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Background-—Cardiovascular disease is the leading cause of morbidity and mortality in patients with end-stage renal disease.
Heart rhythm complexity analysis has been shown to be useful in predicting outcomes in various diseases; however, data on
patients with end-stage renal disease are limited. In this study, we analyzed the association between heart rhythm complexity and
long-term cardiovascular outcomes in patients with end-stage renal disease receiving peritoneal dialysis.

Methods and Results-—We prospectively enrolled 133 patients receiving peritoneal dialysis and analyzed linear heart rate
variability and heart rhythm complexity variables including detrended fluctuation analysis (DFA) and multiscale entropy. The
primary outcome was cardiovascular mortality, and the secondary outcome was the occurrence of major adverse cardiovascular
events. After a median of 6.37 years of follow-up, 21 patients (22%) died from cardiovascular causes. These patients had a
significantly lower low-frequency band of heart rate variability, low/high-frequency band ratio, total power band of heart rate
variability, heart rate turbulence slope, deceleration capacity, short-term DFA (DFAa1); and multiscale entropy slopes 1 to 5, scale
5, area 1 to 5, and area 6 to 20 compared with the patients who did not die from cardiovascular causes. Time-dependent receiver
operating characteristic curve analysis showed that DFAa1 had the greatest discriminatory power for cardiovascular mortality (area
under the curve: 0.763) and major adverse cardiovascular events (area under the curve: 0.730). The best cutoff value for DFAa1
was 0.98 to predict both cardiovascular mortality and major adverse cardiovascular events. Multivariate Cox regression analysis
showed that DFAa1 (hazard ratio: 0.076; 95% CI, 0.016–0.366; P=0.001) and area 1 to 5 (hazard ratio: 0.645; 95% CI, 0.447–
0.930; P=0.019) were significantly associated with cardiovascular mortality.

Conclusions-—Heart rhythm complexity appears to be a promising noninvasive tool to predict long-term cardiovascular outcomes
in patients receiving peritoneal dialysis. ( J Am Heart Assoc. 2020;9:e013036. DOI: 10.1161/JAHA.119.013036.)
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C ardiovascular disease (CVD) is the major cause of
morbidity and mortality in patients with end-stage renal

disease (ESRD).1,2 ESRD patients have mortality rates up to
30-fold higher than the general population, and CVD accounts
for �38% of all deaths.3 In the US Renal Data System
database, 62% of cardiac deaths were attributable to
arrhythmic mechanisms including sudden cardiac death

(SCD).4 Identifying the ESRD patients at high risk of CVD
and providing better risk stratification are crucial issues.

Analysis of variations in heart rate, known as heart rate
variability (HRV), is a noninvasive tool that uses 24-hour ECG
to assess dysregulation of the autonomic nervous system.5

Conventional linear HRV measures have been associated
with the outcomes of CVD patients.6 Heart rhythm
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complexity variables can be obtained from nonlinear signal
analysis methods such as detrended fluctuation analysis
(DFA) and multiscale entropy (MSE).7 These new analysis
methods are based on the assumption that a healthy
organism has an interactive and commutative system that is
able to maintain operation in a rapidly changing environ-
ment.8,9 These new methods have been reported to have
better prognostic power in patients with CVD than traditional
linear analysis.10–12 To the best of our knowledge, few
studies have investigated heart rhythm complexity in ESRD
patients, especially long-term follow-up results. In this study,
we aimed to investigate the predictive ability of heart rhythm
complexity regarding cardiovascular outcomes in patients
with ESRD undergoing peritoneal dialysis (PD) after long-
term follow-up.

Material and Methods
Anonymized patient-level data will be made available by the
corresponding author upon reasonable request.

Patients
In this prospective cohort study, we enrolled 133 ESRD
patients undergoing PD. The inclusion criteria were (1) ESRD
patients aged ≥20 years; (2) ESRD patients who had received
maintenance PD at National Taiwan University Hospital for
>3 months; (3) patients without chronic atrial fibrillation,
clinical signs of acute infection, or receipt of a kidney
transplant. The medical history of each participant, including
demographics and medications, was carefully recorded, and
biochemical data were measured at the initial evaluation.
These patients were also reported in our previous studies of

dyslipidemia, left ventricular diastolic dysfunction, and heart
rhythm complexity.13–16

This study was approved by the institutional review board
of National Taiwan University Hospital, and written informed
consent was obtained from all patients who participated in
this study.

