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Abstract

Background

A wristband-type consumer physical activity tracker (PAT) is commonly used in rehabilita-

tion to assess an individual’s physical activity. However, under the free-living setting, the

wristband-type PAT tends to overestimate step counts when compared with the research-

standard criterion. Also, daily rhythm characteristics, such as sleep time, are difficult to mon-

itor accurately based solely on self-reporting.

Purpose

To identify the conditions measured as step counts by a wristband-type consumer PAT

when using the upper limbs in daily living, and the measurement accuracy of the sleeping

time estimated from the wristband-type PAT.

Methods

Forty participants (20 females, mean age 32.65 ± 9.52 years) were enrolled in two experi-

ments in this study. In Experiment 1, we measured the influence of upper limbs activity

(movement speed and distance) on step counts of wristband-type and waist holder-type

PAT in two upper limb tasks. In Experiment 2, we verified the measurement accuracy of two

sleep times by wristband-type PAT using a self-reported survey for 3 days.

Results

The results of Experiment 1 revealed that the step counts using wristband-type PAT were

influenced by upper limbs activity depending on movement distance (F (1, 19) = 31.705,

p < 0.001) but not speed (F (1, 19) = 2.669, p < 0.117). Whereas, there was no relationship

between step counts and upper limb activity in waist holder-type PAT. The results of Experi-

ment 2 showed that the sleep times of wristband-type and self-report had a strong correla-

tion (coefficient value = 0.93, p < 0.001).
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Conclusions

This PAT is useful for capturing changes in the amount of physical activity and the daily

rhythm within the individual. It can be expected to be used for rehabilitation support centered

on upper limb activity and daily rhythm.

Introduction

Physical activity trackers (PATs) are commonly used to monitor the exertion levels of the

elderly and patients in rehabilitation [1] since uncontrolled physical activity levels are crucial

in worsening the fatality and secondary morbidities, such as metabolic or locomotive syn-

dromes [2–5]. Physical activity levels also influence the effects of rehabilitation interventions

aimed at preventing deterioration in long-term care levels of persons with disabilities along

with improving their motivation levels and quality of life (QOL) [5, 6]. Accordingly, PATs

extensively used in rehabilitation, so far, were most commonly based on the user’s step counts

measured using a pedometer or an accelerometer [7–9].

It is important to index the amount of physical activity and daily rhythm of rehabilitation

subjects to formulate an ideal support plan and ensure optimum benefits from the rehabilita-

tion intervention [10, 11]. A PAT is used to collect these indicators accurately and easily. For

instance, in patients with chronic obstructive pulmonary disease, a pedometer is often used to

monitor daily activity. However, it is noted that user-friendliness (e.g., comfortable to wear,

easy to use) is important to keep the device on for a long time [12]. Often, elderly people and

patients with dementia have to keep the device on to prevent forgetting to wear it before begin-

ning their physical activity; therefore, it is recommended that a consumer PAT must be easy to

apply and durable [13]. In this regard, a waterproof wristband-type PAT is recommended in

this population [14, 15]. Additionally, to capture the self-reported daily rhythm, such as sleep

time, the subject’s conscious efforts and cognitive abilities are essential for daily recording.

Therefore, to mitigate this difficulty in obtaining continuous accurate sleep time recording, a

wristband-type PAT is useful.

Step count, which can be measured using a PAT, is a well-known index of physical activity.

To improve the accuracy of step count measurement, verification using several research

devices has been perfomed [16, 17]. Over the years, several studies have been conducted to

evaluate consumer PAT-related ease of use and accessibility. Since 2013, many companies

have developed a variety of PATs with multiple studies evaluating their measurement accuracy

[18]. Studies on healthy adults using devices worn on various body parts (e.g., chest, waist, hip,

and ankle) have revealed that wrist-worn devices were most preferred because of their accu-

racy in determining the user’s step count [19, 20].

