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Ann Arbor, MI, United States

The role of tumor infiltrating lymphocytes (TILs) as a biomarker to predict disease
progression and clinical outcomes has generated tremendous interest in translational
cancer research. We present an updated and enhanced deep learning workflow to
classify 50x50 um tiled image patches (100x100 pixels at 20x magnification) as TIL
positive or negative based on the presence of 2 or more TILs in gigapixel whole slide
images (WSIs) from the Cancer Genome Atlas (TCGA). This workflow generates TIL maps
to study the abundance and spatial distribution of TILs in 23 different types of cancer. We
trained three state-of-the-art, popular convolutional neural network (CNN) architectures
(namely VGG16, Inception-V4, and ResNet-34) with a large volume of training data, which
combined manual annotations from pathologists (strong annotations) and computer-
generated labels from our previously reported first-generation TIL model for 13 cancer
types (model-generated annotations). Specifically, this training dataset contains TIL
positive and negative patches from cancers in additional organ sites and curated data
to help improve algorithmic performance by decreasing known false positives and false
negatives. Our new TIL workflow also incorporates automated thresholding to convert
model predictions into binary classifications to generate TIL maps. The new TIL models all
achieve better performance with improvements of up to 13% in accuracy and 15% in F-
score. We report these new TIL models and a curated dataset of TIL maps, referred to as
TIL-Maps-23, for 7983WSIs spanning 23 types of cancer with complex and diverse visual
appearances, which will be publicly available along with the code to evaluate performance.

Code Available at: https://github.com/ShahiraAbousamra/til_classification.

Keywords: TIL maps, digital histopathology, whole slide images, tumor infiltrating lymphocytes, deep learning,
large scale analysis
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1 INTRODUCTION

Tumor infiltrating lymphocytes (TILs) have gained importance as a
biomarker in translational cancer research for predicting clinical
outcomes and guiding treatment. As our collective understanding
of tumor immune responses in cancer expands, clinical research
studies have shown that high densities of TILs correlate with
favorable clinical outcomes (1), such as longer disease-free
survival (2) and/or improved overall survival in multiple types of
cancer (3). Studies also suggest that the spatial distribution of TILs
within complex tumor microenvironments may play an important
role in cancer prognosis (4–6). These findings have led to efforts to
characterize the abundance and spatial distribution of TILs in
cancer tissue samples to further our understanding of tumor
immune interactions and help develop precision medicine
applications in oncology (7–11).

Computational image analysis of whole slide images (WSIs)
of cancer tissue samples has become a very active area of
translational biomedical research. The goals are to gain novel
insights into cancer and the tumor microenvironment, including
tumor immune responses, through the search for biomarkers to
predict outcomes and treatment response. Modern digital
microscopes scan whole slide tissue samples at very high image
resolutions, ranging from 50,000x50,000 pixels to over
100,000x100,000 pixels. The increasing availability of such
gigapixel WSIs has stimulated the development of image
analysis methods for detection, segmentation, and classification
of microanatomic regions, structures, cells, and other objects in
tissue images. Therefore, we utilized advances in computer vision
and machine learning to quantitatively characterize TILs to
complement qualitative microscopic evaluation of cancer tissue
samples by pathologists. Deep learning has become the preferred
approach for a variety of image analysis tasks in recent years (12–
17) since these methods can analyze raw image data and do not
require specified instructions to identify and quantify engineered
image features. Furthermore, deep learning-based image analysis
workflows have been shown to consistently produce more
accurate results and generalize to new datasets better than
previous image analysis methods in computational pathology.

Several projects have implementedmethods to detect and classify
lymphocytes in tissue images. Eriksen et al. (18) employed a
commercial system to count CD3+ and CD8+ cells in tissue
images that were obtained from stage II colon cancer patients and
stained with an immunohistochemistry (IHC) protocol. Swiderska-
Chadaj (19) also trained a deep learning model with a dataset of
171,166 annotated CD3+ and CD8+ cells in images of IHC stained
tissue specimens frombreast, prostate and colon cancer cases. Garcia
et al. (20) proposed a deep learning model to count TILs in IHC
images of gastric cancer tissue samples by using amodel trainedwith
70x70 square pixel patches extracted from biopsy micrographs
scanned at 40x magnification and labeled by pathologists.
PathoNet, developed by Negahbani et al. (21), implements a deep
learning model based on the U-Net architecture (22) for detection
and classification of Ki-67 and TILs in breast cancer cases.

