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The integrated stress response is tumorigenic and
constitutes a therapeutic liability in KRAS-driven
lung cancer
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The integrated stress response (ISR) is an essential stress-support pathway increasingly
recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in
lung adenocarcinoma (LUAD) development, the most common histological type of lung
cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the
translation initiation factor elF2 (p-elF2a), the focal point of ISR, is related to invasiveness,
increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in
KRAS-driven lung tumorigenesis in mice demonstrated that p-elF2a causes the translational
repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation
of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including
a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for
KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong
mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in
LUAD treatment.
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ancer is a complex collection of genetic diseases character-

ized by the gain-of-function mutation, amplification, and/or

overexpression of key oncogenes together with the loss-of-
function mutation, deletion, and/or epigenetic silencing of tumor
suppressors!. High proliferation rates of cancer cells alter the
capacity of the endoplasmic reticulum (ER) machinery in facilitating
the folding, assembly, and transport of newly synthesized proteins-.
The protein folding process can be interrupted by cancer-associated
forms of stress like DNA damage, proteotoxic, metabolic, and oxi-
dative stress, as a consequence of oncogenic mutations>>. In stressed
cells, ER initiates a group of signal transduction pathways, collec-
tively termed the unfolded protein response (UPR), whose primary
role is to restore homeostasis through increased endurance and
adaptation23, When disruption of ER homeostasis is extreme and
prolonged, UPR activates pro-death programs to protect the host
from the deleterious effects of damaged cells>3.

The ER-resident kinase PERK (EIF2AK3) is a component of
UPR and member of the integrated stress response (ISR) for the
regulation of mRNA translation under stress*. In addition to
PERK, ISR consists of three other kinases, namely, the heme-
regulated kinase HRI, the general control nonderepressible
GCN2, and the RNA-activated protein kinase PKR, which exhibit
high specificity for the phosphorylation of the alpha (a) subunit
of the eukaryotic translation initiation factor 2 at serine 52 (p-
elF2a) in response to distinct forms of stress®. eIF2 is a trimeric
complex of a, B and y subunits, which is recruited to 40S ribo-
somal subunits as a ternary complex (TC) with the initiator Met-
tRNA;Met and GTP®. Upon initiation codon recognition, GTP is
hydrolyzed and eIF2-GDP is released from the ribosome. The
guanine nucleotide exchange factor (GEF) eIF2B is required to
exchange GDP for GTP to enable the participation of eIF2-GTP
in subsequent rounds of initiation®. In response to oncogenic or
therapy-induced environmental stressors, p-eIF2a exhibits a high
affinity for binding to the limiting amounts of eIF2B, leading to
sequestration of the latter and reduced eIF2-GDP to eIF2-GTP
recycling®. Decreased TC availability hinders global translation,
while permitting translation of a subset of mRNAs encoding
transcriptional and cell fate regulators of the stress response’.
PERK and GCN2 form the pro-survival and adaptive arms of ISR
as opposed to PKR and HRI, which are mainly pro-apoptotic3-10.

While ISR is upregulated in many cancers, its precise function in
tissue-specific cancer initiation and progression remains poorly
understood. Here, we examined the implication of ISR in the
development of lung adenocarcinoma (LUAD), which constitutes
40% of all lung malignancies!!. At the time of diagnosis, most
LUAD patients have already developed an advanced disease and the
median survival barely exceeds 18 months from diagnosis!2. We
show that upregulation of p-elF2a, which is the hallmark of ISR,
substantiates a significant decrease in the probability of overall,
cancer-specific, and recurrence-free survival of 928 patients by
~12 months. Considering that ~30% of LUAD cases are attributed
to the activating mutations of Ki-ras2 Kirsten rat sarcoma viral
oncogene homolog (KRAS)!3, we investigated the role of ISR in
KRAS-driven lung carcinogenesis. Our findings demonstrate the
tumorigenic function of the PERK/p-elF2a arm of ISR together
with the strong therapeutic benefits of its pharmacological inhibi-
tion for the treatment of mutant KRAS lung cancer. Because mutant
KRAS cancers are largely refractory to therapy!'4, our data show that
the adaptive role of ISR in the addiction of tumors to KRAS
mutations is a rational target for the implementation of effective
therapies against a deadly form of lung cancer.

Results
Increased p-elF2a is related to poor outcome in human
LUADs. Adopting tissue microarrays (TMAs) derived from a

continuous cohort of 928 primary human LUADs we obtained data
showing that patients positive for p-e[F2a have a significantly
poorer outcome compared to patients negative for p-eIF2a (Fig. 1a,
b; Supplementary Fig. 1). Importantly, we identify an association
between p-elF2a and tumor growth pattern, WHO tumor type, and
tumor cell proliferation with higher p-eIF2a levels in regions with
invasive patterns compared to in situ growth, and highest of all in
regions with the highly aggressive solid growth pattern (Fig. lc-e;
Table 1). Early in situ/minimally invasive lesions (AIS/MIA) had
the lowest levels of p-elF2a, followed by predominantly in situ
tumors showing clear areas of invasion (lepidic-predominant ade-
nocarcinoma), and then the invasive-predominant groups (Fig. 1d).
Again, solid-predominant tumors had the highest p-elF2a levels.
Interestingly, mucinous tumors, which form a biologically distinct
subgroup of primary LUAD samples!®, showed very low p-elF2a
levels. The association between p-elF2a and tumor cell proliferation
(Ki67 positivity) showed a significant positive relationship
between p-elF2a and tumor cell proliferation (Spearman’s Rho
0.361, p<2.2 x 10719) (Fig. le). These data identified p-eIF2a as a
prognostic marker in human LUAD and provided a role for sig-
naling through the ISR in driving both tumor cell proliferation and
invasion.