A prominent name in this field is Fitbit, whose devices are often used for their measure-

ment accuracy, and are registered and verified in clinical trials [18]. The measurement accu-

racy of a wristband-type PAT from Fitbit devices was validated against the measurement

accuracy of the gold-standard treadmill, the index of walking movement measured using a

waist holder-type PAT, and a self-reported index of energy expenditure and sleep time [21–

23]. These studies reported that the step count of the Fitbit device was highly correlated with

that of waist holder-type PAT or visual count during treadmill walking. Moreover, consisten-

cies were observed between energy expenditure and sleep time measured using Fitbit devices

and the self-reported index, with the error percentage of the predicted value estimated from

the device being low level.
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However, the wristband-type PAT reportedly overestimated the step count when compared

to the waist holder-type PAT under a free-living setting [22]. Some studies stated that the step

counts measured by wristband-type PATs were detected during both heavy physical activity,

such as wheelchair strokes and arm ergometer revolutions, as well as light upper limb activity,

such as playing cards, reading, or writing [24, 25]. A probable reason for this overestimation is

that the PAT considers the slightest movement of the upper limbs as a step count. Further-

more, PATs used to capture changes in daily life during fasting (e.g., Ramadan) reported a sig-

nificant difference in daily activity and sleep time, suggesting the need for support based on

daily rhythm such as physical activity and sleeping pattern [26]. Since changes in sleep time

due to lifestyle changes must be properly captured and require the patient’s conscious efforts,

self-reporting is often difficult.

Therefore, verifying the measurement accuracy of a convenient and comfortable PAT

device is essential to ascertain its use for a wide range of patients. Furthermore, if the wrist-

band-type PAT were to purely identify walking, the step count must be 0 in case of isolated

upper limb activity. If not, it can be assumed that wristband-type PATs detect some movement

of the upper limb as step counts. We identified various conditions measured as step counts by

a wristband-type consumer PAT in terms of two elements of upper limb movement, distance

and subjective speed, when using upper limbs during daily living. We further examined how

elements, such as the magnitude of upper limb activity and movement speed, affect step counts

by a wristband-type consumer PAT. Moreover, since lifestyle changes are often reflected in the

user’s sleep time, clinically meaningful concordance is expected between the self-reported and

wristband-type PAT-estimated sleep time. Accordingly, we evaluated the proportion of agree-

ment between the self-reported sleeping time and the sleeping time estimated from the wrist-

band-type PAT for a certain period as an index of one’s daily rhythm. Using these measures,

we aimed to examine the measurement accuracy regarding the amount of physical activity and

lifestyle changes based on the upper limb activity measured by a wristband-type PAT.

Materials and methods

Participants

Forty participants (20 females, mean age = 32.65 ± 9.52 years) were enrolled in two experi-

ments for this study. The participants were healthy adults aged>20 years without a history of

any musculoskeletal, cardiovascular, or respiratory disorder that may restrict their daily physi-

cal activity. Those who had difficulty wearing a PAT, i.e., any discomfort or allergic reaction,

or could not manage the PAT or answer the questionnaire due to dementia or mental illness,

were excluded from the study. None met the exclusion criteria or retired during this study.

Data were collected from October 2020 to March 2021.

The study was approved by the Ethics Committee of the Fukuoka International University

of Health and Welfare, Fukuoka, Japan (approval number: 20-fiuhw-015). Before beginning

the experiments, all participants were informed of their right to participate and withdraw par-

ticipation during the experiments. Afterward, we obtained written informed consent from all

participants.

Instrumentation and outcomes

PAT. We chose the Fitbit Flex2™ (Fitbit Inc., San Francisco, CA, USA) wristband-type

PAT, a tri-axis accelerometer, for this study. The Flex2™ has a proprietary algorithm based on

wrist movements that captures body movements in a three-dimensional space as the step

count, and the time from falling asleep to the time of waking up as the sleep time. It has a Blue-

tooth 4.0 wireless transceiver, a rechargeable lithium-polymer battery, and is waterproof up to

PLOS ONE Measurement accuracy of physical activity tracker for upper limb activities and sleep time

PLOS ONE | https://doi.org/10.1371/journal.pone.0271155 July 8, 2022 3 / 16

https://doi.org/10.1371/journal.pone.0271155


a depth of 50 m (https://www.fitbit.com/is/lookbook/flex2). Data obtained from the Flex2™
can be checked via Bluetooth on a tablet or smartphone using the dedicated application

(https://www.fitbit.com/global/us/setup). The step count and the sleep time can be measured

at any time by synchronizing with the device. Each device used in the study was linked to a sin-

gle account created on the Fitbit website (https://www.fitbit.com/nl-nl/app#download-now).

For research purposes, an anonymous user account was created by our research team and was

only accessible to us. The wristband-type PAT was worn around the radial and ulnar styloid

processes of the participant’s dominant hand, and a one-finger space (~1 cm) was secured

when winding the attached belt (Fig 1A).

