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SUMMARY
No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced

pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we iden-

tified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ ‘‘ventralized’’ anterior foregut endoderm cells (VAFECs) in vitro and in

fetal human andmurine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture systemwith fetal human lung fibroblasts, we showed

that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture

differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins

comparedwith 2D differentiation.Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spher-

oids would aid human pulmonary disease modeling and regenerative medicine.
INTRODUCTION

Type II alveolar epithelial cells (AECs) are a major cellular

component of the distal lung epithelium, where they

secrete pulmonary surfactant and generate type I AECs

that cover most of the surface area of the alveoli (Whitsett

et al., 2010; Rock and Hogan, 2011). The stepwise differen-

tiation of human pluripotent stem cells (hPSCs), including

human embryonic stem cells (hESCs) and induced pluripo-

tent stemcells (hiPSCs), into lungepithelial cellswouldhelp

to elucidate the etiologiesofhuman lungdiseases andcreate

novel treatments, and has been reported in both proximal

airway cells (Mou et al., 2012; Wong et al., 2012; Firth

et al., 2014) and distal lung epithelial cells (Green et al.,

2011; Ghaedi et al., 2013; Huang et al., 2014). Currently,

however, there are no surface markers that can be used

to purify human NKX2-1+ ‘‘ventralized’’ anterior foregut

endoderm cells (VAFECs) as alveolar epithelial progenitor

cells (AEPCs), although NKX2-1 is an early marker of lung

and thyroid development (Kimura et al., 1996). Here, we

report the efficacy of carboxypeptidaseM (CPM) as a surface

marker of AEPCs for generating type II AECs.

RESULTS

Identification of CPM as a Marker of NKX2-1+ VAFECs

We hypothesized that identifying a surface marker for

NKX2-1+ VAFECs would be helpful for isolating a ho-
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mogeneous population of AEPCs without establishing

NKX2-1 reporter cell lines. We constructed a stepwise pro-

tocol to induce hPSCs to AECs (Figure 1A). On day 0, pre-

viously established hPSCs were seeded (Thomson et al.,

1998; Takahashi et al., 2007; Nakagawa et al., 2008; Okita

et al., 2013) following single-cell enzymatic dissociation

(Kajiwara et al., 2012), resulting in definitive endodermal

cells (DECs) at an efficiency of R80% (Figure S1A avail-

able online). In step 2, the DECs were differentiated to

anterior foregut endodermal cells (AFECs) (Green et al.,

2011) at an efficiency of R88% (Figure S1B). In step 3,

the concentrations of all-trans retinoic acid, CHIR99021,

and BMP4 were optimized for seven hPSC lines for

differentiation into NKX2-1+FOXA2+ cells, attaining an

efficiency of 57.0%–77.5% (Figures 1C and 1D; Supple-

mental Experimental Procedures). In step 4, cells were

cultured in medium containing FGF10 for 7 days. In

step 5, the cells were differentiated in medium contain-

ing dexamethasone, 8-Br-cAMP, 3-isobutyl-1-methylxan-

thine, and KGF (Gonzales et al., 2002; Longmire et al.,

2012). We confirmed induction of AECs by detecting

SFTPB and SFTPC using RT-PCR and double staining

SFTPC and SFTPB with NKX2-1 (Figures S1C and S1D).

Transcription factors were analyzed by quantitative

RT-PCR (qRT-PCR; Figure 1B). SOX17, FOXA2, GATA6,

and SOX2 were compatibly changed on day 6 and

day 10 as previously described (Green et al., 2011). On

day 14, NKX2-1, GATA6, ID2, SOX9, and HOPX levels
uthors
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simultaneously increased. Interestingly, NKX2-1, GATA6,

and HOPX levels decreased on day 21 and then increased

again on day 25. The levels of other organ lineage

markers were found to be limited from day 0 to day 25

(Figure S1E).

In order to identify candidate markers of VAFECs, we

performed a microarray analysis to compare the global

gene-expression patterns of AFECs (day 10) and VAFECs

(day 14) in 201B7 hiPSCs. CPM and NKX2-1 were remark-

ably upregulated on day 14 (Figures 1E and S1F). In immu-

nofluorescence (IF) staining, CPM and NKX2-1 increased

from day 10 to day 14 (Figure 1F), whereas EPCAM and

FOXA2 did not appear to change (Figure S1G). Although

CPM was reported to be a marker of type I AECs (Nagae

et al., 1993), only CPM drastically increased on day 14

in a similar pattern to NKX2-1, in contrast to other

markers of type I AECs (AQP5 and CAV1) (Figure S1H).