p-eIF2a promotes mutant KRAS-driven lung tumor formation
in mice. To investigate the role of ISR in lung cancer, we
employed KRASH/LSL-KRAS G12D mjce bearing a loxP-STOP-LoxP
(LSL)-KRAS G12D allele, which is conditionally activated in the
lungs by viral vectors expressing CRE recombinase!®. KRAS+/LSL-
KRAS GI2D mijce were crossed with mice containing either a
conditional homozygous S51A mutation of elF2S1 allele (fTg/0;
elF2aA/4) or wild type eIF2S1 (fTg/0;elF2a5/S) (Fig. 2a)!7. Lung
tumor formation in the offspring mice was induced by infection
with lentiviruses expressing CRE under the control of carbonic
anhydrase 2 promoter!8, which is active in type I and II alveolar
epithelial lung cells!®. The CRE lentiviruses also produced
TP53 shRNA from an U6/H1 promoter to accelerate lung tumor
formation!8. Mice with KRAS G12D elF2a”/A tumors survived
~18 weeks longer than mice with KRAS G12D elF2a/S tumors
(Fig. 2b). Ultrasound imaging of live mice showed a higher
number of lung tumors in elF2a%/S than e[F2aA/A mice as early as
7 weeks after conditional KRAS G12D expression (Fig. 2c). There
was a substantial increase in the size of elF2a® lung tumors
when compared to elF2a”/4 tumors at 18 and 28 weeks after
KRAS G12D induction (Fig. 2¢c). Hematoxylin and eosin (H&E)
staining of the lungs revealed the presence of adenocarcinoma
in situ, carcinomas, and invasive adenocarcinoma lesions in both
KRAS GI12D elF2a5S and elF2aA/A mice?; these lesions were
larger in e[F2a5/S than eIF2a#/A lungs (Fig. 2d).
Transplantation of primary KRAS G12D elF2a5/S and elF2aA/A
lung tumor cells in immune-deficient (nu/nu) mice supported a
cell-autonomous tumorigenic function of p-elF2a (Fig. 2e).
Because p-eIF2a impacts on gene transcription?!22, we performed
RNA-seq of KRAS GI12D elF2a%/S and eIF2aA/2A tumor cells to
identify genes and pathways potentially linked to observed
differences in tumor phenotypes. Data analyses identified 2249
genes that were differentially regulated in eIF2aS/S vs. e[F2aA/A
tumor cells (Fig. 2f). Specifically, 983 genes were decreased, and
1266 genes were increased in elF2a5/S vs. elF2aA/A cells (Fig. 2f).
We performed Upstream Regulator (UR) analysis as implemented
in Ingenuity® Pathway Analysis (IPA) to identify upstream
regulators driving p-eIlF2a dependent transcriptional reprogram-
ming. UR analysis predicted the activation of the eIF2a kinase
PERK (EIF2AK3) and transcription factors ATF4, DDIT3 (CHOP)
and CREB-binding protein (CREBBP), which are well-established
ISR constituents and UPR effectors (Fig. 2g)21-23. In addition, UR
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analysis indicated the upregulation of ERK signaling by p-eIF2aq,
which plays a major role in KRAS-driven cancer growth?%, In line
with this prediction, immunohistochemical (IHC) analysis
revealed higher levels of p-ERK in KRAS G12D elF2a5/S than
elF2aA/A lung tumors regardless of the histological tumor type
(Fig. 3a; Supplementary Fig. 2). The direct relationship between p-
elF2a and p-ERK also became evident in a different mouse lung
cancer model, which was driven by KRAS Q61R/L after urethane
(ethyl carbamate) treatment?®. Specifically, lung tumors in
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urethane-treated mice, which carried a heterozygous germline
S51A substitution of eIF2S1 (eIF2a5/4)26, were fewer and smaller
than wild type elF2a%/S mice and characterized by decreased
proliferation (Ki67) and p-ERK compared to e[F2a5/S lung tumors
(Supplementary Fig. 3). As with mouse lung tumors, multiplex
fluorescent THC analyses of LUAD patient specimens revealed
significant positive relationships at a single-epithelial cell level
between cytoplasmic p-elF2a and nuclear p-ERK (Supplementary
Fig. 4).
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Fig. 1 p-elF2a prognosticates the poorer survival of 928 patients with primary LUADs after surgery. a Representative images of human LUADs
designated as “negative” (=) or “positive” (+) for p-elF2a. 2411 tumor cores were stained; 656 were negative and 1755 were positive for p-elF2a. Scale
bars correspond to 500 and 100 pm on core image and enlarged image, respectively. b Kaplan-Meier survival curves of p-elF2a expression for patients’
overall survival after surgery (blue curve associates with patients negative (—) for p-elF2x and red curve associates with patients positive (+) for p-elF2a).
Significance was determined using log-rank test (two-sided). Confidence intervals are represented by the dashed lines around the survival curves. HR =
hazard ratio. ¢ p-elF2a H-scores plotted against core/regional growth pattern (lepidic n =286, acinar n =917, papillary n = 266, micropapillary n = 85,
solid n = 636). (Kruskal-Wallis chi-squared (two-sided) =197.21, p < 2.2 x 10716, excludes outlying values). d Median p-elF2a H-scores plotted against
WHO tumor type (adenocarcinoma in situ/minimally invasive adenocarcinoma (AIS/MIA) n= 22, lepidic-predominant adenocarcinoma (LPA) n= 87,
acinar-predominant adenocarcinoma (APA) n = 330, papillary-predominant adenocarcinoma (PPA) n =131, micropapillary-predominant adenocarcinoma
(MPPA) n= 20, solid-predominant adenocarcinoma (SPA) n = 254, mucinous adenocarcinoma (MUCA) n = 65) (Kruskal-Wallis chi-squared (two-
sided) =144.81, p<2.2 1076, excludes outlying values). e p-elF2a H-score plotted against core/regional Ki67 proportion within tumor tissue
(Spearman’s Rho = 0.361, p < 2.2 x 10~16, excludes outlying values). For box plots (c-e), the three solid lines represent the 75% percentile, the median, and
the 25% percentile in turn. The whisker boundaries represent 1.5 * IQR, (IQR = 75% percentile - 25% percentile).

Table 1 Univariate and multivariate overall survival model including phospho-elF2a (elF2a-P) H-score, stage, sex, performance
status, and WHO classification. Only complete cases included [n = 842, number of events = 583, number of patient years =18
(1998-2015)].

Univariate Cox Model Multivariate Cox Model

HR 95% CI p-value HR 95% CI p-value

elF2a-P (Negative vs Positive) Positive 1.427 1.162-1.752 0.00068 1.091 0.882-1.349 0.422
Stage (1 vs 2 vs 3+) 2 1.128 0.786-1.619  0.510 1.086 0.756-1.561 0.655

3 2.059 1.579-2.686 9.95x10-8  1.828 1.395-2.395 1.21x10-5
Sex (Male vs Female) Female 0.676 0.574-0.795 2.42x10=¢ 0.719 0.609-0.849 9.77x10°
Performance Status (O vs 1 vs 2+) 1 1.269 1.047-1.537  0.0156 1.284 1.059-1.556  0.0110

2 2.012 1.638-2.470 2.54x10-" 1986 1.616-2.441 6.83x10~1
WHO (AIS/MIA/LPA vs APA/PPA vs SPA/MPPA)  APA/PPA 1.932 1.418-2.631 2.93x107°  1.682 1.229-2.301 0.00115

SPA/MPPA 2348 1.705-3.234 173x10~7 1786 1.283-2.486  0.000586

p-eIF2a stimulates p-ERK via the translational repression of
DUSP6. To determine the mechanism of increased p-ERK by p-
elF2a, we analyzed the regulation of the mitogen-activated protein
kinase (MAPK) pathway in mouse KRAS G12D elF20%S and
elF2aA lung tumor cells. While p-ERK levels were substantially
lower in KRAS G12D elF2aM/A than elF20/3 cells, the amount of
active p-MEK, which phosphorylates ERK, did not differ between
the two cell types (Fig. 3b). This result was conspicuous of a role of
p-elF2a in the regulation of dual-specificity phosphatases (DUSPs),
which act downstream of MEK to inactivate ERK through the
dephosphorylation of TxY motif?’. Loss of p-elF2a in KRAS G12D
lung tumor cells was accompanied by an upregulation of DUSP6
(Fig. 3b), which is highly selective in its ability to dephosphorylate
ERK among the DUSP family members?’. ATF4 expression, which
is upregulated by p-elF2a at the translational level”, was substantially
increased in KRAS GI2D eIF205/S compared to elF2a//A cells,
supporting the translation function of p-elF2a in mouse KRAS
G12D cells (Fig. 3b). Polysome profiling of KRAS G12D tumor cells
indicated that p-elF2a inhibits DUSP6 at the translational level.
Specifically, analyses of total and poly-ribosomal RNA revealed a
substantial enrichment of DUSP6 mRNA specifically in the poly-
ribosomal fraction of elF2a4/A compared to elF2a%/S tumor cells
after normalization to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and ACTIN mRNAs in the corresponding total and poly-
ribosomal mRNA fractions (Fig. 3c). Moreover, IHC analysis of
mouse lung sections indicated that loss of p-elF2a was associated
with increased cytoplasmic DUSP6 expression in KRAS G12D
tumors (Fig. 3d).