Next, we used the Active Style Pro HJA-750C (Omron Healthcare Co., Ltd, Kyoto, Japan)

waist holder-type PAT (a tri-axis accelerometer). The device has an algorithm based on waist

movements which has been validated [27, 28] to measure the time spent in light physical activ-

ity, moderate-to-vigorous physical activity, sedentary behavior, and step counts. The Active

Style Pro is often used as an activity tracker for research, and can check the recording of time,

step counts, and activity intensity (Metabolic equivalents; METs) by operating the button

directly under its display. The recorded data can be extracted using a Bluetooth unit. To ensure

that step counts were not measured during upper limb activity, the waist holder-type PAT was

worn on the belt loop or top of the pants near the participant’s right anterior superior iliac

spine (Fig 1B).

Fig 1. Measuring equipment in this study. A: wristband-type PAT (Fitbit Flex2™). B: waist holder-type PAT (Active Style Pro

HJA-750C). C: inertial measurement unit sensors of physical motion analysis (MyoMotion).

https://doi.org/10.1371/journal.pone.0271155.g001
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Physical motion analysis. We used the MyoMotion (Noraxon Inc., Scottsdale, AZ, USA)

system, which is a three-dimensional (3D) inertial measurement unit (IMU) sensor-based

motion analysis system, used to measure the movement trajectory of upper limb activities. The

IMU sensors include a 3D accelerometer, gyroscope, and magnetometer that measure the 3D

rotation angles of each IMU sensor in absolute space. The IMU sensors of MyoMotion can

measure data wirelessly and are used in spaces other than the laboratory (https://www.

noraxon.com/our-products/3d-motion-capture-imu/).

In this study, to estimate the distance moved by different body parts at the same location as

the wristband-type PAT, the position information from the IMU sensor on the dorsal aspect

of the dominant hand was recorded and used for analysis (Fig 1C). The measurement condi-

tions in MyoMotion set as the position information of x (latitude), y (meridian), and z (verti-

cal) coordinates of each sensor with respect to the dorsum of both feet (upper foot, slightly

below the ankle) were acquired. The position information of the x, y, and z coordinates was

obtained using the MR3 software (Noraxon Inc., Scottsdale, AZ, USA) at a sampling frequency

at 100 Hz. Distance covered by the movement trajectory (d) of the dorsum of the dominant

hand during upper limb activity from the position information of x, y, and z coordinates was

calculated using the three-square theorem using the following equation:

d ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2ð Þ
2
þ ðy1 � y2Þ

2
þ ðz1 � z2Þ2

q

where, x1, y1, and z1 are the coordinates at the 1/100 second point; x2, y2, and z2 are the coor-

dinates at the 2/100 second point; and S represents the sum of the distances between all points

within the measured time. Additionally, to check online the motion simulation in the skeletal

model for any unusual activity, the remaining IMU sensors were placed according to the fol-

lowing body model: upper thoracic (below the 7th cervical spine in line with the spinal col-

umn), pelvic (body area of the sacrum), upper arm of the dominant hand (midway between

the shoulder and elbow joints, lateral to the bone axis), forearm of the dominant hand (midway

between the elbow and wrist joints, posterior to the bone axis) and the dorsum of the domi-

nant hand.

Self-reported sleep state. We asked the participants to report their bedtime and wake-up

time during the experiment. As for bedtime, we defined falling asleep as the participants lying

down at their usual sleeping place and then closing their eyes, and asked the participants to

record just before falling asleep or the time when they seem to have fallen asleep the next

morning. We defined the wake-up as the participants getting out of their sleeping place and

starting to move, and asked participants to record the time they woke up. We noted the indi-

vidual sleep times based on the participant-reported bedtime and wake-up time.

Upper limb task. As an upper limb activity task, the participants performed a simple test

for evaluating hand function (STEF) that is often used in the evaluation of upper limb function

in rehabilitation [29]. Reports have shown that improvement in the upper limb function fol-

lowing rehabilitation intervention was attributed to an improvement in STEF score, and that

this improvement in STEF was associated with improvements in activities of daily living

expressed as the physical activity of rehabilitation subjects [30, 31]. STEF consists of ten items

that include picking up objects, such as balls and pins of various sizes one by one from a stor-

age space and moving them into a target space as quickly as possible. These items are classified

into three categories: grip motion (item 1–3), pinch motion (item 4–7), and coordinated

motion (item 8–10) [31, 32]. The score of each test in STEF is determined as the time required

for picking up and moving; as the tests progress, the objects become smaller and more difficult.