On day 25, the various airway markers, including distal

lung transcription factors (SOX9 and NKX2-1), type II

AEC markers (SFTPB and SFTPC), and a club cell marker

(SCGB3A2), were expressed in the CPM+ cells. KRT5, a

marker of basal cells, was not expressed in the CPM+ cells

(Figure 1G).

In fetal human lung at 18.5 weeks of gestation, SFTPC

and T1a were expressed separately (Figure S1I), while

CPM was expressed in NKX2-1+, SFTPC+, and T1a+ cells

(Figure 1H), thus indicating that CPM is expressed in

both type I and II AECs in the fetus. The sequential expres-

sion of CPM was confirmed in NKX2-1+ cells of fetal

murine lungs at embryonic day 12.5 (E12.5), E15.5, and

E17.5 (Figure 1I). For thyroid lineage cells, which differen-

tiated from NKX2-1+ VAFECs, CPM was found to be nega-

tive in both NKX2-1+ cells and PAX8+ epithelial cells, but

weakly positive in PECAM+ endothelial cells in the adult

human samples (Figure S1J). In E17.5 fetal and adult

murine thyroids, CPM was also negative in NKX2-1+ and

PAX8+ cells (Figure S1K), suggesting that CPM is a lung-

lineage marker of VAFECs.

Isolation of NKX2-1+ VAFECs Using Anti-CPM+

Antibody

As CPM is a membrane-bound surface protein, we per-

formed flow cytometry with anti-EPCAM and anti-CPM

antibodies after dissociating VAFECs on day 14 (Fig-

ures 2A and S2A). We then sorted EPCAM+CPM+ and

EPCAM+CPM� cells and examined the global gene-expres-

sion patterns of these two populations using microarrays.

We screened 560 probes with a false discovery rate (FDR)-

adjusted p value of <0.05 among 54,675 probes. Gene clus-

tering was performed in 336 probes that differed between

the EPCAM+CPM+ and EPCAM+CPM� cells with a fold

change (FC) cutoff value of 2.0 (Figures 2B and S2B). Of

the clustered genes with the highest expression in the
Stem Cell
EPCAM+CPM+ cells, CPM ranked among the top five

probes with a log FC of >6, as expected. Importantly, the

log FCs of two probes for NKX2-1 were 4.89 and 4.82,

respectively. FOXA1, FOXA2, HOPX, and GATA6 were

also included in the list of upregulated genes with log

FCs of 3.79, 3.06, 3.61, and 3.29, respectively. Next we

sorted the CPM+ cells using a magnet-activated cell

sorting (MACS) system to increase the yield, as almost all

of the CPM+ cells were EPCAM+ cells (96.7% ± 2.1% of

CPM+ cells; Figure 2A). After MACS-based sorting, the pro-

portion of CPM+ cells in three populations (presorting,

positive selection, and negative selection) was 63.4% ±

5.8%, 98.8% ± 0.4%, and 34.0% ± 7.8%, respectively, by

flow cytometry (Figure 2C). We then evaluated the propor-

tion of positive NKX2-1+ cells among the MACS-sorted

CPM+ and CPM� cells using IF staining (93.0% ± 1.0%

versus 29.0% ± 1.0%; Figure S2C) and flow cytometry

(92.3% ± 0.7% versus 22.2% ± 2.3%; Figure S2D). Because

a portion of the CPM+ cells appeared to be sorted accord-

ing to MACS-based CPM negative selection, we investi-

gated the average proportion of NKX2-1+ cells among

the fluorescence-activated cell sorting (FACS)-sorted

CPM+ and CPM� cells using IF staining (89.9% ± 0.4%

versus 4.5% ± 1.7%; Figure 2D). Following CPM-based pu-

rification on day 14, CPM increased significantly from

0.74-fold ± 0.12-fold to 4.94-fold ± 0.51-fold of that

observed in the fetal human lung (n = 5), while NKX2-1

increased from 0.41-fold ± 0.10-fold to 1.95-fold ± 0.36-

fold (n = 5) on qRT-PCR (Figure 2E). We then applied

this method to purify AECs on day 25. CPM, NKX2-1,

SFTPA2, SFTPB, SFTPC, DCLAMP, SCGB1A1, and SCGB3A2

were significantly increased in the CPM+ cells (n = 5); how-

ever, the level of SFTPC was extremely low compared with

that observed in the fetal lung. NGFR, a marker of prox-

imal airway basal stem cells (Rock et al., 2009), was signif-

icantly decreased in the CPM+ cells (n = 5; Figure 2F).