DUSP6 downregulation accounted for the upregulation of p-
ERK by p-elF2a because treatment KRAS G12D elF2a4/A cells
with a mix of 4 different DUSP6 siRNAs restored p-ERK to equal
levels of p-ERK in KRAS G12D elF2a5/S cells treated with
scrambled siRNAs (Fig. 3e). Moreover, DUSP6 downregulation
by siRNAs increased the survival of KRAS G12D elF2a*/4 cells as

much as the survival of KRAS G12D eIF2a%S under the same
treatment (Fig. 3f). Furthermore, treatment with BCI, a small-
molecule DUSP6 inhibitor?32?, restored the differences in p-ERK
between KRAS G12D eIF2a5/S and eIF2aA/A cells (Supplemen-
tary Fig. 5). Thus, translational suppression of DUSP6 by p-elF2a
justifies the increased p-ERK and survival of mutant KRAS lung
tumors.

Mutant KRAS upregulates the PERK/p-eIF2a arm in human
LUAD cells. Considering the implication of PERK in mouse
KRAS G12D tumorigenesis from the UR analysis of the RNA-seq
data (Fig. 2g), we investigated the connection between mutant
KRAS and PERK/p-elF2a arm in human LUAD cells. We noticed
an increase in p-PERK and p-elF2a in H23 and H358 cells
containing KRAS G12C compared to H1703 cells containing wild
type (WT) KRAS (Supplementary Fig. 6a). Upregulation of
PERK/p-elF2a arm was associated with increased p-ERK in
KRAS G12C cells compared to WT KRAS cells and was further
enhanced by treatment with the ER stressor thapsigargin (TG) in
the mutant KRAS cells (Supplementary Fig. 6a). Also, ectopic
expression of KRAS G12C, G12D or G12V in H1299 cells con-
taining WT KRAS alleles resulted in the upregulation of PERK/p-
elF2a arm along with increased p-ERK compared to WT KRAS-
overexpressing H1299 cells (Supplementary Fig. 6b). Because
H1299 cells harbor a NRAS Q61K allele3?, which could interfere
with the effects of mutant KRAS overexpression, we tested the
effects of KRAS G12C overexpression in H1703 lung cancer cells
containing WT alleles of all the RAS isoforms. As with H1299
cells, KRAS G12C overexpression in H1703 cells stimulated the
p-PERK, p-elF2q, and p-ERK compared to isogenic cells over-
expressing WT KRAS (Supplementary Fig. 6c). Thus, mutant
KRAS upregulates the PERK/p-eIF2a arm of ISR in human
LUAD cells. We further tested the implication of PERK/p-elF2a
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arm in the survival of human LUAD cells. PERK inhibition by
GSK2606414, a potent and selective PERK inhibitor among the
elF2a kinases3!, caused a stronger reduction in the colony-
forming efficacy of human LUAD cells with KRAS G12C than
WT KRAS (Supplementary Fig. 7a). The increased susceptibility
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to PERK inhibition was also evident for human lung cancer cells
overexpressing KRAS G12C compared to their isogenic cells
overexpressing WT KRAS (Supplementary Fig. 7b). Thus, upre-
gulation of PERK/p-elF2a arm by mutant KRAS renders human
LUAD:s increasingly susceptible to PERK inhibition.
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Fig. 2 p-elF20. promotes KRAS G12D lung tumorigenesis in mice. a Mouse mating scheme. KRAS/LSL-G12D mice containing a latent CRE-loxP KRAS
G12D allele were crossed with either fTg/0;elF2a%/5 or fTg/0;elF2a”/A mice. The offspring mice were subjected to intra-tracheal intubation of CRE-
expressing lentiviruses and TP53 shRNA. b Survival curve of KRAS G12D elF20%/S (red curve, n = 23) and elF2a”/A (blue curve, n = 8) mice subjected to
intra-tracheal intubation with 6 x 105 functional lentiviral particles per mouse. Data represent Mean + SEM with two-sided Log-rank, Mantel-Cox Test,
P value = 0.0019. ¢ Detection of mouse lung tumors in the septum, located peripherally in contact with the pleura, by Ultrasound imaging at 7 weeks
(elF20%/5 n =4, elF20™A n =5, P value = 0.028), 18 weeks (elF2a%/5 n =10, elF2a”/A n = 6, P value = 0.0109) and 28 weeks of KRAS G12D expression
(elF20%/S n =3, elF2a”/A n =3, P value = 0.0101). Tumor location is indicated by an arrow and tumor size by intermittent lines in yellow color.

d Representative H&E staining of KRAS G12D elF2a%/S (n=5) and elF20”~’A (n=5) lung sections at 20 weeks post-induction of KRAS G12D. Arrows
indicate types of tumors. 1= adenocarcinoma in situ. 2 = Carcinoma. 3 = invasive adenocarcinoma. Scale bars correspond to 4 mm of core images.

e Subcutaneous growth of primary KRAS G12D elF2a%/S and elF2a”/A lung tumors in nude mice (n =10, P value = 0.0003). Tumor mass (mg) at the
endpoint of the experiment is shown in the histogram graph. (f) Volcano plot visualizing the differential mMRNA expression between elF20/S and elF2a”/A
mouse KRAS G12D tumors. g Top activated or inhibited inferred upstream regulators according to the Upstream Regulator (UR) analysis as implemented in
IPA comparing elF2a%/S vs elF2a”/A (¢, e) Data represent Mean + SEM. Significance in differences between two datasets was determined using two-tailed

unpaired t-test. P values are indicated on the graphs.

PERK/p-eIF2a arm suppresses DUSP6 and increases p-ERK in
mutant KRAS lung tumors. We next addressed the implication of
PERK in p-elF2a and the survival of mouse KRAS G12D cells.
Treatment with PERK siRNAs impaired PERK autopho-
sphorylation at T980 (p-PERK) and decreased p-elF2a in KRAS
G12D elF2a5/S cells prior to and after exposure to ER stressor TG
(Fig. 4a). PERK downregulation by siRNAS reduced the survival of
KRAS G12D elF2a%S but not of elF2aA/A cells in colony forma-
tion assays (Fig. 4b). Decreased survival of KRAS G12D elF2a5/S
cells by the loss of PERK was equal to the survival of eIF2aA/A cells
subjected to scrambled siRNA treatments (Fig. 4b). The modest
increase of KRAS G12D elF2aA/A cell survival by PERK down-
regulation could be attributed to p-elF2a-independent PERK
functions as previously reported® (Fig. 4b). As with siRNAs,
treatment with the PERK inhibitor GSK2606414 substantially
decreased the survival of KRAS G12D eIF2aS/S but not of e[F2aA/A
cells (Fig. 4c). PERK inhibition by GSK2606414 promoted the
death of KRAS GI12D elF205/S but not of elF2a?/A cells as
determined by flow cytometry analysis (Supplementary Fig. 8).
Collectively, the data supported the reliance of mouse KRAS G12D
lung tumor cells on the PERK/p-elF2a arm for survival.