For this study, we selected items 3 and 7, which were classified as grip motion and pinch

motion, respectively, in STEF. Item 3 is an examination in which the participant grasps and
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moves five large rectangles (5 cm long, 10 cm wide, and 10 cm tall), and item 7 is requires the

participant to pick up six pieces of cloth (9 cm long and 7 cm wide) and turn it over (Fig 2).

Procedures

Experiment 1: Measurement conditions for Flex2 during upper limb activity. With ref-

erence to the effect size calculated in a previous study [24], a sample size of 20 participants was

recommended based on the effect size f = 0.79, a = 0.05, power = 0.90. A priori power calcula-

tion for determining the sample size was performed for a two-tailed test of hypothesis using

G�Power 3.1.9. The experimental data were collected from 20 participants (10 males and 10

females, mean age = 27.80 ± 8.73 years, n = 17 right hand dominant). Experiment 1 was con-

ducted to identify the conditions measured as step counts for the wristband-type PAT in terms

of two elements of upper limb movement–distance and subjective speed in upper limb activity.

To compare the upper limb movement distance, we selected items 3 and 7 in STEF. Item 3

considers that the movement of the upper limbs is the largest, and item 7 considers that it is

the least.

To compare the subjective speed in upper limb activity, we defined 10 as the fastest pace

and 1 as the slowest pace in the range of speeds at which the participant performs their daily

life upper limb activity. Out of 10 levels of subjective activity speed ranging from 1 to 10, the

slow condition was to perform at a speed of 20%–30%, and the fast condition meant perform-

ing at a speed of 80%–90%. We measured the time taken by the participants to perform the

two tasks (item 3 and item 7 of STEF) at these two paces (slow condition and fast condition).

The step counts on the wristband-type and waist holder-type PAT were confirmed before and

after each trial under the slow and the fast conditions; the step count increase and the time

taken for each trial were recorded. We calculated the percentage detected as a step count for

each trial. The first two trials of the slow and fast conditions were considered practice trials,

and the third trial data was used for analysis.

Experiment 2: Consistency with self-reported sleep time. With reference to the effect

size calculated in a previous study [33], a sample size of 14 participants was recommended

based on the effect size f = 0.70, a = 0.05, power = 0.90. The experimental data were collected

from 20 participants (10 males and 10 females, mean age = 37.50 ± 7.76 years, n = 18 right

hand dominant). This sample size was chosen since some participations might miss records or

Fig 2. The simple test for evaluating hand function (STEF).

https://doi.org/10.1371/journal.pone.0271155.g002
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withdraw during the measurement span. The wristband-type PAT was worn in the same place

as in Experiment 1 and was recovered after a wearing period of 5 days. The data on the self-

reported survey were collated with the period during which the wristband-type PAT was

worn. The sleep time on the 2nd to 4th days excluding the data from the 1st day when the wrist-

band-type PAT was worn and the data on the 5th day onward were used for the analysis.

Statistical analyses

In Experiment 1, we used a two-way repeated-measures analysis of variance (ANOVA) to con-

firm whether there is a difference in the distance “d” between the two tasks with elements of

task (item 3 and item 7) and pace (slow condition and fast condition) (Fig 3). Two-way

ANOVA examines how a response variable is affected by two elements, and repeated measures

indicates that one of the elements was repeated. Similarly, we used a two-way ANOVA to con-

firm whether there is a difference in the subjective activity speed in upper limb activity

between the two paces with elements of task (item 3 and item 7) and pace (slow condition and

fast condition) for the time taken for each trial. To identify the effects of the upper limb move-

ment distance and subjective speed on step counts for PAT, a two-way repeated-measures

ANOVA was employed with elements of task (item 3 and item 7) and pace (slow condition

and fast condition) for the step counts of wristband-type and waist holder-type PAT.

