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Abstract

Motivation: Sequencing of human genomes is now routine, and assembly of shotgun reads is in-

creasingly feasible. However, assemblies often fail to inform about chromosome-scale structure

due to a lack of linkage information over long stretches of DNA—a shortcoming that is being ad-

dressed by new sequencing protocols, such as the GemCode and Chromium linked reads from

10�Genomics.

Results: Here, we present ARCS, an application that utilizes the barcoding information contained in

linked reads to further organize draft genomes into highly contiguous assemblies. We show how

the contiguity of an ABySS H.sapiens genome assembly can be increased over six-fold, using mod-

erate coverage (25-fold) Chromium data. We expect ARCS to have broad utility in harnessing the

barcoding information contained in linked read data for connecting high-quality sequences in gen-

ome assembly drafts.

Availability and implementation: https://github.com/bcgsc/ARCS/

Contact: rwarren@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Chromium sequencing library preparation protocol from 10�
Genomics (10�G, Pleasanton, CA) builds on the Illumina sequenc-

ing technology (San Diego, CA) to provide indexing/barcoding

information along with short reads to localize the latter on long

DNA fragments, thus benefiting the economies of scale of a high-

throughput platform. As sequence reads from 20 to 200 kb mol-

ecules are barcoded/linked, applications of the technology has

mainly focused on phasing variant bases in human genomes

(Narasimhan et al., 2016; Zheng et al., 2016).

The ability to generate linked reads with 10�G is akin to that of

Illumina TruSeq (Kuleshov et al., 2014). The latter technology pro-

vides useful complementary information to whole genome shotgun

assembly projects, as the pseudo-long reads it generates may help re-

solve long repeats. However, to generate pseudo-long reads, TruSeq

requires high coverage data of the co-localized reads for a priori

fragment assemblies (by default, transparent to the user), essentially

generating low fragment coverage data for its target genome. Hence,

TruSeq may be relatively expensive for providing mammalian-sized

genomes with adequate fragment coverage. Conversely, the

Chromium platform typically provides low-coverage for each single

barcoded molecule, limiting its utility for individual fragment assem-

bly. However, it makes up for this limitation in throughput, provid-

ing higher fragment coverage.

Recently this data type has been utilized for scaffolding a draft

genome assembly (Mostovoy et al., 2016), using a software designed

to scaffold sequences using contiguity preserving transposition

sequencing (CPT-seq) and another long-range information data

source (Hi-C) (Adey et al., 2014). In their paper, Mostovoy et al.

(2016) showed 12-fold improvement in contiguity of a human

genome assembly draft using GemCode sequencing (precursor to
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Chromium, from 10�G) at 97-fold coverage, demonstrating the

potential of the technology for scaffolding draft genomes.

Here we present ARCS, the Assembly Round-up by Chromium

Scaffolding algorithm, a method that leverages the rich information

content of high-volume long sequencing fragments to further organ-

ize draft genome sequences into contiguous assemblies that charac-

terize large chromosome segments. We use the recent Genome In A

Bottle (GIAB) human genome sequence data (Zook et al., 2016),

and compare ARCS to fragScaff, the only other technology shown

in a publication to utilize 10�G linked reads for scaffolding gen-

ome assembly drafts (Mostovoy et al., 2016). In the fragScaff scaf-

folding algorithm, a barcoded alignment file is parsed to determine

which barcodes map to the ends of each sequence. For each possible

pair of sequence ends, a shared barcode fraction metric is calculated.

These values produce a distribution of shared barcode fractions

for each sequence end. Edges are added to a scaffold graph based

on these distributions, resulting in sequence end nodes being linked

when a high fraction of barcodes are shared. For each connected

component, the maximum-weight minimum spanning tree (MST) is

determined, followed by iterations to incorporate any branches into

the main trunk of the MST to produce the final scaffolds.

We also present similar benchmarks to Architect, a recently pub-

lished scaffolder (Kuleshov et al., 2016) shown to work on Illumina

TruSeq synthetic long sequences’ underlying short reads (read

clouds) and suggested to be adaptable to Chromium data. The

Architect algorithm utilizes evidence from read clouds by first iden-

tifying barcode ‘hits’ to each scaffold, based on input barcoded read

alignments. Then, a scaffold graph is constructed, where edges are

created based on the number of shared barcode hits and the fraction

of shared barcode hits between two scaffolds. Following pruning of

potentially spurious edges, unambiguous edges are contracted to

produce the final output scaffolds.