We further assessed the role of PERK in the regulation of p-
ERK and DUSP6 in mutant KRAS lung tumor cells, which were
treated with the ER stress inducer TG to attain robust stimulation
of PERK. While TG treatment-induced p-PERK in mouse KRAS
GI12D elF205/S and elF2aA/A cells, activated PERK was associated
with increased p-ERK and decreased DUSP6 expression exclu-
sively in eIF2a5/S cells (Fig. 4d). Successive treatments of TG-
stressed cells with increasing concentrations of the PERK
inhibitor GSK2606414 gradually reduced p-elF2a, p-ERK, and
increased DUSP6 expression in KRAS G12D elF2a5/® cells only
(Fig. 4d). As with mouse KRAS G12D cells, stimulation of PERK
autophosphorylation at T982 (p-PERK) by TG treatment was
associated with increased p-elF2a and p-ERK as well as decreased
DUSP6 expression in human lung cancer cells with KRAS G12C
(H23, H358) but not in cells with WT KRAS (H1299, H1703)
(Supplementary Fig. 9). Subsequent treatments of TG-stressed
cells with increasing concentrations of the PERK inhibitor
GSK2606414 decreased p-elF2a and p-ERK but increased DUSP6
expression in mutant KRAS cells only (Supplementary Fig. 9).
These data suggested that stimulation of the PERK/p-elF2a
branch results in the downregulation of DUSP6 and upregulation
of p-ERK specifically in mutant KRAS lung cancer cells.

We further aimed at disrupting p-eIF2a function in mutant
KRAS lung tumor cells by treatments with the ISR inhibitor
(ISRIB), a small molecule antagonist of the translational effects of
p-elF2a32. Increasing amounts of ISRIB prevented the inhibition
of DUSP6 expression and stimulation of p-ERK in KRAS G12D
elF2a5’S cells in response to TG treatment as opposed to eIF2a//A

cells, which remained unresponsive to treatments (Fig. 5a). The
efficacy of ISRIB to antagonize the translational effects of p-elF2a
was verified by the inhibition of ATF4 expression in TG-treated
KRAS GI12D elF2a%S cells only (Fig. 5a). These findings
supported the specificity of ISRIB in the inhibition of p-ERK by
increased p-elF2a in mutant KRAS GI12D cells. In human lung
cancer cells, ISRIB acted in a dose-dependent manner to increase
DUSP6 and decrease p-ERK in TG-treated H23 and H358 cells
with KRAS G12C but not in H1299 and H1703 cells with WT
KRAS (Fig. 5b). These results supported the interpretation that
inhibition of the translational function of p-eIF2a by ISRIB is an
efficient means to impair p-ERK in mouse and human lung
tumor cells with KRAS mutations.

Pharmacological disruption of PERK/p-eIF2a arm impairs
mutant KRAS lung cancer formation. The tumorigenic function
of PERK/p-elF2a arm prompted us to investigate the therapeutic
potential of its pharmacological inhibition in the treatment of
KRAS-driven lung cancer. To this end, we examined the growth
of H1299 cells overexpressing either WT KRAS or KRAS G12C in
immune-deficient mice treated with the PERK inhibitor
GSK2606414 or ISRIB. Treatments of mice with each inhibitor
caused a significant reduction in the growth of KRAS G12C cells
as opposed to isogenic WT KRAS cells, which were less respon-
sive to treatments especially with ISRIB (Fig. 6a, b).

We next tested the effects of ISR inhibitors on the growth of
mouse Lewis Lung Carcinoma (LLC) cells containing a KRAS
G12C allele?? in orthotopic transplantation assays in immuno-
competent mice. Treatments were initiated on the 12th day after
the intratracheal intubation of the LLC cells, at which point mice
had developed detectable tumors by H&E staining and ultrasound
imaging of the lungs (Supplementary Fig. 10a). Analysis of tumor
growth in mice by ultrasound imaging of the lungs indicated a
significant reduction in LLC growth between the 3rd and 6th
week of treatment with either the PERK inhibitor GSK2606414 or
ISRIB compared to mice treated with vehicle control (Fig. 6c).
IHC analysis of lung sections indicated that ISRIB increased
DUSP6 and decreased p-ERK in tumors along with ATF4
downregulation, which served as a marker of ISRIB treatment
(Fig. 6d). Tumor inhibition was associated with decreased
proliferation (i.e., Ki-67) and increased apoptosis (i.e., cleaved
Caspase 3) indicative of the anti-tumor effects of the treatments
(Supplementary Fig. 10b).

We further assessed the effects of ISR inhibition on mouse
KRAS G12D tumor growth in syngeneic mice. Treatment of mice
bearing sizable (~200 mm3) subcutaneous KRAS G12D tumors
with ISRIB resulted in a substantial suppression of tumor growth
(Supplementary Fig. 11a). Consequently, we tested the effects of
ISRIB on the growth of tumors formed by the conditional
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activation of KRAS G12D in the mouse lungs. ISRIB treatment of
mice was initiated 10 weeks after the intratracheal intubation of
CRE lentivirus, at which point KRAS G12D tumors were readily
detected by ultrasound imaging of the lungs (Supplementary
Fig. 11b). Monitoring tumor development by ultrasound imaging,
we noticed that ISRIB treatments caused a substantial reduction
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in lung tumor size after 24 weeks of treatment (Fig. 6e). The
difference in tumor growth between vehicle control- and ISRIB-
treated mice was maintained at 38 weeks (Fig. 6e), at which time
~50% of vehicle-treated mice were deceased (Fig. 6f). The life
span of ISRIB-treated mice was significantly prolonged compared
to vehicle control-treated mice (Fig. 6f). Specifically, all vehicle
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Fig. 3 p-elF2a stimulates p-ERK through the translational repression of DUSP6. a H&E staining of mouse lungs and IHC staining of tumors for phospho-
elF2 (elF2a-P) and phospho-ERK (ERK-P) at 20 weeks after CRE-lentivirus intubation (elF2a5/S n =5, elF20”/A n =5 P value = 0.0026). Graphs represent
the average H-score of tumors per lung section of elF2a5/S and elF2a”/A mice. Scale bars for H&E staining correspond to 3 and 2 mm of the core images of
elF20%/5 and elF2a”/A tumors, respectively, and 60 um of enlarged images. For IHC staining images, scale bars correspond to 200 and 60 um of core and
enlarged tumor images, respectively. b KRAS G12D elF2a5/ and elF2a”/A tumor cells were deprived from serum for 18 h followed by serum stimulation
(10% FBS) for the indicated time. Protein extracts (50 ug) were subjected to immunoblotting for the indicated proteins. The graphs represent quantitative
analyses from three biological replicates. Phosphorylated ERK (ERK-P) was normalized to total ERK and DUSP6 to either ACTIN or TUBULIN. ¢ Polysome
profiling of KRAS G12D elF2a5/5 and elF20”/A cells. Arrowhead indicates the poly-ribosomal fraction used for mRNAs detection. DUSP6 mRNA was
normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and ACTIN mRNAs in total (n=4, P value <0.0001) and poly-ribosomal fractions
(n=4, P value = 0.0098). d H&E staining of mouse lungs and IHC staining of tumors for DUSP6 at 20 weeks after KRAS G12D induction. Graphs
represent the average H-score of tumors per lung section of elF2a%/S (n = 5) and elF2a™/A (n = 5) mice with P value = 0.0081. Scale bars for H&E staining
correspond to 600 pm and 60 um of core and enlarged tumor images, respectively. For IHC staining of DUSP6, scale bars correspond to 100 and 60 um of
core and enlarged tumor images, respectively. e, f Clonogenic assays (e) and immunoblotting (f) of KRAS G12D elF2a%/S and elF2a”/A mouse lung tumor
cells treated with either scrambled siRNAs or a mix of four different DUSP6 siRNAs. Graphs represent quantitative analyses from three biological
replicates. a-f Data represent mean + SEM. Significance in differences between two datasets was determined using two-tailed unpaired t-test. P values are

indicated in the bar graphs (ns non-significant).