Methods were also developed to study TILs in Hematoxylin and
Eosin (H&E) stained tissue images. Budginaite et al. (23) developed
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a deep learning workflow based on the Micro-Net architecture (24)
and multi-layer perceptrons to identify lymphocytes in tissue
images from breast and colorectal cancer cases. Corredor et al.
(25) investigated the spatial patterns of TILs in early stage non-
small cell lung cancer cases with the goal of predicting cancer
recurrence. Jaber et al. (26) investigated TILs in non-small cell lung
cancer cases by employing deep learning architectures and support
vector machines to classify 100x100 square micron patches in
WSIs. Acs et al. (27) developed a computerized TIL scoring
method using QuPath software (28) to cluster melanoma cancer
patients into those with favorable prognosis and those with poor
prognosis. Linder et al. (29) evaluated the use of deep learning for
TIL analysis in tissue images of testicular germ cell tumors by using
commercial image analysis software and implementing a two stage
workflow in which the first stage processed WSIs to detect regions
that contained TILs and the second stage counted the TILs in those
regions, demonstrating how deep learning-based methods can be
used successfully for TIL detection in germ cell cancer. Amgad
et al. (30) proposed a deep learning workflow based on a fully
convolutional network architecture developed by Long et al. (31) to
identify tumor, fibroblast, and lymphocyte nuclei and tumor and
stroma regions. Le et al. (32) developed deep learning models for
segmentation of tumor regions and detection of TIL distributions
in whole slide images of breast cancer tissues by training models
based on VGG16, Inception-V4, and Resnet-34 architectures that
used WSIs from The Surveillance, Epidemiology, and End Results
(SEER) Program at the National Cancer Institute (NCI) and the
Cancer Genome Atlas (TCGA) repository.

Despite an increasing number of projects, there are few large scale
datasets ofWSIs that are publicly available to study TILs. Moreover,
most of the previous projects targeted specific types of cancer from
particular organ sites. The classification of TILs can be challenging in
large datasets of WSIs across multiple types of cancer from different
organ sites for many reasons. Deep learning models need to
distinguish TILs from cancer cells that are intrinsically complex
across a wide spectrum of growth patterns, cellular and nuclear
morphologies, and other histopathologic features associated with
specific types of cancer, which vary by organ site, state of cellular
differentiation, and stage of cancer (e.g. primary organ site versus a
metastatic tumor deposit). Computational image analysis of
pathology WSIs is also complicated by variations in image
properties from differences in scanning with different types of
digital slide scanners and varying tissue staining laboratory
protocols. Figure 1 shows an example of identifying TILs in a WSI
and the heterogeneity of the appearance and distribution of TILs in
different tissue samples. Before our work, the largest TIL dataset was
generated by Saltz et al. (33), where 5202WSIs from 13 cancer types
were analyzed.

In this paper we describe a deep learning workflow that was
utilized to generate a large dataset of TILmaps, referred to here as the
TIL-Maps-23 dataset. Unlike the previous work that studied TILs in
mostly common types of cancer, we trained a deep learning model
with the goal of analyzingWSIs from amuchwider range of different
types of cancer. We adopted the same approach of patch-wise
classification as in (33), where each WSI is partitioned into non-
overlapping patches of size 50 x 50 square microns. A trained deep
February 2022 | Volume 11 | Article 806603
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learning CNN model classifies each patch as TIL-positive or TIL-
negative and then compiled to generate a TILmap of theWSI.While
a classification at the cellular level allows finer grain analysis, patch-
level classification offers several advantages. First, it requires much
less annotation time and effort. The pathologist can justmark regions
as TIL positive or TIL negative and thenwe can sample patches from
these regions. On the other hand, cell-level annotations require
marking each individual lymphocyte cell in a patch. Second,
optimizing nuclear classification is more challenging over multiple
cancer types and needs much more data. Our approach allows us to
scale the dataset to develop a model to span more cancer types with
much less effort. Third, the identifying lymphocytes at a 50 microns
resolution provides valuable and interpretable information about the
spatial distributions of TILs across large sets of WSIs to study many
samples from a particular type of cancer and/or compare the role of
TILs in different types of cancer, which can be further studied in
downstream correlative analyses. In an earlier work (33), we applied
spatial statistics to patch-level TIL predictions in WSIs and
demonstrated that spatial clustering patterns of TILs correlate with
molecular features and clinical outcomes. In another work (32), we
computed TIL infiltration amounts by combining patch-level TIL
predictions with tumor segmentation results in breast cancer and
showed correlations between TIL infiltration and survival that was
stratified by molecular subtype.

The work presented in this manuscript focuses on an improved
deep learning workflow for patch-level TIL prediction and
generation of a large dataset of TIL predictions across multiple
cancer types.Weplan to carry out additional studies to ascertain the
Frontiers in Oncology | www.frontiersin.org 3
clinical relevance of TIL predictions in future works. Our work
improveson the earlierworkdonebySaltz et al. (33) in severalways.
The previous work trained two CNNdeep learningmodels, one for
detecting lymphocytes and the other for segmenting necrosis
regions by using convolutional neural networks (CNNs)
developed in-house. The necrosis segmentation model was used
to eliminate false TIL-positive predictions in necrotic regions of
tissues, which required two separate training datasets. This new and
improved deep learning workflow employs a single CNN by
adapting popular, engineered classification networks and using a
combination of manual annotations and machine-generated
annotations as training data. Moreover, the previous work
included a manual thresholding step in order to generate the final
binary TIL maps. This step consisted of a patch sampling process
andamanual reviewof the sampledpatches tosetTIL-positive/TIL-
negative thresholds for different WSIs. The new workflow
implements an automated mechanism for computing thresholds
to map model predictions to binary classifications. This eliminates
themanual thresholding step of the previouswork.After all of these
improvements, we present the TIL-Maps-23 dataset for 23 types of
cancer, which is the largest collection of curated TIL maps across
both common and rare types of cancer to date.
2 MATERIALS AND METHODS