We show how our implementation yields assemblies that are

more contiguous and accurate than fragScaff and Architect over a

wide range of parameters, while using less time and compute re-

sources. Using two human linked read datasets from different ex-

periments, we demonstrate that ARCS scaffolding of pre-existing

human genome drafts can yield assemblies whose contiguity and

correctness are on par with or better than those assembled with the

newly released 10�G Supernova de novo assembler (Weisenfeld

et al., 2017). ARCS is implemented in Cþþ and runs on Unix.

2 Materials and methods

2.1 ARCS algorithm
The modular pipeline collectively referred to as ARCS first pairs se-

quences within a draft assembly, then lays out the pairing informa-

tion for scaffolding. In the sequence pairing stage (Fig. 1), input

alignments in BAM format are processed for sets of read pairs from

the same barcode that align to different sequences. These form a

link between the two sequences, provided that there is a sufficient

number of read pairs aligned (parameter –c, set to 5 by default).

Each link represents evidence that one barcode/molecule connects

the sequences. To account for barcode sequencing errors, only barc-

odes within a specified multiplicity range (parameter –m) are con-

sidered (default 50–10 000). The multiplicity refers to the read

frequency of each barcode, and the range defines a specific slice of

reads considered by ARCS.

As we are interested in ordering and orienting sequences, we con-

sider reads that align near the 50 and 30 ends of each sequence

(within a window defined by the parameter –e, default 30 000). This

parameter effectively sets the maximum window length at the end of

sequences, where Chromium reads align. Reads aligned outside of

these windows are not considered. Thus, depending on the level of

contiguity of the input assembly, adjusting –e to a lower or higher

value would account for shorter contigs or focus on longer contigs.

When ARCS encounters shorter sequences (less than twice the speci-

fied –e length), the length of the head and tail regions are assigned as

half the total sequence length. This is important, as the selection of –

e will impact how ambiguity is mitigated when creating an edge

between any two sequences. In addition, as the BAM file is read,

only reads that align to a sequence with at least the specified se-

quence identity (parameter –s, set to 98% by default), map in proper

pairs and align with a non-zero mapping quality are considered.

This ensures that only high-quality alignments provide evidence for

the subsequent linking stages, as alignments involving reads with

long repeat regions or chimeric reads will be skipped. Therefore,

contigs that end in long repeats will not be linked in downstream

stages due to the lack of unambiguous aligned read support.

The relative orientations of sequences are inferred through the

read alignment positions. Using read alignments, we first determine

subsets of reads with the same barcode that co-locate within one end

of a sequence (Fig. 1, step 1); Within each sequence, the 50 end re-

gion is arbitrarily labeled the head (H), and the 30 end, the tail (T).

Fig. 1. ARCS algorithm. (1) 10�G Chromium reads (blue, green, orange and

purple arrows) are aligned to the draft genome. (2) Sequences are split in half

by length and the ends of each are considered the head (H) or tail (T) regions

(represented with grey boxes, length of the ends controlled by ARCS param-

eter –e). The number of read pairs derived from the same barcode and align-

ing to the head (H) or tail (T) regions of the sequence are tallied. These tallies

are stored in memory using a map data structure, where the key is the bar-

code sequence. The value maps a tuple of the sequence ID and ‘H’ or ‘T’ to

the count of the number of read pairs. (3) The number of barcodes supporting

each link orientation (H-H, H-T, T-H, T-T) between sequence pairs is tallied.

The tallies are stored in memory using an additional map data structure,

where the key is a pair representing the two potentially linked sequences, and

the value is a vector of integers representing the number of barcodes sup-

porting each possible link orientation. For a given barcode to contribute link-

ing evidence, the distribution of reads of that barcode aligning to the ‘H’ or ‘T’

regions of both sequences in the potential pair must significantly differ from

a uniform distribution. A dot file is then generated which encodes the linkage

evidence, where links (edges) between two sequences (nodes) are only

added if the link orientation with the maximum support is predominant
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The number of read pairs of the same barcode aligning to the head

or the tail of a sequence (within –e bp or less of the end) is tallied as

the BAM file is read. For a given barcode, we track the number of

reads that map to the ‘H’ or ‘T’ of a sequence (Fig. 1, step 2).