Generation of SFTPC-GFP Knockin Reporter hPSCs

In order to investigate whether CPM is a potential surface

marker of AEPCs, we generated SFTPC-GFP knockin re-

porter hPSC lines from 201B7 hiPSCs using BAC-based

homologous recombinationmethods (Mae et al., 2013; Fig-

ure 3A; Supplemental Experimental Procedures), as SFTPC

is the most specific marker of type II AECs. Following elec-

troporation of the targeting vectors, 12 of 55 G418-resis-

tant clones were found to have a heterozygous deletion

of the genomic endogenous SFTPC-coding region (Fig-

ure 3B). The pgk-Neo cassette was removed via electropora-

tion of the Cre-expression vector (Figure 3C), and normal

karyotypes of the A17-14 and B2-3 clones were confirmed

(Figure S3). The genomic copy number was calculated as

previously described (Mae et al., 2013). The parental

201B7 (data not shown), A17-14, and B2-3 clones have
Reports j Vol. 3 j 394–403 j September 9, 2014 j ª2014 The Authors 395
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two copies of the SFTPC gene loci, in contrast to the A17-13

clone, in which random transgenic integration is supposed

to have occurred, as indicated by three copies of the loci

(Figure 3D). No copy-number variation was detected for

the B2-3 clone, whereas a copy-number loss at chromo-

some 16 q23.3 and gain at chromosome 20 p13 were de-

tected for the A17-14 clone (data not shown). Both

SFTPC-GFP reporter hPSCs were then differentiated to the

end of step 5 and GFP+ and GFP� cells were obtained by

FACS after the CPM+ cells were sorted using MACS (Fig-

ure 3E). We confirmed the correlation between GFP and

SFTPC on RT-PCR (Figure 3F). GFP was detected in SFTPC+,

SFTPB+, and NKX2-1+ cells for both clones (Figure 3G).

Alveolar Differentiation from CPM+ VAFECs in

3D Coculture

We attempted 2D differentiation, reseeding the CPM+

SFTPC-GFP reporter hPSCs purified from VAFECs on day

14 onto Matrigel-coated, 96-well plates. After 14 days of

differentiation in step 5 medium, SFTPB became positive

in the reseeded CPM+ cells (Figure S2E); however, SFTPC

was almost negative (Figure S4D, condition b). We ob-

tained similar results when we sorted and reseeded

CPM+ cells on day 23 (Figure S2F). The discrepancy be-

tween the expression of SFTPB and SFTPC in developing

human lungs was previously reported (Khoor et al.,

1994). Therefore, we hypothesized that some missing fac-

tors are important for the coexpression of SFTPB and

SFTPC. We then adopted a 3D coculture with fetal human

lung fibroblasts (FHLFs) obtained at 17.5 weeks of gesta-

tion (Figure 4A). CPM+ cells purified from VAFECs on

day 14 and FHLFs were mixed at a ratio of 1:50 and re-

seeded onto cell inserts. After 10 days of differentiation

in step 5 medium, GFP became positive in some spheroids

(Figure 4B). The spheroids were subsequently examined

with a transmission electron microscope and lamellar-

body-like structures were noted (Figure 4C). On hematox-

ylin-and-eosin staining, cyst-like spheroids consisting of
Figure 1. Identification of CPM as a Candidate Marker of NKX2-1
(A) Stepwise differentiation to AECs from hPSCs.
(B) Gene-expression levels of transcription factors from day 0 to day
relative expression level was scored with the maximum value set to 1
(C) Induction efficiency of VAFECs analyzed by scoring the number of F
average of ten randomly selected images (n = 3).
(D) FOXA2+NKX2-1+ VAFECs derived from 201B7 hiPSCs.
(E) Scatterplots comparing the global gene-expression profiles of
(arrowheads) are noted. The lines beside the diagonal line indicate a
(F) Simultaneous increases of CPM and NKX2-1 detected by IF stainin
(G) CPM detected in NKX2-1+, SOX9+, SFTPB+, SFTPC+, and SCGB3A2+