Outcomes
The patients were prospectively followed from February 2009
at our PD clinic. The primary outcome measure was cardio-
vascular mortality, and the secondary outcome measure was
major adverse cardiovascular events (MACE). Cardiovascular
mortality was defined as mortality due to acute coronary
syndrome, SCD, life-threatening arrhythmia, progressive heart
failure, and ischemic or hemorrhagic stroke. SCD was defined
as cardiac arrest occurring suddenly and within 1 hour of
witnessed symptom onset.3 Patients with documented ven-
tricular tachycardia or ventricular fibrillation were categorized
as having life-threatening arrhythmia. MACE was defined as
cardiovascular mortality, nonlethal ischemic or hemorrhagic
stroke, or nonlethal acute coronary syndrome. Patients who
received kidney transplants were censored in cardiovascular
mortality and MACE analyses.

ECG Holter and Data Analysis
All participants received 24-hour ECG Holter examinations
(ZymedDigiTrak Plus 24-Hour Holter Monitor Recorder and
Digitrak XT Holter Recorder 24 Hour; Philips). A stable 4-hour
segment of daytime R-R intervals was selected for HRV
analysis based on the following criteria: (1) between 9 AM and
6 PM and (2) without sudden increases in heart rate of
>40 beats/min within 1 minute. The selected ECGs were
automatically annotated using an algorithm and carefully
examined and corrected by 2 experienced technicians who
were blinded to the patients’ clinical information to avoid
intentional selection bias.

Predictors of Interest
The predictors of interest included linear and nonlinear HRV
variables. The linear HRV variables included time-domain HRV,
frequency-domain HRV, heart rate turbulence (HRT), and heart
rate deceleration capacity (DC). The nonlinear HRV variables
included DFA and MSE.

First, time-domain HRV variables were calculated as
statistics of R-R intervals, and frequency-domain HRV vari-
ables were analyzed using spectrum analysis as R-R interval
variance within specific frequency bands. The time-domain
variables, mean R-R interval, standard deviation of normal R-R
intervals (SDRR), percentage of absolute differences in normal

Clinical Perspective

What Is New?

• In this study, we provide compressive linear and nonlinear
heart rate variability outcome analysis in patients receiving
peritoneal dialysis.

• Worse nonlinear heart rate variability analysis including
multiscale entropy and detrended fluctuation analysis is
strongly associated with worse long-term cardiovascular
outcomes.

What Are the Clinical Implications?

• Cardiovascular disease is the major cause of morbidity and
mortality in peritoneal dialysis patients.

• Nonlinear heart rate variability analysis can help clinicians
identify high-risk patients and provide timely management.
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R-R intervals >50 and >20 ms were calculated to represent
the total variance and vagal modulation of heart rate. The
frequency domain variables including high-frequency (HF)
band (0.15–0.4 Hz), low-frequency (LF) band (0.04–0.15 Hz)
and very LF (VLF) band (0.003–0.04 Hz), and the sum of the
energy in HF, LF, and VLF bands (total power, 0.0–0.4 Hz)
were calculated by averaging the absolute power (ms2) after
Fourier transformation.