Once the alignment file is read into memory, every possible pair of

sequences that have a sufficient number of aligned reads from a given

barcode (–c) are considered. For each sequence in a potential pair, a

binomial test is used to calculate whether the observed distribution of

reads aligning to the 50 or 30 end of a sequence is significantly different

from a uniform distribution (threshold P¼0.05, set by parameter –r).

Likewise, the number of linking barcodes that support each of the

four possible link orientations (H-H, H-T, T-H, T-T) is tallied in a

map data structure for each potential sequence pair (Fig. 1, step 3).

Using the link orientation tallies for each sequence pair, a graph

data structure is constructed, where the nodes are sequences, and

the edges represent links between them. An edge is formed only if

the link orientation, defined by the order of a sequence pair‘s head

and tail regions, is the most represented combination across support-

ing barcodes. Once pairing between sequences is complete, ARCS

outputs a single file in the graph description language (gv) format.

2.2 Scaffolding
In preparation for the layout building stage, ARCS’ gv file is converted

to a tab-separated value (tsv) file listing all possible oriented sequence

pairs, the number of supporting barcodes with gap sizes arbitrarily set at

10bp. This is facilitated by the supplied python script (makeTSVfile.py).

Since positional information of reads within the molecule of origin is

not known, estimation of gap sizes is not a straightforward problem,

and would require more sophisticated approaches. The latter tsv file is

read and scaffolds constructed using the algorithm implemented in

LINKS, as described previously (Warren et al., 2015) (v1.7 and later).

Briefly, starting with the longest sequence as seed sequence, a

layout is progressively built by considering all possible pair of se-

quences suggested by ARCS (Supplementary Fig. S1a), adjusting the

orientation of likely pairs relative to the seed. Because linked se-

quence pairs may be ambiguous (a given sequence may link to mul-

tiple sequences), sequences are joined only if the number of links

connecting a sequence pair is equal to or greater than a minimum

(Supplementary Fig. S1b, LINKS parameter –l, default of 5) and sat-

isfies a minimum sequence cutoff (LINKS parameter –z, default

500). Ambiguous pairings are resolved when the ratio of barcode

links of the second-most to top-most supported edge is equal to or

below a threshold (Supplementary Fig. S1b, LINKS parameter –a,

default of 0.3; we recommend higher values such as –a 0.7 and 0.9

when running LINKS within ARCS). In the Supplementary

Information, we show a section of the LINKS scaffold graph demon-

strating the influence of the –a parameter on scaffolding an experi-

mental human dataset used in the present study (Supplementary Fig.

S1c). When sequence merging is exhausted in 30, the scaffold is ex-

tended in 50 following the same procedure.

We point out that other stand-alone scaffolding algorithms may

be used within the ARCS pipeline instead of LINKS, at the user‘s

discretion. For instance, we have experimented with abyss-scaffold

(Jackman et al., 2017), which implements a non-greedy graph-based

approach, and found the results to be comparable to that of LINKS.

A modular pipeline ensures that in the future, improved scaffolders

may be used within ARCS without having to alter the code base.

2.3 Data sources
We used two human Chromium datasets to illustrate the perform-

ance of ARCS on baseline sequence assemblies.

The first dataset is from an Ashkenazi female individual

(NA24143) from GIAB (Zook et al., 2016), sequenced using various

Illumina library protocols (accession number NIST HG004

NA24143 SRS823307; Supplementary Table S1). In preparation for

whole genome de novo sequence assembly (referred herein as base-

line assemblies), we downloaded Illumina whole genome shotgun

(WGS) 2�250 bp paired-end and 6 kbp mate-pair sequencing

reads. Adapter sequences from the mate-pair reads were removed

using NxTrim v0.4.0 (O’Connell et al., 2015) (with parameters –

norc –joinreads –preserve-mp). NxTrim also classifies reads as

mate-pair, paired-end, single-end or unknown. Only reads classified

as mate-pair were subsequently used for assembly. Both paired-end

and mate-pair reads were corrected with BFC v181 (Li, 2015) (with

the parameter –s3G). We also downloaded 10�G linked reads

from the same repository for the purpose of de novo assembly with

Supernova, and scaffolding of baseline assemblies with ARCS,

Architect and fragScaff (Supplementary Table S1).

The second individual‘s genome (NA12878) was sequenced and

assembled by 10�G. The corresponding raw, �156-fold coverage,

NA12878 10�G Chromium data was downloaded from the 10�
Genomics company website (Supplementary Table S1).