The overall analysis workflow is illustrated in Figure 2. The
workflow consists of training data generation, model training,
FIGURE 1 | Identifying Tumor Infiltrating Lymphocyte (TIL) regions in gigapixel pathology WSIs. (A) H&E stained WSI of lung adenocarcinoma. (B) Example of a
region of tissue. (C) Example of a TIL map overlaid on the region of tissue. (D) Examples of TIL positive (framed in red) and negative (framed in green) patches. A
lymphocyte is typically dark, round to ovoid, and relatively small compared to tumor and normal nuclei. Sample patches show the heterogeneity in TIL regions and
how it can be challenging to differentiate TIL positive and TIL negative regions.
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and inference steps. The training dataset is generated by
combining labels from manual patch-level and region-level
annotations, as well as classification predictions generated by
the deep learning model developed in (33). The inference step
(Figure 3) partitions WSIs into patches, outputs patch-level
probability values, and executes an automated method to
compute thresholds for mapping the probability values to
binary classifications.
Frontiers in Oncology | www.frontiersin.org 4
2.1 Generating Training Dataset
We created a training dataset by combining manually annotated
patches (strong annotations) from 18 TCGA cancer types (ACC,
BRCA, COAD, ESCA, HNSC, KIRC, LIHC, LUAD, MESO, OV,
PAAD, PRAD, SARC, SKCM, TGCT, THYM, UCEC, and
UVM) and model-generated annotations from 4 TCGA cancer
types (CESC, LUSC, READ, and STAD). For the model-
generated annotations, we sampled a set of patches classified
FIGURE 2 | The overall analysis workflow: Training data generation, model training, inference (prediction), and computing threshold values. Training data is
generated via a combination of manual annotations and model-generated predictions. A trained model generates predictions in the form of the probability that a
patch is TIL-positive. The probability values are mapped to binary classifications by applying an automatically computed threshold.
FIGURE 3 | TIL inference step. An input WSI is partitioned into disjoint patches of 50x50 square microns. Each patch is processed by the trained classification
model and assigned a probability value. The probability values are mapped to binary classifications. A TIL map covering the entire WSI is generated.
February 2022 | Volume 11 | Article 806603
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by the model in (33). The model-generated annotations are
employed not only as a cost-saving mechanism to reduce
manual annotation workload but also to increase diversity in
texture and appearance of tissue data. Variations in texture and
appearance are often the case with H&E images, especially with a
dataset like TCGA which comes from multiple sites, each using
their own slide scanners and staining protocols. We have shown
previously in (34) that combining manual annotations with
model-generated annotations for cancer types with scarce or
no manual annotations gives better results compared to using
manual annotations alone.

The manual annotations are generated in 2 ways. First,
patches of 150 x 150 square microns are randomly sampled
from the WSIs. Pathologists annotate the center 50 x 50 square
micron sub-patch in each patch. The annotation indicates
whether the center sub-patch is TIL-positive or TIL-negative.
Using a 150 x 150 square micron patch allows pathologists to see
the surrounding tissue for a more informed decision on the label
of the center sub-patch. Only the center sub-patch is used in
training. A patch is labeled TIL-positive if it has at least 2
lymphocytes or plasma cells in the center sub-patch. Second,
pathologists mark TIL-positive and TIL-negative regions on
WSIs, where TIL-positive regions are regions with a significant
amount of lymphocytes and/or plasma cells. Patches of 50 x 50
square microns are randomly sampled from these regions, where
each patch is assigned the same label as the source region.

The model-generated annotations are collected from
classifications produced by the previous model in (33). This
model employed a human-in-the-loop TIL classification
procedure, where a manual threshold step was applied to the
predicted TIL probability maps in order to produce binary
classifications. In our work, we randomly sampled TIL-positive
and TIL-negative patches from the binary classifications.

2.2 Deep Neural Network Models
and Training
We trained 3 models with different networks: VGG-16 (35),
ResNet-34 (36), and Inception-V4 (37). These networks are
engineered for image classification. They have been shown to
be powerful classifiers on the ImageNet dataset (38) and have
been adopted in various computer vision applications. The main
differences between the 3 networks can be summarized as
follows: VGG-16 has a basic convolutional neural network
architecture; ResNet-34 is much deeper and features skip
connections that allow a more stable training of the deeper
network; and Inception-v4 is an even a deeper network, where
each block in the network utilizes residual connections and
convolutional layers of various sizes to capture features at
different resolutions and reception fields.

Each network is initialized with weights from the
respective pre-trained model on ImageNet. The batch
normalization layers are dropped. Each input image (patch)
is scaled with bilinear interpolation to match the network’s
pre-training input size (i.e., 224 x 224 pixels for VGG-16, 299
x 299 pixels for Inception-V4, and 100 x 100 for ResNet-34).
The input image is normalized to the range [–1, 1] for VGG-
Frontiers in Oncology | www.frontiersin.org 5
16 and Inception-V4 by img = ( img
255 − 0:5)� 2. For ResNet-34,

the input image is normalized with the same mean and
standard deviation vectors as the pre-trained model. The
training phase implements data augmentation, including
random rotation and flipping, shifting of input patches left/
right and up/down by a random number of pixels in the range
of [–20, +20], and color augmentation via small variations to
brightness and color in the hue, saturation, and lightness
(HSL) space. All of the networks were trained end-to-end
using the cross entropy loss.