Second, HRT was represented by 2 numeric descriptors:
turbulence onset (TO), reflecting the initial acceleration of
heart rate after a premature beat, and turbulence slope (TS),
describing subsequent deceleration.17,18 HRT was calculated
using a computer algorithm to detect changes in R-R intervals
surrounding ventricular or atrial premature beats. The heart
rate DCs were calculated in 5 steps, including definition of
anchors, definition of segments, phase rectification, signal
averaging, and quantification of DCs using the following
formula: DC (AC)=[X(0)+X(1)�X(�1)–X(�2)]/4.19,20

Third, DFA is a type of nonlinear HRV analysis that can be
used to evaluate the self-affinity and fractal behavior beneath
seemingly nonstationary R-R dynamics, and the scaling
exponents are calculated using DFA.21 The slope (a exponent)
of the log-log plot of fluctuations against time scales indicates
the fractal correlation properties of the time series. The
crossover phenomenon of a exponents of R-R dynamics over
short (a1; 4–11 beats) and long (a2; 11–64 beats) time
scales has been observed in both patients with disease and
healthy subjects.21 Both short- and long-term a exponents
were calculated in our study to better understand the fractal
property of the physiologic system.

Fourth, MSE analysis is another type of nonlinear HRV
analysis that can be used to estimate the physiologic signals
in time scales and evaluate the degree of predictable
sequential changes over different time scales.22 Time series
of different time scales were calculated via a coarse-graining
process (ie, averaging consecutive beats to form a new time
series). The estimated entropy over different time scales
represents the complexity of the physiologic signals.23 In this
study, 4 different MSE variables were analyzed: the entropy
value of scale 5 (scale 5), the linear-fitted slope of scales 1 to
5 (slopes 1–5), the summation of entropy values of scales 1 to
5 (area 1–5) and 6 to 20 (area 6–20) to quantify the
complexity of the R-R dynamics exhibited in short and long
time scales.

Covariates
The covariates in this study included baseline demographic
data including age, sex, body mass index, prevalence of
diabetes mellitus, hypertension, medication use at enrollment,
and duration of PD. The results of biochemistry analysis and
echocardiography including fasting glucose level, hemoglobin

A1c, serum creatinine, PD Kt/V (urea clearance, normalized
for total body water), triglycerides, total cholesterol, LDL (low-
density lipoprotein), HDL (high-density lipoprotein), serum
electrolytes, CRP (C-reactive protein), and left ventricular
ejection fraction were also analyzed as covariates in this
study.

Statistical Analysis
Data were expressed as mean�SD and median (25th–75th
percentiles) for normally and nonnormally distributed data
(determined using the Kolmogorov–Smirnov test), respec-
tively. Comparisons of data between the patients who died
from cardiovascular causes (cardiovascular mortality group)
and those who did not experience the event (group without
cardiovascular mortality) were made using the independent t
test and Mann–Whitney U test, as appropriate. Differences in
proportions between groups were assessed using the v2 test.
Comparisons of data among the cardiovascular mortality
group, patients who died from noncardiovascular causes, and
survivors were analyzed using the Kruskal–Wallis test, and the
Mann–Whitney U test was used for post hoc analysis with
Bonferroni correction for type I errors.

The predicted probability of an event for each patient (ie,
cardiovascular mortality) at the last follow-up was obtained
using a Cox proportional hazards model. The discriminatory
ability of each marker was assessed using the time-
dependent area under the receiver operating characteristic
(ROC) curve (AUC). Differences between 2 AUCs (from the
time-dependent ROC analysis) were compared using the
DeLong test.24

We further determined the optimal cutoff point of the
marker with the highest AUC among all markers for cardio-
vascular mortality and MACE. Kaplan–Meier survival curves
according to the cutoff were plotted, and the log-rank test
was used for comparisons. Finally, Cox regression analysis
was used to explore associations between variables and
cardiovascular mortality and MACE. Significant determinants
in univariate Cox regression analysis (P<0.05) were then
tested in multivariate Cox regression analysis with stepwise
subset selection to identify the associated factors of cardio-
vascular mortality and MACE. The patients who died from
noncardiovascular causes and those who received a kidney
transplant were censored in the model. Category-free (con-
tinuous) net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) were used to examine
improvements in the accuracy of prediction after adding
nonlinear HRV variables (ie, DFAa1 or area 1–5) into the
model with only a linear HRV variable (ie, SDRR).