2.4 Data analysis
Whole genome shotgun paired-end and mate pair reads were

assembled de novo with ABySS v2.0 (Jackman et al., 2017) with the

command: abyss-pe name¼hsapiens np¼64 k¼144 q¼15 v¼ -v

l¼40 s¼1000 n¼10 S¼1000–10 000 N¼7 mp6k_de¼–mean

mp6k_n¼1 lib¼pe400 mp¼mp6k, where pe400 and mp6k are

variables listing all files containing paired-end sequencing and

MPET reads. The resulting contigs and scaffolds were used as base-

line human genome draft assemblies for linked read scaffolding

(Supplementary Table S2).

The 10�G Chromium sequencing data was converted from a

container BAM file to FASTQ format (NA24143) or processed with

10�G longranger (Weisenfeld et al., 2017; Zheng et al., 2016) to

generate barcode-containing interleaved FASTQ files (NA12878)

(Supplementary Table S3). For the former dataset, the read barcodes

were extracted from the RX tag in the BAM file. For both

Chromium datasets the barcode was appended to the read name fol-

lowing an underscore. Chromium reads were then aligned to the

contig and scaffold sequences using BWA mem v0.7.15 (default val-

ues, -t12) (Li and Durbin, 2010), and sorted by name. We provide

instructions on how to prepare and align the Chromium reads here:

ftp://ftp.bcgsc.ca/supplementary/ARCS

Based on authors’ recommendations, the input to fragScaff also

included an N-base bed file. This file contained the coordinates of all

undetermined base stretches when using a scaffold input, and was gen-

erated by their supplied script fasta_make_Nbase_bed.pl. A repeat bed

file was also included, generated by performing a blastn v2.4.0 align-

ment (Altschul et al., 1990) of the input assembly to itself (with param-

eters –word_size 36, –perc_identity 95, –outfmt 6) and by converting

the alignments using their supplied script blast_self_alignment_filter.pl.

In separate experiments, the NA24143 and NA12878 10�G

linked read data were assembled with the Supernova v1.1 de novo

assembler as described (Weisenfeld et al., 2017).

The scaffolding scripts that ran on the data described above are

available at ftp://ftp.bcgsc.ca/supplementary/ARCS, providing the

command lines and parameters used. The corresponding assemblies

are also offered through the same URL.

In separate triplicate experiments, we sub-sampled 100, 200,

300 M NA24143 and 46M, 200–1400 M NA12878 10�G read
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pairs to test the effect of read coverage on the performance of

ARCS, Architect and fragScaff for scaffolding the baseline scaffold

assembly draft. On each file subset, we ran ARCS (–c 5 –r 0.05 –e

30000 –z 3000 –m 50–6000 for NA12878; –m 50–1000 for

NA24143) and LINKS (–l 5 –a 0.9), Architect (–t 5 –rc-abs-thr 3 –

rc-rel-edge-thr 0.2 –rc-rel-prun-thr 0.2) and fragScaff (–b 1 –m 3000

–E 30000 –j 1 –u 2 –C 5). For each coverage level and tool, we cal-

culated the average contiguity and number of breakpoints (as a

proxy for counting misassemblies).

Breakpoints in re-scaffolded assemblies were identified using

abyss-samtobreak (-G3088269832 -l500.) (Jackman et al., 2017).

Briefly, scaffolds are first broken at Ns to generate sequence

‘scaftigs’. The assembly scaftigs are aligned to the reference human

genome GRCh38 with BWA mem (v0.7.15, using the –xintractg

flag) (Li and Durbin, 2010). Breakpoints are identified when scaftigs

do not align co-linearly to a given reference chromosome sequence.

This includes cases where the order of scaftigs in the scaffold is not

consistent with the respective chromosome alignments, and/or scaf-

tigs from a given scaffolds align to two or more chromosomes. The

distance between scaftigs (i.e. length of assembly gaps) is not scruti-

nized for length consistency between draft and reference genomes.

The NG50 and NGA50 length metrics reported were calculated

using a genome size of 3 088 269 832 bp. Benchmarking for compu-

tational performance was done on a DELL server with 128 Intel(R)

Xeon(R) CPU E7-8867 v3, 2.50 GHz with 2.6TB RAM.