Fig 3. Movement trajectory of upper limb activity during item 3 and item 7 of STEF used by MyoMotion. The left side of the

image is the slow condition, and the right side is the fast condition. The green lines in the images show the movement trajectory of

the upper limbs.

https://doi.org/10.1371/journal.pone.0271155.g003
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In Experiment 2, to confirm whether the sleep time captured by the wristband-type PAT

demonstrated applicable consistency with the self-reported sleep time and has useful measure-

ment accuracy, Bland–Altman analysis was performed. The Bland–Altman analysis is used to

confirm whether there is a systematic error consisting of a fixed error and a proportional error

between the two methods [34]. For the sleep time data obtained by self-report (Time1) and the

wristband-type PAT (Time2), we verified the fixed error between the two sleep times by draw-

ing a scatter plot of the mean sleep time {(Time1 + Time2)/2} and the error (Time1 − Time2)

and calculated the mean error ± 1.96 standard deviations. We also verified the systematic error

between the two sleep times by calculating the significant difference in the standardization

coefficient (slope) of the regression analysis with error as the dependent variable and the mean

sleep time as the independent variable. To verify the relationship between the two sleep times,

we calculated the correlation coefficient using Pearson’s correlation analysis between Time1

and Time2. To determine tendencies in the measurement error of the overall sleep time in this

study and compare them with those reported the previous study, the mean absolute percentage

error (MAPE) was calculated using the following formula:

MAPE ¼
1

N
S
jTime1 � Time2j
jTime1j

� �

� 100%

All statistical analyses were performed using SPSS version 26 (IBM Inc. Corp., Armonk,

NY, USA). In all the analyses, a p-value < 0.05 was considered statistically significant.

Results

Experiment 1: Measurement conditions of Flex2 during upper limb activity

The average step counts and percentages measured by Flex2, the average distance of the move-

ment trajectory of the dorsum of the dominant hand, and the time taken in each trial (item 3,

item 7, slow condition, fast condition) are presented in Table 1. The step counts measured by

the waist holder-type PAT were 0 in all trials. Regarding the distance of the movement trajec-

tory, only the task element had the main effect (F (1, 19) = 2629.308, p< 0.001); the distance

of the upper limb movement was significantly longer in item 3 than in item 7 (Fig 4). We

found no significant main effect for pace (F (1, 19) = 3.411, p< 0.080) and no interaction

between task and pace (F (1, 19) = 0.250, p < 0.623). Regarding the time taken for each trial,

each element of the task and the conditions had the main effect (F (1, 19) = 162.341, p< 0.001,

F (1, 19) = 17.356, p = 0.001, respectively); item 3 took significantly longer time than item 7,

and the slow condition took significantly longer than the fast condition (Fig 5). No significant

interaction was noted between task and pace (F (1, 19) = 4.035, p< 0.059). As a confirmation

of the measurement conditions, it can be interpreted that the distance and time were different

between the two items and the time was different between the two subjective speeds. Further-

more, we observed a significant difference only in the main effect of the task, and item 3 was

counted significantly more than item 7 (F (1, 19) = 31.705, p< 0.001) (Fig 6). On the other

Table 1. Measurement results of Experiment 1.

Step counts Percentage (%) Distance (mm) Time (sec)

Item 3 Slow 13.65 ± 7.69 80.00 8165.40 ± 406.98 12.99 ± 4.58

Fast 13.80 ± 2.84 100.00 8123.51 ± 340.22 8.87 ± 1.36

Item 7 Slow 5.30 ± 5.70 50.00 2870.27 ± 352.53 9.26 ± 3.51

Fast 9.00 ± 5.66 75.00 2790.31 ± 308.39 6.10 ± 1.25

https://doi.org/10.1371/journal.pone.0271155.t001
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hand, there was no significant main effect for pace (F (1, 19) = 2.669, p< 0.117) and no inter-

action of the task and pace (F (1, 19) = 1.767, p< 0.200).

Experiment 2: Consistency with self-reported sleep time

None of the participants removed the wristband-type PAT or withdrew from the experiment.

The average sleep time of Time1 was 413.43 ± 87.21 minutes, while that of Time2 was

Fig 4. Two-way repeated-measures ANOVA for distance. Distance represents the distance of the upper limb movement, ��p< 0.01, �p< 0.05.

https://doi.org/10.1371/journal.pone.0271155.g004

Fig 5. Two-way repeated-measures ANOVA for time. Time represents the time taken for each trial, ��p< 0.01, �p< 0.05.

https://doi.org/10.1371/journal.pone.0271155.g005

Fig 6. tTask effect for step counts of Flex2. Step counts represent the average step counts measured by Flex2, ��p< 0.01, �p< 0.05.

https://doi.org/10.1371/journal.pone.0271155.g006
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414.85 ± 94.62 minutes. The Brand Altman analysis revealed that the mean error of sleep time

