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A serious adverse effect of cancer therapies is cardiovascular toxicity, which significantly
limits the widespread use of antineoplastic agents. The promising new field of cardio-
oncology offers the identification of potent anti-cancer therapeutics that effectively inhibit
cancer cell proliferation without causing cardiotoxicity. Future introduction of recently
identified cardio-safe compounds into clinical practice (including ERK dimerization
inhibitors or BAX allosteric inhibitors) is expected to help oncologists avoid unwanted
cardiological complications associated with therapeutic interventions.
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1 INTRODUCTION

One of the most devastating adverse effects of anticancer treatments is cardiovascular toxicity, which
significantly restricts the effective use of conventional and targeted tumor therapeutics (Cameron and
Chen, 2018; Herrmann, 2020). Therapy-related cardiovascular diseases involve a wide range of
disorders from thromboembolism, stroke, systemic and pulmonary hypertension, myocarditis,
cardiac arrhythmias to even sudden cardiac death, which collectively contribute to an increased
morbidity and mortality of cancer patients. In addition to cardiovascular damage, a significant fraction
of cancer patients suffers from acute or chronic kidney disease, requiring renal replacement therapies
(Czifra et al., 2013; Barta et al., 2014), resulting in an increased risk of atrial and ventricular
arrhythmias, heart failure and other adverse effects (Szabó et al., 2020). Nevertheless, increased
prevalence of cancer among patients with heart failure indicates common molecular triggers and risk
factors that contribute to both diseases (de Boer et al., 2019; Meijers and De Boer, 2019). Regardless of
hemodynamic impairment, heart failure stimulates tumor development by secreting various circulating
factors (Meijers et al., 2018; Richards, 2018), suggesting a causal relationship between heart failure and
tumorigenesis. These associations encourage the development of new cardio-safe strategies to increase
the effectiveness of cancer therapies (Hetey et al., 2017; Boros-oláh et al., 2019).

The MAPK/ERK pathway is one of the major targets of anti-tumor therapies in several
malignancies as gain-of-function mutations of this pathway are collectively associated with more
than 90% of cancers (Nissan et al., 2013; Smorodinsky-Atias et al., 2020). The cascade involves the
sequential activation of receptor tyrosine kinases (RTK), RAS GTPases, RAF kinases (MAP3K),
MEK (MAP2K), which ultimately phosphorylates ERK (MAPK) (Lee et al., 2020). Activated ERK
(extracellular signal-regulated kinase) is located at the bottom of the cascade phosphorylating
hundreds of cytosolic and nuclear targets (Plotnikov et al., 2015) that mediate opposing signaling
pathways leading to cell survival, apoptosis, cancer growth or cardiac disfunction (Figure 1).
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Therapeutic targeting of ERK is of key interest since ERK
inhibitors (ERKi) have the potential to overcome common drug
resistance to “upstream” MEK/RAF/RAS inhibitors (Ryan and
Corcoran, 2018; Smorodinsky-Atias et al., 2020). Indeed, ERKi
therapies are expected to show greater antitumor efficacy in
advanced metastatic and multidrug-resistant tumors with
reactivated MAPK signaling, however, their broad clinical use
is limited (Lee et al., 2020). This is because ERK is associated with
many diseases, such as heart failure, and thus ERKi therapy may
cause severe cardiotoxic side effects. Multiple ERK inhibitors are
currently in clinical trials for the treatment of RAS/RAF-mutated
and BRAFi/MEKi-resistant tumors (Supplementary Table S1);
however, new cardio-safe strategies need to be developed to
overcome acquired resistance to MAPK inhibitor therapies.

In this respect, recently developed ERK-dimerization
inhibitors (ERKdi) show potential to prevent tumorigenesis in

preclinical models, without causing severe cardiotoxicity
(Herrero et al., 2015; Tomasovic, 2020). The latest compound
(Tomasovic, 2020) specifically blocks ERK1/2 dimer formation
and consequent Thr188 phosphorylation (that is a prerequisite
for ERK nuclear translocation, oncogenic activation and
cardiotoxic side effects (Tomasovic, 2020)), preventing heart
failure while preserving ERK1/2 catalytic activity and cytosolic
survival signaling. This dual consequence of ERKdi treatment is
in sharp contrast with the adverse effect of “upstream” MAPK/
RAS inhibitors (e.g., MEKi, RAFi), which severely compromise
cardiomyocyte mitochondria function and often lead to cardiac
injury. The newly developed ERKdi drug may also be relevant in
other diseases that rely on intensive ERK signaling, such as
secondary cardiac injuries (e.g., due to hypertension, oxidative
damage, ischemia), which are expected to extend therapeutic
modalities to tumors resistant to upstream MAPK inhibitors.