3 Results

To generate the contig and scaffold baselines for NA24143, we first

assembled the paired-end and mate-pair data with ABySS-2.0

(Jackman et al., 2017). We then aligned the Chromium reads to

those assemblies with BWA (Li and Durbin, 2010). Using the result-

ing alignments as input, we ran ARCS (v1.0.0), Architect (v0.1) and

fragScaff (v140324) to further scaffold contig and scaffold baseline

sequences 3 kbp and longer, as recommended (Mostovoy et al.,

2016). We investigated the effects of multiple parameter combin-

ations on scaffolding (Supplementary Table S4), reporting contiguity

length metrics and number of breakpoints from sequence alignments

to the reference human genome.

3.1 Scaffolding with the NA24143 GIAB Chromium data
We measured the contiguity (NG50 and NGA50 length metric) and

correctness of resulting assemblies after ARCS, Architect and

fragScaff scaffolding of baseline assemblies (Supplementary Table

S2). During this process, we tested the effect of various parameters,

including the scaffolding-specific –a, –u and –rc-rel-edge-thr (abbre-

viated rel) parameters in the corresponding tools, respectively (Fig.

2). Generally, these parameters affect scaffolding stringency by eval-

uating the validity of the linkages.

Mostovoy et al. (2016) reported their best assembly using

fragScaff parameters –j 1 and –u 3, prompting us to explore similar

values of –j and –u on our dataset. These parameters are described

as the mean number of passing hits per node to call the P-value cut-

off and modifier to the score to consider the link reciprocated in

fragScaff, and are the parameters previously optimized in the study

by Adey et al. (2014). In Architect, the parameter –rc-abs-thr con-

trols the minimum number of shared barcode hits required to tenta-

tively connect two sequence vertices in the scaffold graph. The

Architect parameters –rc-rel-edge-thr and –rc-rel-prun-thr control

the relative barcode support needed for creating and pruning edges

in the graph, respectively.

To assess correctness, we aligned the assemblies to the primary

chromosome sequences of the human reference GRCh38, and

counted the number of observed breakpoints using abyss-

samtobreak (Jackman et al., 2017). At the contig level (Fig. 2a), we

observe that, while the ARCS and fragScaff assemblies (highest con-

tiguity achieved at –a 0.9 and –u 2, in that order) have similar se-

quence contiguity (NG50 of 303 034 versus 304 926 bp,

respectively), the ARCS assembly has less than one third the number

of breakpoints compared to fragScaff (2030 versus 6345). In con-

text, the corresponding ARCS and fragScaff assemblies have 16.3

and 263.4% more breakpoints than the baseline contig assembly, re-

spectively (Supplementary Tables S5 and S6). This indicated that,

while the resulting fragScaff assemblies were highly contiguous, they

may harbor substantially more misassemblies. Architect scaffolding

of the baseline contig assembly did not yield appreciable gains

despite extensive parameter tuning (Fig. 2a and Supplementary

Table S7).

At the scaffold level (Fig. 2b and Table 1), we observe that

ARCS achieves a greater sequence contiguity and correctness than

Architect and fragScaff (NG50 (Mbp)/breakpoints, 19.5/3027

versus 5.0/3076 versus 13.1/3438 for the three tools, in that order)

when comparing amongst the most contiguous assemblies for each

tool (Supplementary Tables S5–S7). We observe that, while the dif-

ference in the number of misassemblies between fragScaff and

ARCS is 411 when the tools use scaffolds as input, it increases by an

order of magnitude to 4315 when using contigs. The ARCS,

Architect and fragScaff assemblies respectively harbor 3.6, 5.2 and

17.6% more breakpoints than the baseline scaffold assembly, which

suggests that ARCS and other scaffolders for 10�G data work best

when the draft to re-scaffold is more contiguous. To see whether

these 411 additional breakpoints in the fragScaff versus ARCS

assemblies are large-scale misassemblies, we aligned the correspond-

ing assemblies to the reference human genome and plotted their

alignments (Fig. 3).

Compared to ARCS, fragScaff scaffolding of the baseline scaf-

fold sequences yields more large-scale misassemblies, shown as

inter-chromosomal translocations (Fig. 3). We note that increasing

the fragScaff –j parameter (mean passing links across nodes) while

Fig. 2. Assembly contiguity and correctness from scaffolding (a) contig or (b)

scaffold baseline assemblies with 10�G Chromium reads using ARCS (or-

ange), Architect (red) and fragScaff (green). We show the effect of the scaf-

folding parameters –a (ARCS), –rc-rel-edge-thr (abbreviated rel, Architect)

