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Abstract 

Background:  Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemi‑
cal production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bot‑
tleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore performed functional screening to identify 
efficient ADs that can improve alkane production by S. cerevisiae.

Results:  A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. 
cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which are cyanobacterial ADs, from 
Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn−1 alkanes and 
alkenes. The CwADO showed the highest alkane titer (0.13 mg/L/OD600) and the lowest fatty alcohol production 
(0.55 mg/L/OD600). However, no measurable alkanes and alkenes were detected in other AD expressed yeast strains. 
Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 
and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells.

Conclusions:  We demonstrated in vivo enzyme activities of ADs by displaying profiles of alkanes and fatty alcohols 
in S. cerevisiae. Among the AD enzymes evaluated, cyanobacteria ADOs were found to be suitable for alkane biosyn‑
thesis in S. cerevisiae. This work will be helpful to decide an AD candidate for alkane biosynthesis in S. cerevisiae and it 
will provide useful information for further investigation of AD enzymes with improved activities.
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Background
Global warming and depletion of fossil fuels are two 
urgent matters. Fossil fuels are finite energy resources, 
but the world energy demand has been increasing along 
with economic development and population growth. 
Moreover, increase in carbon dioxide emissions have 
caused the global temperature to rise resulting in dra-
matic environmental changes. Therefore, there has been 
growing interest in sustainable production of biofuels 
and bio-based chemicals using microorganisms, so called 
cell factories. Advances in metabolic engineering and 

synthetic biology enables the production of bio-based 
chemicals using microbial cell factories [1–5].

One of the most important microbial cell factories, 
Saccharomyces cerevisiae is generally recognized as safe 
(GRAS) and, it is an extremely well-characterized and 
tractable organism. Because of its robustness and toler-
ance towards various stress conditions, it has been inten-
sively used to produce several advanced biofuels and 
chemicals [6–9].

Alkanes are indispensable chemicals in our daily lives. 
As major components of current petroleum fuels, the 
chain lengths of alkanes determine their applications, 
such as gas (C1–C4), gasoline (C4–C9), jet fuel (C8–
C16), diesel (C10–18), and lubricants (C16–C30) [10]. In 
nature, a variety of organisms synthesize alkanes to pro-
tect them against threatening environmental conditions, 
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or to sustain growth [11–13]. However, the alkane pro-
duction level from natural producers is very low and 
the alkane formulas are not suitable to replace current 
petroleum-based alkanes [1, 2]. In addition, current 
alkane needs are only fulfilled after the challenging and 
costly cracking processes of crude petroleum. Therefore, 
many efforts have been made to engineer microorgan-
isms to produce desirable types of alkanes. Several alkane 
biosynthetic routes have been discovered and various 
enzymes are available to synthesize alkanes in heterolo-
gous hosts [14, 15]. To date, three major precursors, fatty 
acyl-ACP (or CoA), fatty acids, and fatty aldehydes have 
been utilized to demonstrate alkane production in engi-
neered microorganisms [14, 15]. Aldehyde decarbony-
lases (ADs), which were discovered in plants, insects, and 
cyanobacteria, can convert fatty aldehydes to the corre-
sponding Cn−1 alkanes by co-producing carbon monox-
ide (CO), carbon dioxide (CO2), or formate, respectively. 
In engineered microbial strains, expression of ADs from 
a plant (Arabidopsis CER1), an insect (Drosophila mela-
nogaster CYP4G1), and various species of cyanobacteria 
(ADOs) displayed long-chain alkane products [12, 13, 16, 
17]. However, the low enzyme activities of cyanobacte-
ria ADs have been noticed and only allow for low alkane 
titers in S. cerevisiae [17–20]. To date, no direct com-
parative study of ADs from different origins for alkane 
biosynthesis has been carried out, so we performed a 
functional screening of different ADs to identify appli-
cable enzyme candidates that can increase alkane pro-
duction in S. cerevisiae. We constructed AD expressing 
yeast strains and presented the cell metabolite profiles of 
alkanes and fatty alcohols from each construct. In light of 
these results, we suggested the most efficient AD enzyme 
and proposed a strategy to enhance alkane production. 
As the mechanisms of AD enzymes are not clearly elu-
cidated, our study explored to develop ideal AD enzymes 
for alkane biosynthesis in yeast cell factories. We antici-
pate the strategy described here will provide a feasible 
strategy to functional screening of other AD enzymes for 
various microbial cell factories.