2.3 Determining Binary
Classification Thresholds
The trained models output a probability value for each patch in
an input WSI. This creates a probability map for the entire WSI.
The final binary prediction (TIL positive or TIL negative) is
obtained by thresholding the probability map. If the probability
of a patch is greater than or equal to the threshold value, the
patch is classified as TIL-positive. Otherwise, it is classified as
TIL-negative.

A default threshold value of 0.5 was used during training to
evaluate a model’s performance in each training epoch. At the
end of the training phase, the threshold value was fine-tuned for
the inference phase. A threshold value in the range [0.4, 0.6] was
selected for each model based on the performance of the model
on a small hold-out dataset. We evaluated two methods for
selecting the threshold value for each model. The first method
relies on the true positive rate (TPR) and the false positive rate
(FPR) (39). The optimal (FPR, TPR) pair is (0,1). The threshold
selection method minimizes the FPR and maximizes the TPR.
Figure 4 shows an example receiver operating characteristic
(ROC) curve (x = FPR, y = TPR). The length of the line from
the (0,1) point and intersecting the curve at (fpr, tpr)
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpr2 + (1 − tpr)2

p
. By selecting the threshold value that

minimizes the distance from (0,1) to the curve, FPR and (1-
TPR) are minimized. The second method is based on the Youdin
Index, which is commonly used to select a threshold that
maximizes TPR - FPR (40). In our experiments, both methods
resulted in almost identical binary classification maps. The
threshold values selected for the VGG-16, ResNet-34, and
Inception-V4 models were 0.4, 0.56, and 0.41, respectively.

2.4 Software Support for Training Data
Generation and Review of Analysis Results
The WSIs in the image dataset are loaded to a software platform,
called Quantitative Imaging in Pathology (QuIP), for training
data generation and review of the model predictions. QuIP
consists of multiple services, implemented as micro-services
with software containers, and a set of Web-based applications
that support viewing of WSIs, annotation of image regions and
patches, and interactive viewing of model predictions as
heatmaps overlaid on WSIs (41).

One of the web applications is a markup and annotation tool
with multiple class label selections (Figure S2 in supplementary
material). This tool enables annotations of full-resolution whole
slide tissue images. The user can draw a polygon to mark up a
February 2022 | Volume 11 | Article 806603
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region and select a label from a pull-down menu to label the
region. Multiple regions and classes can be annotated in an
image. In addition to marking regions, pathologists can annotate
individual patches. Another web application is used for this
purpose. A set of patches are displayed to the user who can assign
a label to each patch by clicking on the patch. To minimize the
number of mouse clicks (or taps on touch screens) for the binary
classification case, we assume a default class for all patches. The
user clicks on patches that belong to the alternative class only.

Manual examination of model predictions requires
interactive interrogation and visual analytic tools that link
these results with the underlying images. QuIP implements
two tools for this purpose; the FeatureMap tool and the
heatmap viewer/editor. The FeatureMap tool converts
probability maps into low resolution heatmaps, called
featuremaps, which can be visualized at a lower image
resolution than at the resolution of whole slide images
(Figure 5A). Each pixel in a featuremap image corresponds to
a patch in the WSI. The goal is to let a user rapidly go through a
set of images without having to load heatmaps on full-resolution
images and pan and zoom in the images. After reviewing a
featuremap, the user can click anywhere on the featuremap
image and visualize the region at full image resolution using
the heatmap viewer/editor. The heatmap viewer/editor allows a
user to access full-resolution heatmap representation of a
probability map overlaid on the input WSI and re-label
algorithm predictions (Figure 5B). The user can click on an
area in a heatmap, zoom and pan, and interactively examine the
areas of interest. If the user determines that predictions in some
areas should be corrected, the user switches to the heatmap
Frontiers in Oncology | www.frontiersin.org 6
editor and annotates a set of patches to be positive or negative on
the WSI. The FeatureMap and heatmap viewer/editor tools rely
on the backend data management and indexing services of QuIP,
namely PathDB for managing images and FeatureMap data and
FeatureDB for managing probability maps and user annotations.

2.5 Evaluating Model Performance
We evaluated the performances of the trained models via two
methods: patch-level classification accuracy and region
categorical classification performance.

For patch-level classification accuracy, we collected manually
labeled test patches and measured the performance of each
model with these patches using the accuracy and F-score
metrics. The accuracy metric represents the percent of
correctly classified patches and is computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
� 100% (1)

Here TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives. The F-score measures the balance of
model precision and how many of the positive patches are
correctly classified (i.e. recalled). It is computed as:

Precision =
TP

TP + FP
,  Recall =

TP
TP + FN

,  

F − score =
2� Precision � Recall
Precision + Recall

(2)

For the region categorical classification performance, we
adopted the evaluation method implemented in (33). We
evaluated the correlation between predictions from the models
and annotations (labels) from the pathologists, both
quantitatively and qualitatively using super-patches. Super-
patches make it easier to collect a large number of annotations
from multiple pathologists. This evaluation method provides a
higher level of evaluation that is beyond individual patches and
offers a quantification of the correlation between a model’s
predictions and a pathologist’s perception of TIL distribution.