The predicted probability of an event in the Cox model
was obtained using the “phreg” procedure in SAS v9.4 (SAS
Institute). The AUCs, DeLong test, IDI, and NRI were
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calculated using the “add_predictive” SAS macro (SAS
v9.4). The optimal cutoff point of a marker in the survival
analysis was determined using R v3.6.1 (R Development
Core Team) and the “survminer” package (v0.4.6, updated
September 3, 2019). Other analyses were done using SPSS
v25 for Windows (IBM Corp). The significance level of the
statistical analysis was set at 0.05.

Results

Patients
A total of 133 PD patients (61 men) were enrolled in this
study. After a median 6.37 years (interquartile range: 2.95–
9.17 years) of follow-up, 21 patients (cumulative incidence:
22%) died from cardiovascular causes (cardiovascular mortal-
ity group), including 8 from SCD, 8 from life-threatening
arrhythmias (ventricular tachycardia/ventricular fibrillation), 4
from acute decompensated heart failure, and 1 from an
intracranial hemorrhagic stroke. There were 24 non–cardio-
vascular-related deaths (non–cardiovascular-mortality group;
cumulative incidence: 26%), including 22 from sepsis and 2
from advanced lung cancer. The cumulative incidence of
MACE was 26% during follow-up, including 21 patients who
died from cardiovascular causes, 4 from nonlethal acute
myocardial infarctions, and 1 from nonlethal ischemic stroke.

There were no significant differences in baseline charac-
teristics between the groups with and without cardiovascular
mortality except for age (Table 1). Participants with cardio-
vascular mortality were significantly older than those without
cardiovascular mortality. In addition, the cardiovascular-
mortality group had borderline lower left ventricular ejection
fraction compared with the group without cardiovascular
mortality (P=0.05).

Linear HRV and Heart Rhythm Complexity
Variables in the Groups With and Without
Cardiovascular Mortality
The heart rhythm complexity variables including DFAa1,
MSE slopes 1 to 5, scale 5, area 1 to 5, and area 6 to 20
were significantly lower in the cardiovascular-mortality
group compared with the group without cardiovascular
mortality (Table 2). Among the linear HRV variables, LF, LH/
HF ratio, total power, TS of HRT, and DC were significantly
lower in the cardiovascular-mortality group. In the group
without cardiovascular mortality (including patients who
died from noncardiovascular causes and survivors), sub-
group analysis showed that all linear HRV and heart rhythm
complexity variables were comparable between the patients
who died from noncardiovascular causes and the survivors
(Table S1).

Discrimination of HRV Variables for
Cardiovascular Mortality and MACE
The results showed that DFAa1 had the greatest discrimina-
tory power to differentiate the groups with and without
cardiovascular mortality in the time-dependent ROC curve
analysis (Figure 1). The significant heart rhythm complexity
predictors of cardiovascular mortality included DFAa1 (AUC:
0.763; 95% CI, 0.681–0.845), slope 5 (AUC; 0.695; 95% CI,
0.595–0.795), scale 5 (AUC: 0.705; 95% CI, 0.604–0.805),
area 1 to 5 (AUC: 0.674; 95% CI, 0.564–0.783), and area 6 to
20 (AUC: 0.682; 95% CI, 0.574–0.791). The significant linear
HRV predictors of cardiovascular mortality included VLF (AUC:

Table 1. Clinical Characteristics by Cardiovascular Mortality

Cardiovascular
Mortality (n=21)