Results
Construction of alkane biosynthetic pathways
In our previous study, the fatty acid biosynthetic path-
way was engineered to supply sufficient fatty aldehydes 
in S. cerevisiae [18]. Here we used the engineered strain 
YJZ60 from this study as the background strain. The 
strain was optimized to accumulate fatty aldehydes in 
cells by deleting reversible reactions (POX1 and HFD1) 
and expressing carboxylic acid reductase (CAR). One of 
the competing enzymes, alcohol dehydrogenase, Adh5, 
was deleted to reduce fatty alcohol accumulation (Fig. 1). 
In addition, the FNR/Fd reducing systems were expressed 

to supply sufficient electrons. Figure 1 and Table 1 sum-
marizes information of YJZ60. To enable S. cerevisiae 
to convert the synthesized aldehydes to alkanes, we 
expressed various ADs by using the episomal plasmid 
pYX212 in the background strain YJZ60. We introduced 
three different types of ADs, the ECERIFERUM1 (CER1) 
from Arabidopsis plant [16, 21], insect cytochrome p450s 
(CYP4G1 and CYP4G2) from D. melanogaster and house 
fly [12], and cyanobacteria aldehyde deformylating oxi-
dases (ADOs) from S. elongatus [17, 18], Crocosphaera 
watsonii, Thermosynechococcus elongatus, and Cyan-
othece sp. PCC 7425 [22] (Table 1; Additional file 1: Fig-
ure S1). All AD candidates were selected by literature 
reviews and preliminary data. Codon-optimized ADO 
and CER1 genes were expressed under the control of 

Fig. 1  Scheme of alkane biosynthesis in engineered S. cerevisiae 
strains. The genes encoding fatty acyl-CoA oxidase, POX1, aldehyde 
dehydrogenase, HFD1 and alcohol dehydrogenase, ADH5, were 
disrupted (blue) and alcohol dehydrogenase was overexpressed (red). 
ADs were inserted in an episomal plasmid and they were expressed 
to convert fatty aldehydes to alkanes (green)
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the enhanced TDH3 promoter [23], while CYP4G1 and 
CYP4G2 were expressed under the control of the trun-
cated HXT7 promoter, tHXT7p [24], yeast S. cerevisiae 
allowing constitutive expression independent of extracel-
lular glucose levels. Additional file 1: Figure S1 provides 
brief features of the used gene expression modules. In the 
CSADO strain, C. watsoni and S. elongatus ADOs were 
co-expressed under the control of the GAL1 and GAL10 
promoters, respectively (Table 1; Additional file 1: Figure 
S1) to alleviate the growth inhibition by separating cell 
growth and gene expression. 

Evaluation of ADs for alkane biosynthesis in S. cerevisiae
After the introduction of ADs in YJZ60, we carried out 
functional evaluation of three different types of ADs 
(CER1, CYP4G, and ADO). Among all the AD constructs 
tested, only two cyanobacterial ADOs from S. elonga-
tus (SeADO) and C. watsonii (CwADO) produced long-
chain alkanes and alkenes. Expression of ADOs from S. 
elongatus and C. watsonii, reached 0.11 and 0.13 mg/L/
OD600 of total alkanes and alkenes, respectively, with 
different odd chain lengths from C11 to C17 (Fig.  2a; 
Additional file  1: Figure S2a). The major compounds in 
both strains were pentadecane (C15) and 7-pentadecene 
(C15:1) (Additional file 1: Figure S2a).