and –u (fragScaff). The Y-axes show the range of NGA50 to NG50 lengths to

indicate the uncertainty caused by real genomic variations (captured by

breakpoints analysis) between individual NA24143 and the reference genome

GRCh38. For comparison, we also show the same metrics for the Supernova

assembly of the NA12878 and NA24143 10�G datasets (blue). The X-axes

show the number of breakpoints that occur when aligning the resulting as-

sembly to the reference
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relaxing –u (score cut-off multiplier) yields assemblies whose con-

tiguity rival that of ARCS (16.9 versus 19.5 Mbp NG50, respect-

ively), but at the cost of increased misassemblies (Supplementary

Tables S5 and S6). Architect scaffolding of both contig and scaffold

baseline assemblies yielded a marginal increase in contiguity figures

(Fig. 2, Table 1 and Supplementary Table S7), reasons why we can

only speculate on.

We also compared the resource efficiency of all three tools over

the parameter range tested (See ftp://ftp.bcgsc.ca/supplementary/

ARCS/benchmarks) and report its runtime and memory usage on

the most contiguous assemblies of contig and baseline scaffold se-

quences (Table 1 and Supplementary Table S8). ARCS outperforms

Architect and fragScaff for run time (average 2 fold faster than

fragScaff) and memory usage on scaffolds (4 times less memory

when compared to fragScaff). It should be noted that the run time of

Architect and fragScaff increases quadratically with the number of

input sequences, making them inefficient choices for assemblies with

a large number of input sequences (more than 250 000). Running

Architect on the baseline contig assemblies took roughly 7 days

(187 h) for most parameter combinations when parameter –t was set

to 5 (Supplementary Table S8). In contrast, equivalent runs of this

tool on the scaffold baseline assemblies were faster (6 h) due to hav-

ing 20 times less sequences to process (Table 1 and Supplementary

Table S2). The execution speed of ARCS on the contig and scaffold

baseline assemblies was consistent, both finishing in approximately

1 h (1 h 12 min and 55 min, respectively).

3.2 Scaffolding with the NA12878 Chromium data
Recently, 10�G released their de novo assembly software called

Supernova, which implements a scaffolding stage, and is developed

specifically for assembling Chromium data (Weisenfeld et al., 2017).

The authors presented a variety of human genome assemblies, each

yielding N50 contiguity lengths 15 Mbp or higher, factoring in scaf-

folds 10 kbp and larger. We re-capitulated the Supernova experiment

on the 156-fold Chromium sequencing data for the NA12878 individ-

ual, and corroborate their results (Supplementary Table S9). When

applying a scaffold sequence length cut-off on par with that used in

our study (500 bp), we report N50 length metrics corrected for gen-

ome size, NG50, in the megabase range (14.7 Mbp), which is consist-

ent with what was maximally achievable with ARCS using the same

dataset applied to the baseline scaffold assembly (NG50¼18.3

Mbp). A Supernova assembly of 51-fold raw NA24143 chromium

reads produced a similarly contiguous genome draft (NG50¼13.5

Mbp), albeit with a higher overall number of assembly breakpoints

(Fig. 2b, Supplementary Table S9). Interestingly, upon investigation

of the breakpoints, we concede that fewer events�1 kb are observed

in the largest, N75, Supernova scaffolds (data not shown).

3.3 Effect of sequence coverage on scaffolding
Despite the NA12878 Chromium read data having substan-

tially deeper coverage than that of NA24143 (over 5� deeper,

Supplementary Table S3 datasets 5 versus 3), we observe that ARCS

performs consistently across both datasets. Perhaps more interesting

is the observation that there are only marginal gains in N50 length

contiguity with the higher coverage Chromium dataset (21.8 versus

22.2 Mbp when using NA24143 versus NA12878 datasets with par-

ameters –e 30 000 –r 0.05 –c 5 –l 5 –a 0.9) in spite of making 406

additional merges in the latter (64 516 versus 64 922 scaffolds, with

NA12878 and NA24143 respectively, Supplementary Table S9).