control-treated mice (n=19) perished within 45 weeks of
treatment, while only two out of six ISRIB-treated mice perished
within the same period (Fig. 6f). Collectively, the findings
demonstrated the anti-tumor effects of ISR inhibitors on mutant
KRAS lung tumor growth in mice and their therapeutic potential
for the treatment of lung cancer.

Discussion

Our study portrays the adaptive PERK/p-elF2a branch of ISR as
an essential component of tumorigenesis and a valid target of
therapeutic intervention for mutant KRAS lung cancer treatment.
The clinical relevance of our findings is supported by the exam-
ination of a large cohort of 928 archival primary human LUADs,
which revealed that p-elF2a is elevated in a way that correlates
with local invasiveness, with high-risk tumor subtypes, and with
tumor cell proliferation (Fig. 1; Supplementary Fig. 1). Levels of
p-elF2a are highest in areas of solid pattern invasive growth,
which is known to be a particularly high-risk prognostic feature34.
The additional virulence of tumors with high levels of p-elF2a is
likely to be the result of this enhanced cellular invasion and
proliferation, which are hallmark behaviors that would be
expected to influence tumor growth pattern; it is, therefore,
unsurprising that while higher levels of p-elF2a predict poor
outcome in univariate models they lose significance in multi-
variate models which include growth pattern.

Using a mouse model of lung cancer, we demonstrate that the
translational repression of DUSP6 by p-elF2a is an important
mechanism of mutant KRAS tumorigenesis (Fig. 3c). DUSP6
exhibits anti-tumor effects in human LUAD cells?> while its
decreased expression is linked to poor prognosis and increased
sensitivity of LUADs to MAPK inhibition3®. Translational inhi-
bition of DUSP6 accounts for the stimulation of p-ERK by p-
elF2a since DUSP6 downregulation by siRNAs restored p-ERK
and increased the survival of KRAS G12D elF2a4/4 cells to equal
levels of KRAS G12D elF2a5/S cells (Fig. 3e, f). A recent study
showed that hyperactivation of p-ERK by the pharmacological
inhibition of DUSPs can exert anti-proliferative and anti-tumor
effects in mutant KRAS LUAD cells?’. However, stimulation of p-
ERK by the translational suppression of DUSP6 is below the
threshold required for the induction of anti-proliferative effects in
the mouse KRAS GI2D lung tumors (Fig. 3e, f). In LUAD
patients, we observed a significant association between p-elF2a
and p-ERK at the single-cell level in several primary tumors,
supporting our proposed mechanistic chain of events within
individual tumors (Supplementary Fig. 4). In addition to p-ERK
stimulation, we pinpoint roles for adaptive ISR in driving sec-
ondary changes in the transcriptome resulting in further

alterations to signaling and metabolic pathways with established
roles in cancer. Specifically, UR analysis of the RNA-seq data
indicated a role of p-elF2a in the activation of pro-tumorigenic
pathways under the control of CTNNBI, LHX1, HIFIA, and pro-
inflammatory IL6 pathway (Fig. 2g)3%-42. In contrast, p-elF2a
was predicted to negatively regulate tumor suppressors like the
homeobox protein HOXAI0, estrogen-related receptor alpha
(ESRRA), polycomb group protein ASXLI, and mitofusin 2
(MFN2) function (Fig. 2g)*3-6, Gene set enrichment analyses
(GSEA) suggested the involvement of the p-elF2a-dependent
genes in the stimulation of growth factor receptor signaling,
epithelial cell proliferation, and mesenchymal cell differentiation
(Supplementary Fig. 12). In addition, GSEA highlighted an
inverse relationship between p-elF2a and the expression of genes
involved in mitochondrial respiration (Supplementary Fig. 12).
Considering that increased p-ERK favors aerobic glycolysis?, p-
elF2a may play a role in this metabolic process through its ability
to stimulate p-ERK as well as decrease mitochondrial respiration
and oxidative phosphorylation in mutant KRAS tumors.

The transforming properties of mutant KRAS are accompanied
by an increased exposure of cells to genotoxic, proteotoxic, and
metabolic stress as a result of the disruption of normal pro-
liferation and tissue homeostasis*®4%. The successful growth of
mutant KRAS tumors depends on the action of adaptive
mechanisms to cope with these stresses and maintain
proliferation*$4°, We show that mutant KRAS upregulates the
PERK/p-elF2a branch in human LUAD cells to promote the
survival and growth in response to stress (Supplementary Figs. 6,
7). This is consistent with previous work showing that adaptive
ISR plays an important role in the tolerance of mutant KRAS-
transformed embryonic fibroblasts to hypoxic stress®® and
adaptation of human LUAD cells to nutritional stress”l.

Mutant KRAS causes a persistent activation of the PERK/p-
elF2a pathway (Supplementary Fig. 6), which accounts for the
higher susceptibility of mutant than WT KRAS lung cancer cells
to ISR inhibition (Fig. 6a, b; Supplementary Fig. 7). ISRIB
counteracts ISR activation by pre-disposing its target e[F2B into
an active state that becomes resistant to inhibition by p-
elF2a°2°3, Low p-elF2a results in ISR that is weakly antag-
onized by ISRIB>23, thus explaining the resistance of WT KRAS
tumor cells to ISRIB treatments in mice (Fig. 6a). Contrary to
ISRIB, the PERK inhibitor GSK2606414 reduced the growth of
WT KRAS tumors in mice, although this effect was not statisti-
cally significant (p = 0.116) (Fig. 6a). The anti-tumor trend of the
PERK inhibitor in WT KRAS tumor cells with low ISR may be
explained by the implication of PERK in p-elF2 independent
pathways like the stimulation of the nuclear factor erythroid
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2-related factor 2 (NRF2)-HIF pathway in pancreatic and lung
cancers”4,