We found accumulation of fatty alcohols in all the engi-
neered strains (Fig. 2b). This is consistent with previous 
observations that fatty alcohols are produced as signifi-
cant by-products in engineered S. cerevisiae expressing 
alkane biosynthesis, and might be caused by endogenous 
aldehyde reductases (ALRs) and alcohol dehydrogenases 
(ADHs) [17, 18].The control strain Con without AD had 
the highest fatty alcohol accumulation (1.71 mg/L/OD600, 
Fig. 2) with even number chain lengths from C8 to C18 
and the CwADO strain produced the lowest amount of 
fatty alcohols (0.55 mg/L/OD600) in the cells (Additional 
file 1: Figure S2). Other AD expressing strains produced 
fatty alcohol levels in between these strains, i.e. TeADO: 
1.29  mg/L/OD600, CER1: 1.44  mg/L/OD600, CYP4G1: 
1.33  mg/L/OD600, and CYP4G2: 0.97  mg/L/OD600 
(Fig. 2b). The alkane production is much lower than the 
decrease in fatty alcohol accumulation when the CwADO 
and SeADO strains are compared with the control strain 
(Fig. 2a, b), and suggests that the functional ADs have a 
high binding affinity for fatty aldehydes, but low catalytic 
efficiency for alkane biosynthesis.

Though the CwADO strain had the highest alkane 
production and the lowest fatty alcohol production, this 
strain showed very poor growth (OD600 of 3.5 at 72  h) 
compared with the SeADO (OD600 of 6.1 at 72  h) and 

Table 1  Strains and plasmids used in this study

Name Description Reference

Plasmids

 pYX212 2 μm, AmpR, URA3, TPIp, pYX212t R&D systems

 pAlkane78 pYX212-(TPIp-Mdb5-FBA1t-CYC1t-MdCPR-TDH3p‐tHXT7P-CYP4G1‐pYX212t) This study

 pAlkane8 pYX212-(TPIp-Mdb5-FBA1t-CYC1t-MdCPR-TDH3p‐tHXT7P-CYP4G2‐pYX212t) This study

 pAlkane71 pYX212-(eTDH3p‐CER1-Syn27t-pYX212t) This study

 pAlkane67 pYX212-(eTDH3p‐SeADO‐pYX212t) [17]

 pAlkane83 pYX212-(eTDH3p‐CwADO‐pYX212t) This study

 pAlkane84 pYX212-(eTDH3p‐TeADO‐pYX212t) This study

 pAlkane85 pYX212-(eTDH3p‐CyADO‐pYX212t) This study

 pAlkane86 pYX212-(CYC1t-CwADO-Gal10p-Gal1p-SeADO-pYX212t) This study

Strains

 DH5α F− (80d lacZ M15) (lacZYA-argF) U169 hsdR17(r− m+) recA1 endA1 relA1 deoR96

 YJZ60 MATa MAL2-8c SUC2 his3Δ1ura3-52 hfd1Δpox1Δ Gal80Δ:: SeFNR + SeFd adh5Δ::(TPIp-MmCAR-
FBA1t) + (PGK1p-EcFNR-CYC1t) + (TEF1p-EcFD-TDH2t) + (tHXT7p-npgA-ADH5t)

[17]

 Con YJZ60 strain harboring pYX212 This study

 CYP4G1 YJZ60 strain harboring pAlkane78 This study

 CYP4G2 YJZ60 strain harboring pAlkane8 This study

CER1 YJZ60 strain harboring pAlkane71 This study

SeADO YJZ60 strain harboring pAlkane67 This study

CwADO YJZ60 strain harboring pAlkane83 This study

TeADO YJZ60 strain harboring pAlkane84 This study

CyADO YJZ60 strain harboring pAlkane85 This study

CSADO YJZ60 strain harboring pAlkane86 This study
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control strains (OD600 of 5.4 at 72  h), which might be 
attributed to toxicity (Fig.  2c). For this reason, the total 
amount of alkanes and alkenes produced by the CwADO 
strain (0.53 mg/L) is lower than with the SeADO strain 
(0.76  mg/L) (Fig.  2a). Improving cell growth of the 
CwADO expressing strain could therefore potentially 
further increase alkane production.