FIGURE 1 | Therapeutic targeting of the MAPK/ERK pathway. Approved anti-cancer compounds targeting RAS/RAF/MEK are indicated in black. ERK inhibitors
(ERKi) in phase 2 clinical trials are shown in red. Newly developed ERK dimerization inhibitors (ERKdi) are currently in pre-clinical phases. ERKdi compounds prevent
nuclear translocation of ERK, thereby inhibiting the activation of transcription factors that cause tumor cell proliferation and mediate cardiac disfunction in normal cardiac
tissue.
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In addition to MAPK inhibitors, doxorubicin (dox) is one of the
most common anthracycline-based chemotherapeutics due to its
broad spectrum and high efficacy; however, its applicability is highly
limited by its severe cardiotoxic side-effects (Wallace et al., 2020). A
recent study identified a new Sirt6–Tip60–Gata4molecular axis that
includes a histone deacetylase (Sirt6), a histone acetylase (Tip60),
and a transcription factor (Gata4) that regulates an anti-apoptotic
pathway and thus prevents dox-induced cardiotoxicity (Peng et al.,
2020). Importantly, Gata4 is activated directly by ERK (via
phosphorylation on serine 105 (Liang et al., 2001)) and thus
inhibiting the deacetylase activity of Sirt6, which in turn disrupts
the equilibrium in local histone acetylation. The resulting open
chromatin allows the expression of cardiac-expressed genes

involved in cardiac development and hypertrophy, as well as
Bcl2 survival factors that suppress apoptosis and dox
cardiotoxicity. Therefore, the Sirt6-Tip60-Gata4 axis represents a
new therapeutic target to enhance the safety and efficacy of dox
chemotherapy.

In another recent attempt, dox-based tumor therapy was made
cardio-safe in combination with a specific Bax inhibitor
(Amgalan et al., 2020). When dox was administered with a
newly developed Bax allosteric inhibitor that modulate Bax
function by conformational changes (BAI1 (Garner et al.,
2019), Figure 2), cardiomyopathy was completely prevented
without compromising the tumor-killing efficacy of dox
treatment (Amgalan et al., 2020). The differential effect of Bax

FIGURE 2 | The mechanism of action of BAX inhibitors. BAXi prevents conformational change and activation of BAX, or inhibits mitochondrial translocation and
pore formation, preventing the release of cytochrome C and the onset of apoptosis.
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inhibition on cardiomyocytes vs. cancerous cells was attributed to
the ubiquitously high Bax expression of cancer cells relative to the
heart tissue (see e.g., https://www.proteinatlas.org/
ENSG00000087088-BAX/pathology; (Thul et al., 2017)). High
Bax levels in tumors may help suspend the inhibitory effect of the
drug, promoting the apoptosis of cancer cells. These associations
designate Bax as a potent tumor-selective drug target to prevent
dox-induced cardiotoxicity. While it remains to be tested, the
compound may also be used to prevent cardiomyopathies in
other diseases in which Bax-mediated apoptotic and necrotic
pathways are involved (e.g., infarction, stroke).

2 CONCLUSION

The above cardio-safe drugs (including ERK dimerization
inhibitors or BAX allosteric inhibitors) are just the tip of the
iceberg: superimposed on them, further research into new
molecular pathways and anticancer therapeutics is needed to
prevent tumorigenesis without instigating severe cardiotoxicity.
BAXi data are still in the preclinical phase and ERKi human
clinical trials are still preliminary. Classical ERK inhibitors have
some common side effects that can be mild (e.g., diarrhea, nausea,
fatigue, and rash) and severe, including neurotoxicity (CC-90003,
NCT02313012) and myocardial infarction (Merchant et al., 2014;
Sullivan et al., 2018; Chin et al., 2019; Weekes et al., 2020). In
addition, tumors treated with ERKi often exhibit resistance to
ERK inhibitors, just like upstream Ras/Raf/Mek kinases (Goetz
et al., 2014; Jha et al., 2016; Jaiswal et al., 2018), which limits
therapeutic efficacy. Whether the new generational ERK
dimerization inhibitors (ERKdi) are better tolerable in
combination with other cytostatic agents remains to be
demonstrated. We also note that the ERK target GATA-4 is
regulated by other post-translational modifications in myocardial
cells involving e.g. p38 mitogen-activated protein kinase (p38

MAPK), small GTPase RhoA-associated coil-forming kinase
(ROCK), glycogen synthase kinase-3beta (GSK-3beta) and
cAMP-responsive element-binding protein binding protein
(CBP) (Pikkarainen et al., 2004), which greatly increase the
complexity of the system in terms of therapeutic options. This
is a promising new field of cardio-oncology which is expected to
improve the effectiveness of cancer treatments and help
physicians avoid unexpected secondary effects related to
therapeutic intervention.
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