When we sub-sample both 10�G data, we observe that �20-fold

sequence read coverage of the human genome (approximately

200 M read pairs) is sufficient to achieve near-to-optimum scaffold-

ing results with ARCS (Supplementary Fig. S2 and Table S10). This

Fig. 3. A Circos (Krzywinski et al., 2009) assembly consistency plot of conser-

vative (a) ARCS (–c 5 –e 30000 –r 0.05 –l 5 –a 0.3) and (b) fragScaff (–C 5 –E

30000 –j 1 –u 4) scaffolding of the baseline scaffold assembly. Scaftigs from

the largest 177 (ARCS) and 175 (fragScaff) scaffolds, consisting of 75% (N75)

of the genome are aligned to GRCh38 with BWA mem. GRCh38 chromo-

somes are displayed incrementally from 1 (bottom, brown) to X (top, dark

grey) on the left while scaffolds (black outlines) are displayed on the right

side of the rim. Connections show aligned regions, 100 kbp and larger, be-

tween the genome and scaffolds. Large-scale misassemblies are visible as

interrupting ribbons. The circles along chromosomes indicate centromeres,

while the black regions on chromosomes indicate gaps in the reference

Table 1. Contiguity metrics, breakpoints, total wall-clock time and peak memory usage for scaffolding 3 kbp and larger sequences from a

human (NA24143) ABySS base scaffold assembly with ARCS (–c 5 –e 30000 –r 0.05 –l 5), Architect (–t 5 –rc-abs-thr 3 –rc-rel-prun-thr 0.2; –rc-

rel-edge-thr abbreviated to ‘rel’ in table) and fragScaff (–C 5 –E 30000 –j 1)

Tool ARCS ARCS ARCS fragScaff fragScaff fragScaff Architect Architect Supernovab

Parametersa a¼ 0.3 a¼ 0.7 a¼ 0.9 u¼ 2 u¼ 3 u¼ 4 rel ¼ 0.2 rel ¼ 0.3 N/A

n: 500 65 191 64 993 64 922 64 445 64 625 64 869 65 780 65 862 23 693

NG50 (Mbp) 11.74 15.13 19.48 13.13 13.01 11.74 5.01 4.93 13.47

NGA50 (Mbp) 7.78 10.22 11.00 6.41 6.62 6.52 4.38 4.38 5.38

N50 (Mbp) 12.91 17.98 21.82 15.80 15.40 13.07 5.72 5.62 15.03

Largest scaffold (Mbp) 66.18 97.86 97.86 93.33 72.78 68.07 26.41 26.41 95.16

Breakpoints 2985 3003 3027 3438 3355 3231 3076 2991 3879

Wall-clock time (h:min) 0:55 0:55 0:55 2:03 1:56 1:59 6:12 5:39 50:43

Peak memory (GB) 3.4 3.4 3.4 16.5 14.8 14.1 9.6 9.6 389.0

aScaffolding-specific parameters.
bSupernova is a de novo assembler, and its scaffolding stage cannot be decoupled from the rest of its work flow.
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indicates that, under the conditions tested herein, with the draft as-

sembly utilized and parameters set, the solution may work optimally

even if presented with less data. We do stress the importance of

characterizing the distribution of read multiplicities within barcodes

to tune runtime parameters, as distributions may vary between

datasets, as observed for NA24143 and NA12878 (Supplementary

Fig. S3).

When comparing the impact of sequence coverage on scaffolding

by ARCS as compared to fragScaff (parameters –E 30 000 –C 5 –j 1

–u 2) and Architect (parameters -t 5 –rc-abs-thr 3 –rc-rel-edge-thr

0.2 –rc-rel-prun-thr 0.2), ARCS was also found to produce assem-

blies with a higher NGA50 metric at all fold coverage subsets as-

sessed (Supplementary Tables S9, S11, S12 and Fig. S2). This

demonstrates that as well as being robust to the coverage of supplied

linked reads, ARCS produces more contiguous assemblies than the

other scaffolders evaluated in low (�4.0-fold) to high (�127-fold)

sequence coverage conditions.

4 Discussion

Here, we have demonstrated the utility of a new algorithm, ARCS,

for using 10� Genomics read locality information to scaffold draft

human genomes. We note that ARCS can perform well even when

presented with relatively low coverage (25-fold) linked read data,

generating accurate and megabase-range scaffolding results, starting

from draft assemblies built entirely from short (250 bp) sequencing

reads. We expect this performance to be generalizable to de novo as-

sembly and scaffolding of other complex genomes.

Compared to fragScaff and Architect, ARCS produces more con-

tiguous and correct assemblies. While running fragScaff with less

stringent parameters yields assemblies with similar contiguity metrics

to ARCS (16.9 versus 19.5 Mbp NG50, respectively), the fragScaff

assemblies contain noticeably more misassemblies (3813 versus

3027). It is important to note that ARCS was developed specifically

to utilize 10�G data, where fragScaff was designed for scaffolding

with CPT-seq data (Adey et al., 2014), which could have an impact

on the resulting scaffolds. Furthermore, while fragScaff uses a more

global approach of using maximum-weight minimum spanning trees

based on the connected components of the scaffold graph, the ARCS

graph is traversed based on local linkage support information.