Enhancement of alkane production
In order to relieve the toxicity of expressing CwADO 
in the cell, we dynamically expressed CwADO by using 
the GAL1 promoter (GAL1p) in combination with the 

GAL80 deletion. It has been found that the GAL1 pro-
moter has very low expression in the glucose phase due to 
Mig1 repression, but is strongly expressed after glucose 
consumption in a GAL80 deletion strain [25]. Hereby 
CwADO expression could be separated from cell growth, 
as has been previously applied for improving isoprenoid 
production by yeast [26]. To further increase alkane bio-
synthesis, we co-expressed SeADO under the control 
of the GAL10 promoter (Gal10p). The resulting strain 
CSADO had significantly higher specific alkane produc-
tion of 0.20 mg/L/OD600, (Fig. 3a) which was 35 and 45% 
higher compared with the CwADO and SeADO strains, 
respectively (Fig. 3a). We even detected undecane (C11) 
in the CSADO strain (Additional file 1: Figure S3a). Fur-
thermore, CSADO had 62% higher biomass (OD600 of 5.7 
at 72 h, Fig. 3c) than the strain CwADO expressed under 
the TDH3 promoter (Fig.  3c), which indicated that the 
dynamic control strategy relieved the toxicity of CwADO 
expression. As a benefit to improved cell growth, the 
alkane titer reached 1.14 mg/L, which is higher than with 
our previous strain A6 that had systematic pathway opti-
mization [18]. This suggests that functional AD screening 
with dynamic expression could be an efficient strategy for 
enhancing alkane production in yeast.

Discussion
In this study, long-chain alkane biosynthesis has been 
constructed via decarbonylation of fatty aldehydes by AD 
enzymes in S. cerevisiae [12, 16–18]. However, efficient 
incorporating of heterologous metabolic pathways into 
S. cerevisiae is challenging and strong endogenous ALRs/
ADHs compete with the intermediate fatty aldehydes 
[18]. Indeed, low catalytic efficiency of ADs has been 
referred to as a critical bottleneck in alkane biosynthesis 
in engineered S. cerevisiae strains [17–19]. Therefore, it 
is worthwhile to screen efficient AD enzymes to provide 
a rationale enzyme for the improvement of alkane bio-
synthesis in microbial cell factories. To meet this goal, we 
carried out functional screening of ADs from different 
origins by comparing alkane and fatty alcohol accumu-
lation in the cells. ADs were introduced using episomal 
plasmids and expressed in an engineered yeast strain, 
YJZ60, which provides fatty aldehydes as substrates for 
alkane biosynthesis. Of all the strains we tested, cyano-
bacteria ADOs (SeADO and CwADO) synthesized 
alkanes more efficiently than the CER1 and CYP4G 
enzymes (Fig.  2a). Even though very-long-chain (VLC) 
alkane production by CER1 and CYP4G1 have been 
reported in yeast strains [12, 16], we only found a reduc-
tion of fatty alcohol accumulation, but no detectable 
amounts of alkanes were produced in our yeast strains. 
We assume substrate preferences of plant and insect ADs 
might explain this. In fact, plants and insects synthesize 

Fig. 2  Comparison of alkane and fatty alcohol production by differ‑
ent AD expression in engineered S. cerevisiae strains. Alkane (a) and 
fatty alcohol (b) titers, and cell growth (c) were demonstrated from 
each engineered strain after 72 h culture in minimal media. All data 
represent the mean values and standard deviations from at least 
triplicate cultures
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VLC alkanes to form a wax layer and cuticular hydrocar-
bons, respectively, for environmental protection [27, 28]. 
Arabidopsis (CER1) synthesized VLC alkanes with the 
range of chain lengths being C27–C31 [16], and insect 
CYP4G family produces C23–C33 chain lengths VLC 
alkanes [12, 29, 30]. Through the distribution of fatty 
alcohol chain lengths (Additional file  1: Figure S2b), we 
predicted accumulation of fatty aldehydes with the even 
number of chain lengths, C8–C18 in our background 

strain, which might be unfavorable substrates for CER1 
and CYP4Gs. Meanwhile, major alkane products syn-
thesized by cyanobacteria ADOs are pentadecane (C15) 
and heptadecane (C17) [13], and both compounds were 
also major metabolites in our SeADO and CwADO yeast 
strains (Additional file  1: Figure S2a). Another presum-
able reason might be the environmental condition for 
proper function of the AD enzymes. The yeast cytosol 
may not be an optimized compartment for function of 
CER1 and CYP4Gs. To date, cyanobacteria ADO is the 
only group of AD enzymes, which have been demon-
strated to have in  vitro enzyme activity [31–33]. Plant 
origin CER1 is an endoplasmic reticulum membrane 
bound protein and CYP4G1 is localized in oenocytes 
[12]. The membrane protein expression often causes 
cell stresses and lower the biomass and expression. In 
addition, folding and solubility of eukaryotic membrane 
proteins is generally causing difficulties for performing 
kinetic studies [34], so no enzyme activity studies have 
been successfully conducted. Likewise, the membrane 
association in plant cells may cause problems for proper 
function of the enzyme in the yeast cytosol. Moreover, 
the relatively larger size of CER1 and CYP4Gs may cause 
problems with folding and expression. Moreover, alkane 
peaks in a GC–MS chromatogram cannot be detected if 
the AD enzyme has low and slow activity. Because inef-
ficient aldehyde conversion to alkanes leads to high fatty 
alcohol formation, and the fatty alcohol peaks cover 
the alkane detection area further causing difficulties in 
detecting alkanes.