(Time1 − Time2) was −1.42 ± 34.74 minutes, and the mean error ± 1.96SD (−69.50–66.67)

crossed 0, so there was no fixed error (Fig 7). In the regression analysis, the intercept measured

33.56 (95% confidence intervals (CI): −8.70–75.82, p = 0.12) and the slope was −0.08 (95% CI:

−0.18–0.02, p = 0.10), so there was no systematic error. Lastly, Pearson’s correlation coefficient

value was 0.93 (95% CI: 0.89–0.96, p< 0.001), showing a very strong correlation (Fig 8). The

Fig 7. Scatter plot of the mean and error of two sleep times. The finer dashed line represents the mean error, and the

larger dashed line represents the range of the mean error ± 1.96 standard deviation.

https://doi.org/10.1371/journal.pone.0271155.g007

Fig 8. Scatter plot using Pearson’s correlation analysis.

https://doi.org/10.1371/journal.pone.0271155.g008
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MAPE in sleep time data obtained by the self-report and wristband-type PAT was 5.65%.

Since the range of MAPE has been reported to be 4–20% in previous studies [22, 33], the

MAPE obtained in the current study can be considered low.

Discussion

This study examined the measurement accuracy of the wristband-type PAT regarding the

amount of activity with the upper limbs and capturing the sleep time as the daily rhythm. We

found that the wristband-type consumer PAT measured the step counts even when perform-

ing upper limb activity with the dominant hand. We also observed that measuring the upper

limb activity as step counts were not affected by the subjective speed of movement, but rather

by upper limb movement distance. In addition, the sleep time estimated by the wristband-type

PAT was considerably consistent with the self-reported sleep time, and the wristband-type

consumer PAT can effectively capture the daily rhythm in free-living life.

Measurement conditions of Flex2 during upper limb activity

As per the study hypothesis, the waist holder-type PAT did not detect step counts with upper

limb activity in all the trials of experiment 1, but they were significantly detected by the wrist-

band-type PAT. Therefore, it can be inferred that the wristband-type PAT overestimated the

physical activity because the upper limb movement was measured in addition to the move-

ment measured during walking in a free-living setting other than the experimental setting

(e.g., walking on the treadmill, trial of a fixed number of steps).

In previous studies, the measured step counts differed depending on certain factors, such as

the type and speed of upper limb activity [24, 25], so we considered that the two elements of

movement distance and subjective speed of upper limb activity were involved. Accordingly,

we examined these two elements and identified that only the upper limb movement distance

affected the step count accuracy as estimated by the wristband-type PAT. As an element of the

movement distance of the upper limbs, the wrist-band type PAT identified the upper limb

activity as step count whenever the hand moved greatly, such as in moving the object from one

side to the opposite side in item 3, but a small hand movement, such as turning over the cloth

in item 7, was insufficient to be identified as a step count. The two items of STEF used in the

current study can be classified into a grip motion composed of grasping objects and coarse

transportation and a pinch motion composed of the manipulation using the finger pulp [31,

32]. The difference in distance between the two items classified as different motions in STEF

could be clearly verified. Moreover, our finding showed that the difference in upper limb activ-

ity is important for the PAT to detect changes in physical activity. Notably, the subjective

speed in upper limb activity was not involved in the step count. Since the algorithm of PAT is

not publicly available, it is reasonable to assume that step counts are detected based on the nor-

mal walking algorithm; therefore, the results detected by upper limb activity may change as the

subjective speed of upper limb activity increases or decreases. It has been reported that in the

walking step count measurement, a measurement error occurs depending on the walking

stroke, walking speed, and walking state (e.g., using a cane, walker) with respect to the step

counts measured in the experimental setting [22, 35, 36]. It is difficult to achieve absolute mea-

surement accuracy even in regular walking movements; hence, it is necessary to accurately

comprehend the characteristics and precautions of the device before using it as an objective

index. Thus, the characteristics of upper limb activity measured as step counts are synonymous

with characteristics that are identified as the step counts of walking using PAT. The results of

this study offer significant insights into the characteristics of upper limb activity as captured by

the wristband-type PAT.
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Consistency with self-reported sleep time

As a characteristic of the wristband-type PAT, its usefulness as a device to capture changes in

the user’s lifestyle was examined. A comparison with a wristband-type PAT based on polysom-

nography and systematic reviews reported the relationship with sleep time [18, 21, 22]. Fitbit

devices are one of the most popular consumer wearable PATs, and although the comparison

with the research-standard criterion shows the possibility of overestimation or underestima-

tion, a significant positive relationship with the standard measurement method has been

reported.