(H) CPM detected in NKX2-1+ lung epithelial cells in fetal human lun
(I) CPM in E12.5, E15.5, and E17.5 murine lungs.
Error bars show SEM. Scale bars, 100 mm. See also Figure S1 and Tabl
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pseudostratified, columnar, or cuboidal cells with dark

pink cytoplasm were observed in the CPM+ cell-derived

spheroids, whereas small pieces of spheroids consisting

of cuboidal cells with clear cytoplasm were noted in the

CPM� cell-derived spheroids (Figure S4A). On IF staining,

CPM and NKX2-1 were double positive in most CPM+ cell-

derived spheroids, while GFP and SFTPC were double

positive in some spheroids (Figure 4D). In the CPM�

cell-derived spheroids, EPCAM was positive, whereas no

CPM+ or NKX2-1+ cells were identified (Figure S4B).

SFTPA, SFTPB, SFTPC, and SFTPD (representative markers

of type II AECs) were positive in the CPM+ cell-derived

spheroids (Figure S4C). AQP5+ cells were adjacent to

SFTPC+ cells in some spheroids (Figure 4D). ID2 and

SOX9 (markers of differentiation into the distal lung-line-

age fate) were positive in some NKX2-1+ and CPM+ cells,

respectively (Figure S4C). Next, we trypsinized the cells

in 3D structures and determined the proportion of

SFTPC-GFP+ cells, detecting 3.82% ± 0.50% cells obtained

from the CPM+ cell-derived 3D structures and 0.29% ±

0.03% cells obtained from the CPM� cell-derived struc-

tures including fibroblasts (Figure 4E). Excluding the

fibroblasts, the ratio of the number of SFTPC-GFP+ cells

to that of EPCAM+ cells was calculated to be 9.81% ±

1.81% in the CPM+ cell-derived spheroids and 1.07% ±

0.16% in the CPM� cell-derived spheroids. Almost all of

the GFP+ cells sorted by FACS were SFTPC+, whereas the

GFP� cells were SFTPC� (Figure 4F). The levels of alveolar

markers (SFTPB and SFTPC), rather than club cell markers

(SCGB1A1 and SCGB3A2), were significantly elevated

following the 3D coculture differentiation of CPM+ cells

derived from three hPSC lines (H9 hESCs and parental

201B7 and 604A1 hiPSCs) compared with the 2D differen-

tiation employing the three protocols separately starting

on day 14 (Figure 1A; Green et al., 2011; Longmire

et al., 2012) and the 3D coculture differentiation of

CPM� cells (Figure 4G). Interestingly, the levels of SFTPB

and SFTPC were quite low for 585A1 hiPSCs, suggesting
+ VAFECs

25 (n = 3). Each value was normalized to the level of b-ACTIN. The
.0.
OXA2+ and NKX2-1+ cells relative to the total number of nuclei in an

AFECs (day 10) and VAFECs (day 14). CPM (arrows) and NKX2-1
2-fold cutoff change between the AFECs and VAFECs.
g of AFECs (day 10) and VAFECs (day 14).
cells, but not in KRT5+ cells, on day 25.
g.

es S1 and S2.
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Figure 2. Isolation of CPM+ VAFECs Using Anti-CPM Antibody
(A) Flow cytometry of VAFECs. EPCAM+CPM+ (Q2) and EPCAM+CPM� cells (Q4) were isolated on day 14 (n = 3).
(B) Hierarchical clustering heatmaps of 336 genes with differences of >2-fold (FDR-adjusted p < 0.05) comparing EPCAM+CPM+ cells with
EPCAM+CPM� cells. The cluster of genes increased as the greatest fold change was magnified.
(C) Flow cytometry of MACS-sorted CPM+ and CPM� cells from VAFECs (n = 3).
(D) NKX2-1+ cells in FACS-sorted CPM+ and CPM� cells derived from VAFECs analyzed by scoring the number of NKX2-1+ cells relative to the
total number of nuclei in an average of five randomly selected images (n = 3).