The CwADO enzyme was revealed as a better enzyme 
compared with the SeADO, but expression of CwADO 
caused poor growth and negatively affected the final titer 
of alkanes. Thus, we replaced the TDH3 promoter with 
a GAL1 promoter to control the gene expression, and we 
placed additional SeADO right after the GAL10 promoter 
to co-express CwADO and SeADO in an episomal plas-
mid (Additional file  1: Figure S1). In our previous work, 
expression of additional ADO from Nostoc punctiforme 
(SeADO-NpADO) resulted in a 5% increase in alkane 
titer (0.82  mg/L) compared with only expressing SeADO 
(0.78 mg/L) [18]. In the case of the CSADO strain (CwADO-
SeADO), co-expression of CwADO achieved a significant 
improvement in alkane titer by 33% (SeADO: 0.76  mg/L, 
CSADO: 1.14  mg/L) (Figs.  2a, 3a) and surprisingly no 
fatty alcohols with even number chain lengths C8–C14 
were detected (Additional file  1: Figure S3b). In addition, 
the chain lengths of alkanes were extended from C11 to 
C17 (Additional file 1: Figure S3a) and growth was greatly 
improved in the CSADO strain (OD600 of 3.5 at 72 h, Fig. 3c) 
compared with the CwADO strain (OD600 of 5.7 at 72  h, 
Fig.  3c). Even though the CSADO strain lead to increase 
in alkane production, it was still far from the industrial 

Fig. 3  Enhancement of alkane production. Production of alkanes (a) 
and fatty alcohols (b), and two titer units (left blue mg/L/OD600, right 
orange mg/L) are used to display the level of metabolites. Cell growth 
of each strain is shown in (c). All data represent the mean values and 
standard deviations from at least triplicate cultures
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requirements and even below the alkane titer in engineered 
E. coli (580.8 mg/L) and cyanobacteria (300 mg/L) [13, 35]. 
Unlike E. coli platforms, even the same enzymes involved 
in alkane biosynthesis produced much smaller quantities of 
alkanes in S. cerevisiae strains. Expression of CER1 enzyme 
in E. coli achieved the highest alkane titer [35], and the ADO 
enzymes from T. elongatus, and Cyanothece sp. also pro-
duced high amount of alkanes in E. coli [13, 22]. However, 
even trace alkanes were not observed in our CER1, TeADO, 
and CyADO yeast strains for uncertain reasons. Similar to 
the AD enzymes, expression of OleT decarboxylase, a ter-
minal alkene producing enzyme, resulted in much higher 
terminal alkene production in E. coli (97.6  mg/L) than in 
S. cerevisiae (3.5 mg/L) [14]. To explain the big differences 
in alkane titer between E. coli and S. cerevisiae, other facts 
should be considered beyond the poor catalytic efficiencies 
of alkane producing enzymes.

Conclusion
In this study, we examined the functional performance of 
ADs in engineered yeast strains. Based on the metabolite 
profiles of our engineered strains, we proposed advisable 
ADs and their applications to enhance alkane production 
in S. cerevisiae. Our study further provides a platform 
strain that can be used for screening ADs to be used for 
alkane production in yeast with the objective to develop a 
yeast cell factory that can be used for bio-based produc-
tion of alkanes.