Although further study is required to fully understand the difference

in assembly correctness between ARCS and fragScaff, it is possible

that both of these factors influence the occurrence of misassemblies.

Despite thorough parameter sweeps, we found that Architect did

not markedly improve the contiguity of the baseline H.sapiens

assemblies. Apart from the tool design, which is intended for

Illumina TruSeq read clouds (Kuleshov et al., 2016), it is possible

that Architect‘s approach to ordering and orienting the sequences

impacted the resulting assembly contiguity in our experiments.

Whereas our scaffolding approach will take into account the ratio of

barcode links between the most and second most supported edges

when linking sequences, Architect requires sequence pairs to be

linked by unambiguous edges in the graph. This requirement may

have limited the resulting assembly contiguity for more complicated

graphs, as the pruning stage may not remove all spurious edges.

We show that the contiguity of a H.sapiens contig assembly can

be increased over six-fold with the use of 10�G data with only a

marginal increase in probable errors with an average 6 SD of

196 6 77 total breakpoints compared to the baseline contig assem-

bly. However, there are limitations to the approach. As mentioned

by Adey et al. (2014), when using barcodes, it is difficult to confi-

dently place short sequence contigs into a scaffold due to a lower

number of barcoded read pools aligning to the sequence. In add-

ition, as the barcoded molecules may be over 100 kbp in length

(Goodwin et al., 2016), they may span several entire short input se-

quences, preventing ARCS from extracting orientation information

from read alignment positions, as they do not preferentially align to

one end. This is exacerbated when scaffolding fragmented assem-

blies (N50 length<10 kbp). To alleviate this problem, the minimum

number of aligned reads required per barcode may be lowered to

prevent possible links from being disregarded. Barcode reuse across

molecules or incorrect alignment of linked reads due to repeats can

also introduce false linkages at the sequence pairing stage, poten-

tially resulting in incorrect merges during scaffolding. Although,

with their Chromium technology, 10� Genomics improved upon

their GemCode protocol by increasing the number of fragment par-

titions and curbing barcode reuse—a trend we expect to continue as

the technology matures further. While the positional information of

linked reads within a given fragment is not known, making it chal-

lenging for estimating gap or overlap sizes in genome assemblies, it

remains an attractive technology for scaffolding draft genomes. This

is especially true when the technique is applied to later stages of scaf-

folding, when the contiguity of the draft sequence assembly is high.

As is the case with other bioinformatics software, fine-tuning par-

ameters for best results necessitates ample testing. For ARCS, we gen-

erally find that requiring five or more aligned read pairs per sequence

edge and setting the read alignment window to 30 kbp (ARCS –c and

–e parameters), when possible, provides the best trade-off between as-

sembly contiguity and accuracy. For LINKS, the ability to control the

minimum number of supporting barcodes required to make a merge

is most critical and increasing it decreases the chance of spurious

joins. The evaluations presented in the paper, which serve as guide-

lines, indicate that requiring as low as five or more barcodes per se-

quence edge produces contiguous assemblies with accuracy similar to

that of the starting, baseline assembly. We recommend testing ARCS

using a range of parameters, and re-iterate that best scaffolding out-

comes in terms of contiguity and accuracy track with both the con-

tiguity and quality of the starting assembly draft.

Recently, 10�G released their de novo assembly algorithm,

Supernova (Weisenfeld et al., 2017), designed specifically for the

Chromium sequencing technology. It uses read locality information

early in the assembly process, as opposed to exclusively at the scaf-

folding stage, as ARCS and the other tools tested in this work do.

This could help prevent misassemblies at the earlier stages of an as-

sembly project, alleviating issues around the propagation of errors

when scaffolding genome drafts. Stand-alone tools, on the other

hand, make possible retrospective scaffolding of pre-existing drafts,

and are beneficial to genome-finishing efforts (Hunt et al., 2014).

However, as we have seen here, the degree at which existing scaf-

folding technologies perform varies, and the need of specialized bio-

informatics solutions for this task is paramount.

To our knowledge, ARCS is the first publicly available stand-

alone application for scaffolding draft genomes that is designed spe-

cifically for using 10� Genomics linked reads. ARCS is freely avail-

able in open source for public use.
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