A super-patch is defined as a large 800 x 800 square pixel
patch at 20x magnification (i.e., a super-patch covers a 400 x 400
square micron area in tissue). The deep learning models classify
100 x 100 square pixel patches at 20x magnification. Hence, each
super-patch is divided into an 8 x 8 grid, and each patch (of 100 x
100 square pixels) is classified as TIL-Positive or TIL-Negative.
Figure 6 shows an example of a super-patch and the labeling of
its patches.

In our work, each super-patch was annotated by one to three
pathologists as Low TIL, Medium TIL, or High TIL, based on the
perceived fraction of the area of the TIL-positive patches. The
score of a deep learning model for a given super-patch is the
number of patches classified as TIL-positive by the model.
Hence, each super-patch gets assigned a score between 0 to 64.

We use the polyserial correlation method (42, 43) to quantify
the correlation between the model scores and the pathologist
annotations. Polyserial correlation measures the inferred latent
correlation between a continuous variable and an ordered
FIGURE 4 | Model probability threshold selection. The objective is to
minimize the false positive rate (FPR) and maximize the true positive rate
(TPR). This ROC plot (FPR, TPR), illustrates that by minimizing the distance
from the point (0,1) to the curve, we are minimizing FPR2 + (1 - TPR)2, thus
achieving our objective. The selected threshold corresponds to the FPR and
TPR at which the line intersects with the curve minimizing the distance to the
point (0,1).
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A

B

FIGURE 5 | (A) FeatureMap along with a view of the tissue image. (B) Heatmap viewer and editor for viewing of heatmaps on full-resolution WSIs and for fine-grain
re-labeling of patches to generate additional training data.
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categorical variable, which, in our case, represent scoring by the
model and the rounded average TIL-positive annotations from
the pathologists, respectively. We also used violin plots for the
qualitative evaluation of the correlation between the model
scoring and the pathologists’ categorical labels. Violin plots can
be viewed as box plots that show the smoothed probability
density distribution rotated on each side.
3 RESULTS

3.1 Dataset and Implementation Details
The number of patches in training and test sets are given in
Tables S1 and S2 in the supplementary material. On average, 19
WSIs per cancer type were used in manually annotated training
data and 117 WSIs per cancer type were used in model-generated
training annotations. There were 351,272 patches in total in the
training dataset. Out of these patches, 282,065 were manually
annotated and 69,207 were patches from the model-generated
annotations dataset. The model-generated annotations allowed us
to reduce the manual annotation effort by 19% and increase
training data diversity by covering 22 cancer types (the training
dataset did not include patches from BLCA), while maintaining a
good ratio of strong annotations to model-generated annotations.
Frontiers in Oncology | www.frontiersin.org 8
We trained three models with popular networks, namely
Inception V4 (37), VGG-16 (35) and ResNet-34 (36), as
described in Section 2. The models were trained with the
Adam optimizer using a learning rate of 0.00005 and a batch
size of 128.

3.2 Patch-Level Classification Accuracy
We collected 327, 299, 326, and 299 of manually labeled test
patches from BRCA, LUAD, SARC, and OV, respectively, and 888
patches in total from the other cancer types with 47 patches per
cancer type on average. Tables 1 and 2 show the accuracy and F-
score, respectively, for the three models, as well as the model
trained in (33), referred to as the Baselinemodel in the tables. The
columns LUAD, BRCA, SARC, and OV show the performance
numbers in each metric for the patches collected from these four
cancer types. The columns Other and All show the performance
values with the 888 patches from the other cancer types and with
all of the patches, respectively. The column 13 Cancer Types shows
the performance comparison between the Baseline model and the
newer models with patches from the 13 cancer types (BLCA,
BRCA, CESC, COAD, LUAD, LUSC, PAAD, PRAD, READ,
SKCM, STAD, UCEC, and UVM) analyzed in the previous
work (33). The results show that the new models outperformed
the Baseline model by up to 13% in accuracy and 15% in F-score.
FIGURE 6 | Illustration of a superpatch labeling and prediction.
TABLE 1 | Evaluation of patch classification accuracy.

Model Name LUAD BRCA SARC OV Other* 13 cancer types** All

Baseline 73.60% 74.90% – – – 79.56% –

VGG-16 83.28% 88.38% 94.17% 88.29% 82.52% 83.32% 86.02%
ResNet-34 84.28% 86.24% 91.41% 87.29% 82.10% 82.45% 85.14%
Incep-V4 86.29% 87.16% 96.93% 94.31% 82.53% 83.68% 87.43%
Febru
ary 2022 | Volume 11 | Article
Compare result for each of LUAD, BRCA, SARC, OV, *Other: patches from other cancer types in the set of 23 types used in training, **13 cancer types: subset of test patches
belonging to the 13 cancer types the baseline model with human in the loop (Baseline) (33) was trained on, All: all test patches from all the 23 cancer types. Best accuracy in each
dataset is indicated in bold.
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All of the newmodels performed well, attaining high accuracy and
F-score values. In most of the cases, the Inception V4 model
achieved better performance, in the range of 1–5% higher values,
than the other models.