(legend continued on next page)
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Figure 3. Generation of SFTPC-GFP
Knockin hPSC Lines
(A) Strategy for BAC-based gene targeting to
produce SFTPC-GFP knockin hPSC lines.
(B) Screening of knockin hPSC lines using
TaqMan qPCR. Positive clones with candidate
heterozygous deletion of the endogenous
SFTPC gene are shown in white bars. Only
clones that were initially suspected to be
positive were tested independently three
times.
(C) Genomic PCR to confirm the removal of
the pgk-NeoR cassette by Cre-recombinase in
the A17-14 and B2-3 SFTPC-GFP reporter
hPSCs.
(D) SNP array analysis of the SFTPC-GFP
knockin hPSC lines. The copy number of
SFTPC gene loci was analyzed in A17-13,
A17-14, and B2-3 clones. The A17-14 and
B2-3 clones have two copies of the SFTPC
gene loci, whereas the A17-13 clone has
three copies of the loci. The red dots and y
axis represent the normalized signal in-
tensity of each SNP.
(E) Isolation of SFTPC�GFP+ and GFP� cells
via FACS after sorting CPM+ cells via MACS on
day 25.
(F) RT-PCR analyses of GFP+ and GFP� sorted
cells in the A17-14 and B2-3 SFTPC-GFP re-
porter hPSC lines.
(G) Representative images of GFP detected
in SFTPC+, SFTPB+, and NKX2-1+ cells.
Error bars show SEM. Scale bars, 100 mm. See
also Figure S3 and Tables S1 and S2.
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that the concentration of retinoic acid required to induce

NKX2-1+ VAFECs in step 3 is less important for subse-

quent differentiation into AECs than the difference in

the cell lines or donors. Moreover, the expression of SFTPB

and SFTPC was small for the 2D and 3D differentiation of

CPM+ cells alone or FHLFs alone (Figure S4D). Finally,

other cell-type markers (AQP5 [type I AECs], FOXJ1 [cili-
(E) Levels of CPM and NKX2-1 on day 14 before and after MACS-based
(F) Levels of AEC and club-cell markers and NGFR, a proximal airway ste
CPM+ cells (n = 5).
The gene-expression level observed in the fetal lungs was set at on
#p < 0.05, *p < 0.01. Scale bars, 100 mm. See also Figure S2 and Tab

Stem Cell
ated cells], and AGR2 [goblet cells]) appeared to be

elevated in the CPM+ cell-derived structures rather than

in the CPM� cell-derived structures, suggesting that cell-

type markers other than club-cell markers were expressed

in the CPM+ cell-derived spheroids. KRT5 (a basal cell

marker, possibly including both airway and esophageal

basal cells) was exclusively expressed in the CPM�
purification of CPM+ cells on qRT-PCR (n = 5).
m cell marker, on day 25 before and after MACS-based purification of

e. Values are presented as the mean ± SEM. Error bars show SEM.
les S1 and S2.
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Figure 4. Alveolar Differentiation from CPM+ VAFECs in 3D Coculture
(A) Strategy for inducing AECs via 3D coculture with FHLFs.
(B) SFTPC-GFP+ cells detected in spheroids derived from isolated CPM+ VAFECs.
(C) Transmission electron microscopy of lamellar-body-like structures observed in 3D coculture differentiation of CPM+ cells compared with
those observed in the adult and fetal murine lungs. Lu, lumen.
(D) IF staining of spheroids derived from CPM+ VAFECs.
(E) Flow cytometry of SFTPC-GFP+ cells in 3D coculture differentiation of CPM+ cells or CPM� cells (n = 3).
(F) GFP+ and GFP� cells isolated via FACS, spun down onto slides, and stained by anti-GFP and anti-SFTPC antibodies.