In this study, we verified the proportion of agreement between the self-reported sleep time

and the sleep time estimated from the wristband-type PAT as an indicator of one’s daily

rhythm. We found that the sleep time obtained from the two measuring methods was a com-

parable value and that homogeneous measurement accuracy was secured. Since no systematic

error occurred, it can be interpreted that the errors between the two sleep times are caused by

chance, rather than the errors in the estimated sleep times due to specific causes, such as the

accuracy of the device and the evaluation method. Therefore, it can be inferred that the sleep

time obtained by using the wristband-type PAT reflects the self-reported sleep time and that

the time of wakefulness other than sleep can be measured almost accurately. The MAPE calcu-

lated to determine the overall tendency in the measurement error showed a low level of error

tendency even when compared with previous studies [33]. This indicates that the error in sleep

time estimated from the device tends not to deviate significantly.

The wristband-type PAT used in this study was waterproof and had an active time of about

5 days after fully charged. The device was selected since it can detect reliable sleep time data

for at least 3 days without any special operation. Since no display presents the current step

count and activity intensity, there was no concern about information bias to the participants.

Our results also suggest that, unlike the self-reported method, the wearable PAT can be

expected to measure the individual’s life rhythm from their sleep and wakefulness patterns

without the need for conscious efforts for daily recording and sufficient cognitive ability.

Clinical implications

Previous studies have reported that consumer PATs, such as those manufactured by Fitbit,

Garmin and Jawbone are worn by rehabilitation subjects to capture the outcome of physical

activity [13, 23, 37, 38]. However, since these devices use step counts and estimated energy

expenditure as the main outcomes, one could conjecture that the physical activity consists

only of walking. Therefore, the influence of step count detected by consumer PATs due to

upper limb activity is not considered, and limited studies have been available on the introduc-

tion of activity tracker in people who need equipment or assistance for walking, including

wheelchair users.

Previous studies have shown that the wristband-type consumer PATs are not practical for

comparative assessment with others, but that they can be used for capturing changes within

the user [38–40]. It is known that if appropriate support is not provided to the patient popula-

tion undergoing rehabilitation, mortality and the degree of long-term care may worsen due to

a decrease in physical activity and disrupted sleep cycle, leading to irregular daytime sleeping

[3, 4, 41]. In addition, using a device that needs to be attached/detached or charged during the

day (e.g., waist-type or cumbersome size) may be difficult due to deteriorated physical func-

tion, or the risk of forgetting to wear or losing it due to cognitive problems [13].

The wristband-type PAT offers a feasible solution to capture these situations more easily

and accurately, which allows for early countermeasure and verification of individual state

changes obtained by appropriate intervention. Regarding measuring the physical activity of
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the patient population using the wristband-type PAT, it is necessary to consider the character-

istics of upper limb activity, which are easily measured as steps counts. Nevertheless, the device

is expected to accurately capture the within-subject changes in the amount of physical activity

and the daily rhythm. The wristband-type PAT used in this study can be used for capturing

changes in patients who have difficulty walking, and for behavioral approaches centered on

upper limb activities, such as self-care and instrumental activities of daily living (e.g., domes-

ticities, hobbies) in rehabilitation intervention.

Limitations

There were some limitations to this study. First, a repetitive movement was set as the task, so

the effect of free movement was not sufficiently examined. To capture the movements of nor-

mal daily life as step count, the movements by upper limb activity and walking, as well as the

movements by other unknown factors may be included as step counts. Therefore, even if the

amount of activity undertaken by the device user increases, it is not clear how much it is

reflected as step counts by wristband-type PAT. Second, participants were healthy adults;

therefore, the results cannot be generalized to rehabilitation patients. Nevertheless, we believe

that our findings may form the basis of clinical application because devices for which basic

accuracy and safety have not been ensured cannot be used experimentally in clinical practice.

Finally, in the verification of sleep time in Experiment 2, the participant’s occupations, how

they spend their holidays, and how this affected the measurement of sleep time were not inves-

tigated. Further studies need to be developed to identify factors, such as occupational and

hobby effects, and predictor effects on a regular sleep and daily rhythm in rehabilitated

patients.
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