3.3 Region Categorical Classification
We collected manual annotations on 4,198 randomly selected
super-patches from the 23 cancer types. Table 3 shows the
polyserial correlation coefficient for each model for super-
patches from individual cancer types. The last column in the
bottom set of the table is the polyserial correlation coefficient
with respect to the collective set of super-patches and the mean
and standard deviation over the correlation coefficients of the
individual cancer types. The results show that no single model is
consistently better than the other models. The Inception V4
model achieves a higher mean score as shown in the ALL column
of the table. The correlation coefficients are the lowest for KIRC.
The nuclei of cells in KIRC are generally small, dark, and
rounded, which gives the tumor cells a similar appearance to
lymphocytes. Thus, the deep learning models classify them
incorrectly and overestimate TIL regions. Figure 7 shows some
of the super-patches that were incorrectly scored by the
Inception V4 model. The left panel in the figure shows the
categorical label (Low, Medium and High) of the super-patch
assigned by the pathologists as well as the model prediction and
the number of patches classified as TIL-positive by the model in
parentheses. For the sake of presentation in the figure, the model
prediction is described as Low, if the model score is 0 ≤score ≤
Frontiers in Oncology | www.frontiersin.org 9
21, Medium if the score is 22 ≤score ≤ 42, and High >42. Similar
low correlations were obtained with super-patches from OV. The
Inception V4 model resulted in under-estimation in 14 cases
versus over-estimation in 9 cases of the OV super-patches.
Figure 8 shows various sample results from the model with
the OV super-patches, illustrating the discrepancy between the
model scoring and the pathologists’ classifications. The polyserial
correlation coefficient is greater than or equal to 0.8 for 13 cancer
types (ACC, BRCA, ESCA, HNSC, LIHC, MESO, PAAD, PRAD,
READ, SARC, SKCM, TGCT, and UVM), between 0.7 and 0.8
for 5 cancer types (LUSC, THYM, STAD, BLCA, and UCEC)
and below 0.7 for 5 cancer types (COAD, CESC, OV, LUAD,
and KIRC).

Figure 9 shows the violin plots for scores from each deep
learning model against the rounded average of pathologists’
annotations. The visual representations of the density
distributions and the median values indicate that the VGG-16
model tends to under-estimate TILs. The ResNet-34 and Inception-
V4 models are more consistent with the pathologist categorical
labeling, where the Inception-V4 model performs better.

3.4 TIL Area Estimation
After we evaluated the performance of these TIL models and
visually confirmed how well TILs were being classified in WSIs
across 23 types of cancer, the next step was to utilize the best TIL
model to analyze all of the available diagnostic DX1 TCGAWSIs
in these types of cancer to characterize the abundance and spatial
distribution of TILs as a potential biomarker. Based on our
TABLE 2 | Patch classification F-score results.

Model Name LUAD BRCA SARC OV Other* 13 cancer types** All

Baseline 0.78 0.77 – – – 0.85 –

VGG-16 0.85 0.88 0.92 0.84 0.85 0.86 0.86
ResNet-34 0.87 0.87 0.88 0.82 0.86 0.86 0.86
Incep-V4 0.89 0.89 0.96 0.93 0.87 0.88 0.89
Februa
ry 2022 | Volume 11 | Article 80
Compare result for each of LUAD, BRCA, SARC,OV, *Other: patches fromother cancer types in the set of 23 types used in training, **13 cancer types: subset of test patches belonging to the 13
cancer types the baseline model with human in the loop (Baseline) (33) was trained on, All: all test patches from all the 23 cancer types. Best F-score in each dataset is indicated in bold.
TABLE 3 | Superpatches evaluation using polyserial correlation coefficient.

Model Name ACC (147) BLCA (64) BRCA (348) CESC (61) COAD (65) ESCA (312) HNSC (324) KIRC (319)

Baseline – 0.720 0.552 0.679 0.329 – – –

VGG-16 0.879 0.787 0.745 0.592 0.688 0.777 0.904 0.515
ResNet-34 0.925 0.740 0.797 0.654 0.658 0.810 0.883 0.599
Incep-V4 0.963 0.744 0.797 0.667 0.695 0.805 0.897 0.598
Model Name LIHC (248) LUAD (63) LUSC (65) MESO (271) OV (158) PAAD (440) PRAD (66) READ (62)
Baseline – 0.615 0.658 – – 0.695 0.819 0.706
VGG-16 0.891 0.670 0.830 0.840 0.565 0.886 0.885 0.702
ResNet-34 0.872 0.733 0.775 0.805 0.527 0.874 0.862 0.715
Incep-V4 0.854 0.617 0.789 0.818 0.635 0.870 0.818 0.811
Model Name SARC (299) SKCM (67) STAD (63) TGCT (303) THYM (324) UCEC (64) UVM (64) ALL (4198)
Baseline – 0.666 0.728 – – 0.692 0.681 –