(legend continued on next page)
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cell-derived structures. In addition, PAX8 (a thyroid

marker), PAX6 (a neuron marker), and the other foregut

endodermal lineage cells (FOXN1, ALB, and PDX1) were

only minimally or slightly induced following 3D cocul-

ture differentiation (Figure S4E).
DISCUSSION

In this work, we identified CPM as a surface marker

that is expressed in NKX2-1+ VAFECs, including AEPCs,

and demonstrated that the CPM+ cell-derived spheroids

obtained via 3D coculture differentiation with FHLFs

enabled more efficient differentiation to AECs than did

2D differentiation. The gene-expression pattern of CPM

in developing lungs has not received significant attention,

although in situ hybridization of Cpm in anterior DECs as

early as E7.5 in mice has been reported (Tamplin et al.,

2008). Our data from IF staining of murine fetal lungs (Fig-

ure S1I) also suggest that lineage-tracing studies may pro-

vide answers to the following questions: Is Cpm a possible

‘‘specific’’ marker of lung-lineage progenitor cells such as

Shh (Harris et al., 2006), Id2 (Rawlins et al., 2009a), and

Nkx2-1 (Longmire et al., 2012)? What is the relationship

between CPM+ cells and bipotent cells that are capable of

generating type I and type II AECs (Desai et al., 2014)?

Do CPM+ cells differentiate into type II AECs directly or

indirectly via SFTPC+SCGB1A1+ cells (Kim et al., 2005;

Rawlins et al., 2009b)? Furthermore, the present study sug-

gests that a 3D microenvironment and coculture with

FHLFs are important factors in the differentiation of pro-

genitor cells into AECs rather than club cells. Although

maintaining type II AECs in 2D conditions is often difficult

(Dobbs, 1990; Yu et al., 2007), 3D conditions have recently

been applied with better outcomes (Yu et al., 2007;

McQualter et al., 2010; Barkauskas et al., 2013). Therefore,

our 3D differentiation protocol appears to be a reasonable

approach for maintaining differentiated type II AECs,

although methods for expanding such cells for longer

periods should be established in the next step.

The limitations of the present study include the fact that

we were unable to demonstrate whether CPM is a more

appropriate marker for lung-lineage cells than NKX2-1.

Future studies focusing on the possible contribution of

NKX2-1�CPM+ cells and/or NKX2-1+CPM� cells to the dif-

ferentiation of lung epithelial cells may resolve this issue,

although we found only two isolatable populations of

NKX2-1+CPM+ and NKX2-1�CPM� cells using the present
(G) qRT-PCR comparing the 2D and 3D differentiation into AECs in H9 h
the gene expression was normalized to the level of b-ACTIN. The leve
Values are presented as the mean ± SEM. Error bars show SEM. #p < 0.05
Figure S4 and Tables S1 and S2.

Stem Cell
protocol. In addition, we were unable to demonstrate the

highest induction efficiency of AECs, as recently described

(Ghaedi et al., 2013), although we employed a different

method for evaluating efficiency using SFTPC-GFP re-

porter hPSCs. Another limitation is that the functions of

the induced AECs remain to be elucidated.

Nevertheless, the methods applied in the present study

to induce and isolate AEPCs using CPM and consequently

generate alveolar epithelial spheroids in a stepwise fashion

may help to elucidate the complicated differentiation of

human AECs and open the door for the development of

new strategies for in vitro toxicology and cell replacement

therapy, as well as screening for therapeutic drug com-

pounds, in the future.
EXPERIMENTAL PROCEDURES

2D Differentiation
CHIR99021 (Axon Medchem), an activator of canonical Wnt

signaling, was substituted forWNT3A (Mae et al., 2013). For details

regarding the protocols used for each differentiation medium, see

the Supplemental Experimental Procedures.
3D Differentiation
The protocol for the 3D culture was modified from a previous

report (Barkauskas et al., 2013). For further details, see the Supple-

mental Experimental Procedures.
Ethics
The use of H9 hESCs was approved by the Ministry of Education,

Culture, Sports, Science and Technology (MEXT) of Japan. Human

ethics approval was obtained from the Institutional Review Board

and Ethics Committee of Kyoto University Graduate School and

Faculty of Medicine. Animal ethics approval was obtained from

the Animal Ethics and Research Committee of Kyoto University.
Statistical Analysis
Values are expressed as the mean ± SEM and ‘‘n’’ stands for the

number of independent experiments. Two-tailed Student’s t test

was performed to identify significant differences between two

conditions of qRT-PCR.
ACCESSION NUMBERS

The NCBI GEO accession number for the microarray data reported

in this paper is GSE53513.
ESCs and 201B7 (parental), 604A1, and 585A1 hiPSCs. Each value of
ls of the fetal lungs were set at one.
, *p < 0.01. Scale bars, 100 mm unless otherwise indicated. See also
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, four figures, and two tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.
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