ISR’s ability to integrate multiple tumor regulatory pathways
highlights the potential therapeutic value of its pharmacological
inhibition for the treatment of mutant KRAS lung cancer. ISRIB
and an emerging generation of ISRIB derivatives have shown
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remarkable results in the treatment of cognitive disorders®. A
salient property of ISRIB is the ability to specifically blunt ISR and
inhibit tumor formation in mice without toxic side-effects even
after prolonged treatments®>%. The lack of tissue toxicity may
provide ISRIB with a considerable advantage over conventional
therapies like treatments with MEK inhibitors, which are
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Fig. 4 PERK dictates the pro-survival and translational effects of p-elF2a in KRAS G12D tumor cells. a Immunoblotting of mouse KRAS G12D elF2a5/S
and elF20A/A lung tumor cells subjected to treatments with either scrambled siRNAs or a mix of four different PERK siRNAs followed by 1pM thapsigargin
(TG) treatment for 1.5 h, (n=1). b Clonogenic assays of KRAS G12D elF2a5/S and elF2a”/A cells subjected to either scrambled siRNAs or PERK siRNAs
treatments. The graph represents data from three biological replicates. ¢ Colony-forming efficacy of mouse KRAS G12D elF2a5/S and elF20”/A cells after
treatment with the indicated concentrations of the PERK inhibitor (PERKi) GSK2606414. Graphs represent data from three biological replicates. Data
represent mean + SEM. Significance in differences between datasets was determined using two-sided one-way Anova, Tukey's multiple comparison test.
P values are indicated on the bar graph. d KRAS G12D elF2a%/5 and elF2a”/A cells were untreated or pre-treated with 1uM thapsigargin (TG) for 30 min
followed by treatments with increasing concentrations of PERKi for Th. Protein extracts (50 ug) were subjected to immunoblotting for the indicated
proteins. Quantifications of blots were performed from four biological replicates. Phosphorylated ERK (ERK-P), PERK (PERK-P), and phospho-elF2 (elF2a-P)
were normalized to corresponding total protein whereas DUSP6 expression was normalized to ACTIN or TUBULIN. b, d Data represent mean £ SEM.
Significance in differences between two datasets was determined using two-tailed unpaired t-test. P values are indicated on the bar graph.

associated with many adverse side effects in the clinics®”. Because
mutant KRAS-driven lung cancers are largely resistant to therapy,
ISR inhibitors like ISRIB are promising agents for the treatment
of this common deadly mutant KRAS-driven malignancy and
may be applicable to other common cancers with KRAS muta-
tions. The recent development of highly specific irreversible
inhibitors for KRAS G12C holds promise for the treatment of
LUAD and other cancer forms with this type of KRAS
mutation®®. Nevertheless, the larger fraction of LUAD contains
KRAS mutations different from G12C, such as G12D, which is
the most common KRAS mutation (56%) among non-smokers>’.
Pharmacological inhibition of ISR potently impairs lung tumor
growth with KRAS G12C as well as G12D, supporting a broader
anti-tumor effect on cancers with different KRAS mutations. In
summary, therefore, by shedding more light on the role of the ISR
in mutant KRAS signaling and lung tumorigenesis, our work
strongly suggests that innovative therapeutic approaches using
ISR inhibitors may be valuable for the treatment of one of the
deadliest forms of mutant KRAS-driven cancer.

Methods

Cell lines and treatments. H358,H23, H1299, H1703, and LLC were maintained in
RPMI 1640 medium (Wisent) supplemented with 10% fetal bovine serum (FBS,
Wisent) and 1% antibiotics (penicillin/streptomycin, 100 units/mL; Life Technolo-
gies). H1299 cells were engineered to overexpress WT KRAS 4B, KRAS 4B G12C,
KRAS 4B G12V, and KRAS 4B GI12D by the transfection of PCDNA3.1 plasmids
bearing the KRAS 4B cDNAs and selection in 500 ug/ml G418 (Gibco)®0-62, The
inserted cDNAs were verified by Sanger sequencing. The functionality of mutated
KRAS cDNAs was determined by analyzing downstream signaling pathways (i.e.,
ERK phosphorylation) as well as by determining the interaction of KRAS proteins
with BRAF using NanoBRET KRAS/BRAF Interaction Assay (Promega) or by using
the KRAS Activation Assay Kit (Cell Biolabs, San Diego, CA). H1703 cells over-
expressing either green fluorescence protein (GFP)-WT KRAS or GFP- KRAS G12C
were established by infection with retroviruses expressing the GFP tagged KRAS 4B
cDNAs?3, Primary KRAS G12D eIF2a5/S and e[F2a/A lung tumor cells were isolated
from mice at 20 weeks of lung tumor formation. Mouse lung lobes were washed with
ice-cold sterile phosphate-buffered saline (PBS), chopped into ~1 mm? pieces, and
incubated with 1 mg/mL collagenase in serum-free DMEM media 2 h at 37 °C under
continuous rotation. The homogenate was centrifuged at 200 x g for 3 min, the pellet
was washed three times with ice-cold PBS and suspended in 2 mL of trypsin-EDTA
solution (Life Technologies) for 5 min at 37 °C under rotation. After three washes in
ice-cold PBS and centrifugation at 200xg for 3 min, the pellet (~1 x 107 cells) was
suspended in RPMI 1640, 10% FBS, antibiotics (100 units penicillin/streptomycin),
0.075% Sodium Bicarbonate NaHCOj; (Life Technologies), 1X essential amino acids
(Life Technologies), 1X non-essential amino acids (Life Technologies). GFP-positive
KRAS G12D elF205S and elF2a/A cells were sorted by flow cytometry and main-
tained in the same RPMI 1640 media. Downregulation of mouse DUSP6 or PERK
was performed by treatments with a mix of 4 siRNAs (Dharmacon) containing the
sequences listed in Supplementary Table 1. Colony formation assays were performed
with 103 cells subjected to anti-tumor treatments for 14 days as indicated in figure
legends. Cells were fixed in 4% v/v paraformaldehyde and stained with 0.2% w/v
crystal violet. Colonies were scored using an automated cell colony counter (Gel-
Count; Oxford Optronix). (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-
inden-1-one (BCI) inhibitor was obtained from Millipore Sigma, GSK2606414 from
MedKoo, ISRIB from Selleck Chemicals.

Flow cytometry analysis. Cells were plated the day before at ~20% confluency to
achieve 80-90% confluency in six-well plates at 72 h of treatment. PERK inhibitor

was added the next day and media was refreshed with the inhibitor every 24 h.
After treatment, the cells were lifted by incubating with phosphate buffer saline
(PBS) plus 0.5 mM EDTA for 5min at 37 °C and an equal volume of media with
10% FBS. Cells were centrifuged at 500 x g for 5 min and washed two times with
ice-cold PBS. Cells were resuspended with ice-cold 70% ethanol in PBS and stored
at —20 °C for at least 30 min. For propidium iodide (PI) staining, cells were spun
down at 1000 x g for 5min and washed twice with ice-cold PBS. Cells were
resuspended in PI buffer (4 uL Triton X-100, 40 ug PI, 0.5 mg RNAse A, up to 1 mL
with PBS), incubated at 37 °C for 30 min followed by FACS analysis using BD
LSRFortessa flow cytometer. FACS data were collected using FACSDiva software
and analyzed using Flow]Jo software.

Urethane and KRAS G12D induced lung tumorigenesis. Four-week-old male
and female C57BL/6 mice, which were either proficient (eIF2a%/S) or haplo-
insufficient for p-eIF2 (eIF2a5/4;26) were subjected to a single intraperitoneal
injection of urethane (Sigma) at 1 g/kg in pups between 21 and 28 days old®3.
Induction of lung tumorigenesis in KRAS*/LSL-G12D:£Tg/0;eIF2a5/S and KRASHLSL-
G12D:Tg/0;eIF2aA/A C57BL/6 mice was performed by the intratracheal intubation
of CRE- and TP53 shRNA-expressing lentiviruses!3* and lung tumor formation
was monitored by Ultrasound Imagining using the VisualSonics VEVO 3100 high-
frequency ultrasound apparatus according to manufacturer’s specifications®4.

