarized in Table 4.
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Figure 16. Relative navigation errors of S6 (simulated scenario: Case d, space-circle formation radius of 1 km).

As inferred above, the relative navigation algorithm for the deputy satellites will
diverge in Case e; this is verified by the simulation results in Figure 17. Therefore, no
statistics are presented for Case e.

Table 4. Multi-satellite relative navigation results (simulated scenario: Cases a–d, space-circle
formation radius of 1 km, σϕ = σθ = 0.01 deg, σρ = 1 cm).

Scenario S1/m S2/m S3/m S4/m S5/m S6/m

Case a 0.144 0.341 0.349 0.226 0.363 0.372
Case b 0.141 0.215 0.345 0.230 0.366 0.366
Case c 0.120 0.243 0.214 0.228 0.369 0.368
Case d 0.128 0.226 0.206 0.235 0.368 0.366

To assess the effect of the inter-satellite measurement accuracy, inter-satellite distance,
GDOP value, and number of chief satellites on the relative navigation accuracy, simulations
were also conducted under the scenarios summarized in Table 5. Statistical results for the
relative navigation accuracy are displayed in Figure 18.

Table 5. Simulation scenarios and simulation parameters.

Scenario Simulation Parameters

α1 σϕ = σθ = 1 arcsec, σρ = 0.01 cm
α2 σϕ = σθ = 1 arcsec, σρ = 0.1 cm
α3 σϕ = σθ = 1 arcsec, σρ = 1 cm
α4 σϕ = σθ = 1 arcsec, σρ = 10 cm
β1 σϕ = σθ = 0.01 deg, σρ = 0.01 cm
β2 σϕ = σθ = 0.01 deg, σρ = 0.1 cm
β3 σϕ = σθ = 0.01 deg, σρ = 1 cm
β4 σϕ = σθ = 0.01 deg, σρ = 10 cm
γ1 σϕ = σθ = 0.1 deg, σρ = 0.01 cm
γ2 σϕ = σθ = 0.1 deg, σρ = 0.1 cm
γ3 σϕ = σθ = 0.1 deg, σρ = 1 cm
γ4 σϕ = σθ = 0.1 deg, σρ = 10 cm
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Based on the simulation results, we present the following conclusions and analyses:

• The relative navigation algorithm for the deputy satellites converges when there are
more than three chief satellites (Figure 11); otherwise, the algorithm diverges (Figure 17).

• Inter-satellite distance is an essential factor in determining the accuracy of multi-
satellite relative navigation (Figure 18). The multi-satellite relative navigation accuracy
is negatively related to the inter-satellite distance.

• According to the relative navigation simulation results of deputy satellites S1 and
S2 (Figure 18), with a smaller GDOP value, the relative navigation accuracy of S1 is
remarkably better than that of S2.

• Under the typical scenario of σϕ = σθ = 0.01 deg, σρ = 1 cm and a space-circle
radius of 1 km, the relative navigation accuracy of the deputy satellites is better than
that of the chief satellites when there are at least three chief satellites (Table 4 and
Figure 18). This is because the relatively low angle measurement accuracy affects
the relative navigation accuracy of the chief satellites rather than that of the deputy
satellites. When the angle measurement accuracy reaches 1 arcsec and the range
measurement accuracy is better than 1 cm, the relative navigation accuracy of all
deputy satellites except S1 is slightly lower than that of the chief satellites. However,
the relative navigation accuracy of the deputy satellites still reaches the centimeter
level, which meets the application requirements of most missions. In general, the
relative navigation accuracy of the deputy satellites is comparable with that of the
chief satellites, regardless of scenario.

• Taking the scenario with a space-circle radius of 1 km as an example, the multi-satellite
relative navigation accuracy is summarized in Figure 18. The multi-satellite relative
navigation accuracy is significantly affected by the angle measurement accuracy. When
the inter-satellite angle measurement accuracy is 0.1 deg, the multi-satellite relative
navigation accuracy is only 1 m. However, when the inter-satellite angle measure-
ment accuracy improves to 1 arcsec, the multi-satellite relative navigation accuracy is
significantly affected by the range measurement accuracy. The multi-satellite relative
navigation accuracy is better than 1 cm with a range measurement accuracy of better
than 1 mm, and is maintained within 20 cm with a range measurement accuracy of 10
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cm. Therefore, improving inter-satellite RF angle measurement accuracy is critical to
further improving multi-satellite relative navigation accuracy.
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5. Conclusions

We have proposed an innovative multi-satellite relative navigation scheme based on
inter-satellite RF measurements for large-scale microsatellite formations. This scheme uses
inter-satellite RF range and angle measurements. Only three chief satellites are required in
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this scheme, which significantly reduces the implementation difficulty of multi-satellite an-
gle measurements. Simultaneously, based on the high-precision distributed multi-satellite
RF range measurement scheme, a multi-satellite relative navigation algorithm has been
developed and integrated with the measurement scheme. Numerical simulation results
demonstrate the effects of the inter-satellite distance, GDOP value, range measurement
accuracy, and angle measurement accuracy on the multi-satellite relative navigation ac-
curacy. With the typical inter-satellite RF range and angle measurement accuracy, and
an inter-satellite distance of around 1 km, the multi-satellite relative navigation accuracy
reaches a level of ~30 cm, and the accuracy is comparable between the deputy satellites
(which use range measurements) and the chief satellites (which use both range and angle
measurements). Further, the multi-satellite relative navigation accuracy is robust to the
number of chief satellites, demonstrating the incredible scalability of the proposed scheme.
Finally, relative navigation accuracy can be improved to the centimeter level when more
accurate angle measurement is provided using laser or infrared technology.
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