Methods
Construction of plasmids and yeast strains
Plasmids and strains used in this study are shown in 
Table  1. Plasmid construction was performed by the 
modular pathway engineering procedure as described by 
Zhou et al. [36]. DNA fragments for module construction 
were prepared by PCR amplification and each module 
was constructed by fusion PCR. PrimeSTAR was used 
for all the PCR processes, and primers used in this work 
were listed in Additional file 1: Table S1. Yeast transfor-
mation was conducted by LiAc/SS carrier DNA/PEG 
method [37], and constructed modules and linearized 
pYX212 plasmid backbone were used as DNA templates. 
To make yeast competent cells, the YJZ60 yeast strain 
was cultured at 30  °C and 200  rpm in YPD media, and 
transformants were selected on synthetic defined (SD) 
agar plates, which contained 6.9 g/L yeast nitrogen base 
without amino acids (Formedium, Hunstanton, UK), 
0.77 g/L synthetic complete supplement mixture without 
uracil (Formedium), 20  g/L glucose (Merck Millipore) 
and 20 g/L agar (Merck Millipore). After the colony selec-
tion, yeast plasmids were extracted and introduced into 
E. coli DH5α competent cells to confirm the final plasmid 
constructs. E. coli colonies were selected on Lysogeny 

Broth (LB) agar plate containing 100  μg/mL ampicillin, 
and they were confirmed by DNA sequencing.

Alkane biosynthesis and extraction
To produce alkanes, engineered S. cerevisiae strains were 
grown in 100  mL shake flasks containing 15  mL min-
eral media [38] plus 40  mg/L histidine and 30  g/L glu-
cose at 30 °C and 200 rpm for 72 h. After the cultivation, 
10  mL of cell cultures were harvested by centrifugation 
at 2000g for 10 min, and then cell pellets were dried for 
48 h in a freeze-dryer. The dried cells were extracted by 
the method described by Khoomrung [39] by using 4 mL 
chloroform: methanol (v/v 2:1) solution containing hexa-
decane (0.5  µg/mL) and pentadecanol (0.01  mg/mL) as 
internal standards. After centrifugal vacuum concentra-
tion, the final dried samples were dissolved in 200 µL 
hexane.

Metabolite analysis and quantification
Alkanes and alkenes were analyzed by gas chromatog-
raphy (Focus GC, ThermoFisher Scientific) equipped 
with a Zebron ZB-5MS GUARDIAN capillary column 
(30  m ×  0.25  mm ×  0.25  mm, Phenomenex, Torrance, 
CA, USA) and a DSQII mass spectrometer (Thermo 
Fisher Scientific, Waltham, MA, USA). The GC program 
for alkanes and alkenes was as follows: initial tempera-
ture of 50 °C, hold for 5 min; then ramp to 140 °C at a rate 
of 10 °C per min and hold for 10 min; ramp to 310 °C at 
a rate of 15 °C per min and hold for 7 min. Fatty alcohols 
were quantitatively analyzed by GC-FID (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with a ZB-5MS 
GUARDIAN capillary column, and helium was used as 
carrier gas at a flow rate of 1 mL/min. GC program for 
fatty alcohol quantification was as follows: initial tem-
perature of 45 °C hold for 2 min; then ramp to 220 °C at a 
rate of 20 °C per min and hold for 2 min; ramp to 300 °C 
at a rate of 20 °C per min and hold for 5 min.

Abbreviations
AD: aldehyde decarbonylase; ADH: alcohol dehydrogenase; ADO: aldehyde 
deformylating oxygenase; ALR: aldehyde reductase; CAR: carboxylic acid 
reductase; PDH: pyruvate dehydrogenase; VLC: very-long-chain.

Additional file

Additional file 1: Figure S1. Scheme of plasmid constructs for alkane 
biosynthesis. pYX212 vector was used as a backbone to express ADs in 
engineered S. cerevisiae strains. Figure S2. Comparison of alkane and fatty 
alcohol production by different AD expression in engineered S. cerevisiae 
strains. Alkane (a) and fatty alcohol (b) titers were displayed with the infor‑
mation of chain-length distribution of each engineered strain. All data 
represent the mean values and standard deviations from at least triplicate 
cultures. Figure S3. Production of alkanes (a) and fatty alcohols (b) with 
the information of chain-length distribution in the CSADO strain. All data 
represent the mean values and standard deviations from at least triplicate 
cultures. Table S1. Primers used in this study.
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