Xenograft tumor assays. Cells were suspended in 50% Matrigel Matrix GFR
(Corning) in PBS prior to injection. Cells (1 x 10° in 0.1 ml) were injected sub-
cutaneously in the flanks of 8-week-old female BALB/c nude mice (Charles River
Laboratories). Tumor growth in NOG and SCID mice was measured with digital
calipers two times per week, and the volume calculated by the formula: tumor
volume [mm3] = [(length [mm]) x (width [mm])2]/2. Mouse treatment with
PERK inhibitor GSK2606414 or ISRIB by oral gavage consisting of 0.5% HPMC
solution and 0.1% Tween 80, pH = 4.0 at concentrations indicated in the
figures®>%°. Orthotopic transplantation of LLC cells (2 x 10°) in C57BL/6 mice was
performed by intratracheal intubation®®.

Guidelines of ethical conduct in mouse work. The animal studies were per-
formed in accordance with the Institutional Animal Care and Use Committee
(IACUC) of McGill University and procedures were approved by the Animal
Welfare Committee of McGill University (protocol #5754).

Polysome profiling, RNA isolation, and real-time qPCR. For polysome profiling
analysis cells were lysed in 10 mM Tris HCI, pH 7.4, 150 mM NaCl, 0.5 % NP40,
10 mM MgCl,, 100 pg/ml cycloheximide, 2 mM dithiothreitol, 100 U/ml RNA
Guard and fractionated on 10-55% sucrose gradients by ultracentrifugation (SW41
rotor; Beckman 30,000 rpm, 3 h at 4 °C)®7. The gradients were prepared with the
ISCO model 160 Gradient Former and fractionated into 500 pl fractions using the
ISCO density gradient fractionation system Foxy Jr. Fraction Collector while
measuring the absorbance at 254 nm. Total RNA and polyribosomal RNA (1 pg)
isolated by Trizol (Thermo Fisher Scientific) was subjected to reverse transcription
(RT) with 100 uM oligo (dT) primer using the SuperScript III Reverse Tran-
scriptase kit (Invitrogen) according to the manufacturer’s instruction. Real-time
(quantitative) PCR was performed using the SensiFast SYBR Lo-ROX kit (Bioline)
with primers listed in Supplementary Table 1. The qPCR assays included primers
for mouse GAPDH and actin mRNAs as internal controls according to the
Minimum Information for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines®S.

RNA-seq data analysis. Total RNA of KRAS G12D elF2a5/S and eIF2aA/A cells
(four replicates each) was isolated with Trizol (Thermo Fisher Scientific) and RNA-
Seq libraries were prepared following the TruSeq Stranded Total RNA protocol
(Illumina) according to the manufacturer’s instructions and 50 base single-end reads
were obtained using a HiSeq2500 system in Rapid Mode (Illumina). The resulting
reads were mapped to the mm10 genome assembly using HISAT and quantified using
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default settings®>70. Differential expression was performed using the random variance ~ present in the dataset and compares their direction of change to what is expected
model as implemented in the anota2seq package (1.8.0)7!. Genes with absolute log from the literature to predict likely transcriptional regulators. If the observed direction

(FC) > 1 and False Discovery rates (FDRs) < 0.05 were considered differentially of change is mostly consistent with an activation state of the transcriptional regulator,
expressed. Upstream Regulator analysis was performed as implemented in IPA. a prediction is made about that activation state. Gene set enrichment analysis (GSEA
Briefly, this analysis is based on the prior knowledge of expected effects between v4.0.3, Broad Institute) was performed on all genes ranked according to fold change,
transcriptional regulators and their target genes (Ingenuity® Knowledge Base). The using the Gene Ontology geneset v5.2 (MSigDB)”2. The number of permutations was
analysis examines how many known targets of each transcription regulator are 1000 and only sets containing between 15 and 500 genes were retained.
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Fig. 5 ISR inhibition antagonizes p-elF2a function in mutant KRAS lung tumor cells. a, b Mouse KRAS G12D elF2a5/S and elF20”/A cells (a) or human
LUAD cell lines with either WT KRAS or KRAS G12C (b) were left untreated or pre-treated with 1uM thapsigargin (TG) for 30 min followed by treatments
with increasing ISRIB concentrations for 1h. Protein extracts (50 ug) were subjected to immunoblotting for the indicated proteins. Quantifications of blots
for phosphorylated ERK (ERK-P) and DUSP6 in elF2a5/S and elF2a”/A cells were obtained from four biological replicates. ERK-P was normalized to total
ERK whereas DUSP6 expression to Tubulin. One biological replicate consisted of elF2a5/S and elF20/A samples analyzed on the same blot shown in a
whereas the rest of the biological replicates consisted of elF2a5/> and elF20A/A samples derived from the same sets of experiments analyzed on separate
blots but processed in parallel. ATF4 was used as a marker of the antagonistic effects of ISRIB on p-elF2-mediated mRNA translation in the tumor cells.

Data represent mean = SEM. Significance in differences between two datasets was determined using two-tailed unpaired t-test. P values are indicated on
the bar graph.
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Fig. 6 Pharmacological inhibition of ISR impairs KRAS lung tumor growth. a, b H1299 cells overexpressing either wild type KRAS (a) or KRAS G12C (b)
were transplanted subcutaneously in nu/nu mice followed by treatments with vehicle control (n = 8 for wild type KRAS; n =6 for KRAS G12C), 10 mg/kg
ISRIB (n =10 for wild type KRAS; n = 8 for KRAS G12C) or 150 mg/kg PERK inhibitor GSK2606414 (PERKi) (n =10 for wild type KRAS; n =6 KRAS G12C).
Data represent mean + SEM, two-sided one-way ANOVA, Dunnett's multiple comparison test, P values are indicated on the graph. ¢, d LLC cells were
orthotopically injected into the lungs of immune-competent C57BL/6 mice. Mice were subjected to treatments on day 12 after the intratracheal intubation
of LLC cells. The graph in panel c indicates lung tumor volume at the indicated weeks of tumor growth as analyzed by ultrasound imaging of mice treated
with vehicle (n=6), 10 mg/kg ISRIB (n = 6), and 150 mg/kg PERKi (n = 7). Data represent mean = SEM, two-sided one-way ANOVA, Dunnett's multiple
comparison test, P values are indicated on the graph. d H&E staining along with the expression of nuclear ATF4, nuclear p-ERK and cytoplasmic DUSP6 in
vehicle-control or ISRIB-treated LLC tumors at the sixth week of treatment. Scale bars correspond to 200 and 60 um of core and enlarged tumor images,
respectively. e, f Inmune-competent mice bearing KRAS G12D lung tumors were subjected to treatments with either vehicle (n=9) or 10 mg/kg ISRIB
(n=6). Ultrasound imaging in panel e indicates lung tumor formation in live mice at 24 or 38 weeks after treatment initiation. Graphs indicate tumor
volume assessed by ultrasound imaging. The survival curve in (f) refers to immune-competent mice bearing KRAS G12D tumors treated with either vehicle
control (n=9) or 10 mg/kg ISRIB (n = 6). Arrowhead indicates initiation of drug treatment 10 weeks after KRAS G12D induction in the lungs by the
intratracheal intubation of CRE-expressing lentiviruses, at which point detectable lung tumors were formed (Supplementary Fig. 11b). d, f Data represent
mean + SEM. Significance in differences between two datasets was determined using two-tailed unpaired t-test. P values are indicated on the bar graph.