VGG-16 0.912 0.816 0.713 0.859 0.774 0.667 0.896 0.807 (0.77 ± 0.12)
ResNet-34 0.932 0.794 0.821 0.799 0.765 0.766 0.899 0.808 (0.78 ± 0.10)
Incep-34 0.921 0.822 0.752 0.823 0.790 0.742 0.913 0.820 (0.79 ± 0.10)
The number in brackets indicated the number of superpatches in the respective cancer type. Baseline is the model developed in (33).
Highest polyserial correlation in each dataset (cancer type) is indicated in bold.
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FIGURE 7 | Sample KIRC super-patches, showing the categorical label and the Inception model prediction. KIRC is challenging because other cell types nuclei can
look like lymphocytes. The model prediction is displayed as a category and a score between brackets. The models’ scoring is a value in the range 0 to 64. We
roughly interpret it as: Low if 0 ≤score≤ 21, Medium if 22 ≤score ≤ 42, and High otherwise. Top row: cases where the category approximated from the model
scoring does not match the pathologists’ label. Bottom row: cases where the category approximated from the model scoring matches the pathologists’ label.
FIGURE 8 | Sample OV super-patches, showing the categorical label and the Inception model prediction. The model prediction is displayed as a category and a
score between brackets. The models’ scoring is a value in the range 0 to 64. We roughly interpret it as: Low if 0 ≤core ≤ 21, Medium if 22 ≤core ≤ 42, and High
otherwise. Top row: cases where the category approximated from the model scoring does not match the pathologists’ label. Bottom row: cases where the category
approximated from the model scoring matches the pathologists’ label.
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evaluations, we utilized the Inception model to analyze all
diagnostic DX1 TCGA WSIs since it had the highest patch
classification accuracy and F-score and best overall
performance on the super-patches. We used the Inception-V4
TIL model to generate all of the TIL maps in this dataset and
compute the estimated average area that is infiltrated by TILs per
WSI in the dataset across 23 types of cancer. The results are
summarized in Table 4 and demonstrate how computational
pathology is very useful in characterizing TILs as a biomarker,
which can be very helpful in guiding future clinical research in
precision oncology and immunotherapy by supporting cohort
discovery by identifying potential types of cancer with high
abundance of intra- and peri-tumoral TILs.
4 DISCUSSION

We described and evaluated a deep learning workflow that
creates TIL maps to facilitate the quantitative characterization
of TILs and map their spatial distributions in H&E WSIs of
cancer tissue specimens. Since H&E staining is routinely
performed for diagnostic histopathologic evaluation of tissue
samples, we developed this workflow to analyze TILs in H&E
WSIs that are becoming more commonly available as digital
pathology is being more commonly adopted in clinical
laboratories. Studies have shown that the host immune system
is capable of controlling tumor growth through the activation of
adaptive and innate immune surveillance mechanisms (44) and
TABLE 4 | Estimated percent TIL area (mean±standard deviation) across WSIs in the

Cancer Type TIL Area Cancer Type

ACC 1.96 ± 5.15 BLCA
CESC 15.69 ± 11.57 COAD
HNSC 13.54 ± 10.36 KIRC
LUAD 14.29 ± 11.31 LUSC
OV 3.94 ± 4.96 PAAD
READ 9.04 ± 6.23 SARC
STAD 15.29 ± 13.24 TGCT
UCEC 7.87 ± 8.40 UVM

Frontiers in Oncology | www.frontiersin.org 11
that the spatial context and nature of cellular heterogeneity of the
tumor microenvironment are important in cancer prognosis (1,
4, 45, 46). This has led to TILs becoming important in the clinical
arena with increasing importance in precision medicine (47–49).
Thus, having the ability to quantify TILs in diagnostic H&EWSIs
of tissue images is becoming incredibly important as we
collectively expand our understanding about tumor immune
interactions and their role in disease progression, recurrence,
treatment response, and survival.

Therefore, our goal was to develop a robust computational
pathology workflow for H&E WSIs to reliably characterize TILs
in the tumor microenvironment in a uniform manner. We
generated TIL maps to complement traditional microscopic
examination so that pathologists and research scientists could
interpret the abundance and distribution of TILs alongside the
assessment of invasive growth patterns and other histopathologic
features across 23 types of cancer. The interest in harnessing the
power of TILs to fight cancer continues to grow with advances in
immunotherapy, chemoradiation regimens, and other treatment
modalities, which has led to important translational cancer
research initiatives by the International Immuno-Oncology
Biomarker Working Group in creating standardized visual
reporting guidelines for pathologists to evaluate TILs in breast
cancer and other solid tumors (49–54). Even though pathologists
can follow the guidelines and perform qualitative and semi-
quantitative assessments of TILs in cancer, the task is highly
challenging, subjective, and prone to intra- and interobserver
variability. Our results show that the new TIL models are quite
FIGURE 9 | Violin plots of each model’s scores against super-patch categorical labels (Low, Medium, and High TIL).
dataset TIL-Maps-23.

TIL Area Cancer Type TIL Area

8.60 ± 8.23 BRCA 6.37 ± 7.38
9.60 ± 6.62 ESCA 11.34 ± 8.45
6.74 ± 8.43 LIHC 7.80 ± 8.27

15.59 ± 10.29 MESO 7.64 ± 8.03
10.42 ± 7.78 PRAD 5.73 ± 6.52
6.44 ± 9.28 SKCM 13.42 ± 14.46

14.51 ± 14.19 THYM 52.89 ± 26.88
2.20 ± 2.34 – –
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useful for both qualitative and quantitative evaluation of TILs
in WSIs. The TIL maps are also very useful for discerning
how much of the tissue samples contain mononuclear
lymphoplasmacytic infiltrates and their spatial distribution in
individual cancer tissue samples and across several different
kinds of cancer from various organ sites. And most
importantly, these new models perform better than the model
developed in the earlier work, which was limited to 13 different
types of cancer (33).