Protein extraction and immunoblotting. Cells were washed twice with ice-cold
PBS and proteins were extracted in ice-cold lysis buffer containing 10 mM Tris-
HCI, pH 7.5, 50 mM KCI, 2 mM MgCl,, 1% Triton X-100, 3 pg/ml aprotinin, 1 pg/
ml pepstatin, 1 pg/ml leupeptin, 1 mM dithiothreitol, 0.1 mM Na;VOy, and 1 mM
phenylmethylsulfonyl fluoride. Extracts were kept on ice for 15 min, centrifuged at
10,000 x g for 15 min (4 °C), and supernatants were stored at —80 °C. Proteins were
quantified by Bradford assay (Bio-Rad). The expression of different proteins was
tested in parallel by loading 50 ug of protein extracts from the same set of samples
on two identical sodium dodecyl sulfate (SDS)-polyacrylamide gels. After protein
transfer to Immobilon-P membrane (Millipore), the two identical blots were cut
into smaller pieces based on the size of proteins to be tested. One piece was probed
for the phosphorylated protein of interest whereas the other identical piece for the
corresponding total protein. The antibodies used for immunoblotting are listed in
Supplementary Table 2. Proteins were visualized by enhanced chemiluminescence
(ECL) according to the manufacturer’s specification (Amersham Biosciences).
Quantification of bands in the linear range of exposure was performed by the
Image] 1.51e software (NIH, Maryland, USA).

Preparation of TMAs. TMAs were constructed from a continuous series of
archival primary resected LUADs obtained by University Hospital Leicester NHS
Trust between 1998 and 2015. Samples were excluded if the patient had any
previous lung cancer diagnosis. Whole diagnostic H&E sections were reviewed, and
3x representative tumor cores (1 mm) were taken in triplicate from FFPE blocks
and embedded in a total of 23 acceptor blocks. Outcome and pathological data of
patients were collected from local and national databases. TMAs were sectioned at
4.5 uM. All TMAs were H&E stained, and patterns ascribed to individual cores
according to WHO guidelines; where necessary, whole sections images from donor
blocks were examined to confirm growth pattern. This study was approved by the
Northampton Research Ethics Committee (reference 14/EM/1159) and University
Hospitals Leicester NHS Trust Research and Innovation Department (reference
UHL 11363).

Histology and immunohistochemistry (IHC). Mouse tissues were fixed in 10%
buffered formalin phosphate, paraffin embedded, and sectioned. Paraffin was
removed from the sections after treatment with xylene, rehydrated in graded
alcohol, and used for H&E staining and immunostaining. Antigen retrieval was
performed in sodium citrate buffer. Primary antibodies were incubated at 4 °C
overnight and secondary antibodies were incubated at room temperature for 90 min
(antibodies are listed in Supplementary Table 2). Sections were counterstained with
20% Harris modified hematoxylin (Thermo Fisher Scientific), mounted in Per-
mount solution (Thermo Fisher Scientific), and scanned using an Aperio Scanscope
AT Turbo scanner (Leica biosystems). Quantification of stained sections was per-
formed using Aperio Imagescope software (Leica Biosystems) according to the
manufacturer’s specifications.

For human specimens, IHC was used to examine p-eIF2 and cytokeratin
expression in a duplex chromogenic assay and to examine p-eIF2, p-ERK, and
cytokeratin expression in a multiplex fluorescent assay. IHC was performed on the
Roche DISCOVERY Ventana® platform using Roche DISCOVERY reagents.
Sections were de-paraffinized and antigen retrieval (64 min, 95 °C, pH 9.0) was
performed. Endogenous peroxidase was inhibited, and non-specific Ig binding was
blocked using Goat Ig, for 20 min each.

For the duplex assay, p-eIF2a primary antibody was incubated on slides and
detected using a secondary antibody. The Roche AMP HQ kit was used to amplify
p-elF2 DAB staining. Antibody denaturation (8 min, 100 °C, pH 6.0) and
neutralization steps (20 min, DISC inhibitor) was performed prior to further

blocking (12 min, Goat Ig) and cytokeratin antibody incubation. A purple detection
kit was used to detect cytokeratin AE1/AE3. The slides were counterstained with
haematoxylin and sections were dehydrated and mounted. Primary and secondary
antibodies are listed in Supplementary Table 3.

Duplex stained slides were scanned at x40 on the Hamamatsu NanoZoomer-XR
C12000. Slide images were imported, de-arrayed, and analyzed using the
Visiopharm® digital pathology platform. An app was developed to detect and
outline tumor areas using the purple cytokeratin stain. A further app identified
individual cells and generated a H-score based on DAB/purple intensity within the
tumor area (H-score =3 x % strong staining + 2 X % moderate staining + % weak
staining). Quantitative H-scores were generated from digital TMA images using
Visiopharm® software, based on the intensity and proportion of cytoplasmic p-eIF2
staining within tumor cells as identified by cytokeratin staining. Visiopharm® H-
scores were validated against a manually scored TMA. For p-eIF2 analysis, patients
were divided into two groups based on a positive/negative cut-off value determined
through correlation of IHC images and H-scores; cores with an H-score of <6 were
deemed to be immunohistochemically negative. This automated method was
validated against manual H-scoring of a representative TMA (120 donor cores),
giving a Spearman’s Rho of 0.939, p <0.001. For each patient, the median of p-eIF2
H-scores from up to 3 cores/tumor was used.

For the fluorescent multiplex assay, antibodies were applied in the sequential
order in Supplementary Table 3 with an antibody denaturation (8 min, 100 °C, pH
6.0) and neutralization (20 min. DISC inhibitor) steps in between. The slides were
scanned at x20 in the Akoya Vectra® and tumor regions were analyzed using
Akoya inform Advanced Image Analysis software. Tissue and cells were segmented
based on the fluorescent channels and mean pixel intensity data were collected for
each marker at the single-cell level.

Statistical analysis of patients’ data. For patient data, statistical analysis was
performed using RStudio (1.0.153). Spearman’s rank correlation was used to
validate Visiopharm® H-scores and assess the relationship between p-eIF2 and
Ki67. p-eIF2 was directly measured and quantified by IHC in 928 human LUADs,
providing a broad range of staining intensities. H-scores were generated using
Visiopharm® software based on the intensity and proportion of cytoplasmic p-eIF2
staining. The automated scores were validated against manual H-scoring of a
representative TMA (120 donor cores), giving a Spearman’s Rho of 0.939, p <
0.001. Patient survival was visualized by Kaplan-Meier plots and significance
assessed by a log-rank test and Cox Proportional regression for univariate survival
models. The associations between patient survival and p-eIF2 were examined using
overall, cancer-specific, and recurrence-free survival endpoints. For each patient,
the median of the 3-core p-eIF2 H-scores was used. Associations between p-eIF2
and histological pattern/WHO type were assessed using non-parametric
Mann-Whitney-Wilcoxon and the Kruskal-Wallis tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The RNA seq data generated in this study have been deposited in the Gene Expression
Omnibus (GEO) GSE155238. The remaining data are available within the Article and its
Supplementary Information and source data. Source data are provided with this paper.
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