We attribute the better results to the use of state-of-the-art
engineered networks and our larger and more diverse training
dataset that includes both computer-generated annotations and
manual annotations. Having the capability to computationally
analyze WSIs to study fascinating patterns of tumor immune
interactions with reliable and reproducible methods represents a
highly significant opportunity for cancer research to help
improve cancer treatment and clinical management. This novel
data about the quantity and distribution TILs from H&EWSIs is
also important as a biomarker for downstream correlative
prognostic studies with clinical, radiologic, laboratory,
molecular, and pharmacologic data. Moreover, these kinds of
analyses facilitate large-scale research to elucidate deeper
mechanistic understanding of the role of tumoral immunity in
disease progression and treatment response across both common
and rarer types of cancer. Furthermore, the identification and
quantification of other image features would allow for the
formulation of higher-order relationships to explore the role of
TIL infiltrates in cancer immunology with respect to histologic
patterns of tumor growth, tumor grade, tumor heterogeneity,
cancer recurrence, and metastasis.

In this work, we used three popular network architectures,
VGG16, Inception V4, and ResNet-34, to train models for the
detection and classification of TILs in tissue images. There are
other state-of-the-art networks, such as Xception (55) and
EfficientNet (56), which have shown excellent performance in
image classification tasks. Our choice of the networks is
primarily based on the fact that we have used these selected
networks for other projects. Since deep learning is a rapidly
evolving field, future work will explore incorporating other deep
learning architectures into our workflow to further improve
performance and expand the capabilities and applicability of
our workflow. We utilized our models to generate TIL maps,
referred to here as the TIL-Maps-23 dataset, in 7983 H&E WSIs
in 23 tumor types in the TCGA data repository from among
approximately 12,000 diagnostic WSIs from 33 cancer types.

The TIL-Maps-23 dataset covers 70% of the TCGA cancer
types and 67% of the diagnostic TCGA WSIs. Beyond the
information embedded in pathology WSIs, the TCGA dataset
also includes demographic, clinical, and molecular data derived
from multiple molecular platforms, which presents a readily
available opportunity to integrate image-derived features, such
as TIL-tumor distance distributions or TIL spatial cluster
distributions, with rich molecular and clinical data to gain a
more comprehensive understanding about tumor immune
interactions and the role of TILs as a biomarker. To the best of
our knowledge, this is the largest set of TIL maps to date. The list
Frontiers in Oncology | www.frontiersin.org 12
of cancer types included in the dataset is in Table 5. In addition to
making our models and Tensorflow CNN codes publicly available,
we are also releasing the dataset of TIL maps with the intention of
motivating translational cancer research and algorithmic
development for image analysis in computational pathology.
5 CONCLUSION

The growth of cancer immunotherapy has created tremendous
interest in characterizing the abundance and spatial distribution of
TILs in cancer tissue samples in order to explore their clinical
significance to help guide treatment. As the footprint of Digital
Pathology rapidly expands in translational cancer research and
clinical laboratories with the recent FDA approval of whole slide
imaging for primary diagnostic use, it is widely expected that a large
majority of pathology slides will be routinely digitized within the
next 5-10 years. In parallel, advances in machine learning, computer
vision, and computational hardware resources have led to an
increased focus on deep learning-based techniques for
segmentation and classification of various features of tissue
microanatomy in WSIs, including regions, microanatomic
structures, cells, nuclei, and other features. The characterization of
TIL infiltrated tissue in WSIs at a resolution of 50 microns by using
our methods goes far beyond what can be reproducibly and scalably
observed by human beings across hundreds and thousands of tissue
samples. Tools and methodologies that augment or enable such
TABLE 5 | The list of cancer types in TIL-Maps-23, the number of WSIs for each
cancer type, and the polyserial correlation coefficients for the Inception-V4 model,
sorted in descending order.

Cancer Type #
WSIs

Polyserial Correlation
Coefficient

Adrenocortical carcinoma (ACC) 323 0.96
Sarcoma (SARC) 255 0.92
Uveal melanoma (UVM) 80 0.91
Head and Neck squamous cell carcinoma
(HNSC)

450 0.90

Pancreatic adenocarcinoma (PAAD) 189 0.87
Liver hepatocellular carcinoma (LIHC) 365 0.85
Mesothelioma (MESO) 175 0.82
Prostate adenocarcinoma (PRAD) 403 0.82
Skin cutaneous melanoma (SKCM) 448 0.82
Testicular germ cell tumors (TGCT) 154 0.82
Esophageal carcinoma (ESCA) 156 0.81
Rectum adenocarcinoma (READ) 165 0.81
Breast invasive carcinoma (BRCA) 1068 0.80
Lung squamous cell carcinoma (LUSC) 484 0.79
Thymoma (THYM) 121 0.79
Stomach adenocarcinoma (STAD) 434 0.75
Bladder urothelial carcinoma (BLCA) 386 0.74
Uterine corpus endometrial carcinoma
(UCEC)

506 0.74

Colon adenocarcinoma (COAD) 453 0.69
Cervical squamous cell carcinoma (CESC) 268 0.67
Ovarian serous cystadenocarcinoma (OV) 106 0.64
Lung adenocarcinoma (LUAD) 480 0.62
Kidney renal clear cell carcinoma (KIRC) 514 0.60
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characterizations can improve the practice of pathology while we
march towards realizing the goal of precision oncology.
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