No Cardiovascular
Mortality (n=112) P Value

Age, y 59�8.3 53�13 0.006

BMI 24�3.9 23�2.4 0.384

Male 8 (38) 53 (47) 0.436

DM 6 (29) 22 (20) 0.357

HTN 18 (86) 95 (85) 0.916

ACEI or ARB 10 (48) 55 (49) 0.900

b-Blocker 10 (48) 67 (60) 0.299

CCB 17 (81) 72 (64) 0.136

Statin 5 (24) 41 (37) 0.258

Glucose AC, mg/dL 115�33 106�34 0.278

HbA1c, % 6.1�0.81 5.7�0.91 0.062

Creatinine, mg/dL 11�2.4 11�2.7 0.155

PD, Kt/V 1.9�0.30 1.9�0.37 0.512

PD duration, mo 48�32 42�43 0.528

TGs, mg/dL 170�88 201�182 0.447

T-Chol, mg/dL 184�38 197�47 0.208

LDL, mg/dL 93�44 90�38 0.745

HDL, mg/dL 37�11 41�12 0.184

Na, mmol/L 136�5.3 136�4.2 0.916

K, mmol/L 3.8�0.71 3.9�0.68 0.687

Ca, mmol/L 9.5�1.1 9.6�0.92 0.673

P, mmol/L 5.3�1.1 5.4�1.2 0.599

CRP, mg/dL 1.0�1.1 1.1�2.2 0.875

LVEF, % 60�17 68�10 0.050

Data are presented as mean�SD or number (percentage). ACEI indicates angiotensin-
converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BMI, body mass index;
CCB, calcium channel blocker; CRP, C-reactive protein; DM, diabetes mellitus; HbA1c,
hemglobin A1c; HDL, high-density lipoprotein; HTN, hypertension; LDL, low-density
lipoprotein; LVEF, left ventricular ejection fraction; PD, peritoneal dialysis; T-Chol, total
cholesterol; TGs, triglycerides. Glucose AC, fasting blood glucose; Kt/V, urea clearance,
normalized for total body water.
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0.632; 95% CI, 0.505–0.760), LF (AUC: 0.662; 95% CI, 0.533–
0.791), LF/HF ratio (AUC: 0.725; 95% CI, 0.613–0.838), total
power (AUC: 0.645; 95% CI, 0.517–0.772), TO of HRT (AUC:
0.645; 95% CI, 0.534–0.757), TS of HRT (AUC: 0.654; 95% CI,
0.540–0.768), and DC (AUC: 0.649; 95% CI, 0.516–0.782).
The AUC values of all HRV variables to predict cardiovascular
mortality are listed in Table S2.

DFAa1 had the greatest discriminatory power to differen-
tiate the patients who did and did not have MACE in the time-
dependent ROC curve analysis compared with other HRV
variables. The significant heart rhythm complexity predictors
of MACE included DFAa1 (AUC: 0.730; 95% CI, 0.633–
0.826), slope 5 (AUC: 0.688; 95% CI, 0.590–0.786), scale 5
(AUC: 0.676; 95% CI, 0.572–0.779), and area 6 to 20 (AUC:
0.662; 95% CI, 0.556–0.769). The significant linear HRV
predictors of MACE included VLF (AUC: 0.640; 95% CI,
0.539–0.742), LF (AUC: 0.669; 95% CI, 0.564–0.773), LF/HF
ratio (AUC: 0.702; 95% CI, 0.593–0.810), total power (AUC:
0.654; 95% CI, 0.553–0.755), TS of HRT (AUC: 0.668; 95% CI,
0.572–0.764), and DC (AUC: 0.653; 95% CI, 0.538–0.768).

The AUC values of all HRV variables to predict MACE are
listed in Table S2.

Optimal Cutoff Value for DFAa1 to Predict
Cardiovascular Outcomes
We then determined the optimal cutoff value for DFAa1 to
predict cardiovascular mortality and MACE. The best cutoff
value for DFAa1 was 0.98 to predict both cardiovascular
mortality and MACE, and the patients with DFAa1 ≤0.98 had
higher risks of cardiovascular mortality and MACE (Figure 2A
and 2B).

Factors Associated With Cardiovascular Mortality
and MACE Using a Cox Model
In univariate Cox regression analysis, age, hemoglobin A1c,
left ventricular ejection fraction, VLF, LF/HF ratio, total
power, TS of HRT, DFAa1, MSE slopes 1 to 5, scale 5, area 1
to 5, and area 6 to 20 were significantly associated with

Table 2. Holter Variables by Cardiovascular Mortality

Cardiovascular Mortality (n=21) No Cardiovascular Mortality (n=112) P Value

Time domain analysis

Mean R-R interval, ms 775.05 (691.95–873.86) 763.58 (686.45–866.23) 0.730

SDRR, ms 37.53 (29.76–46.42) 40.84 (27.05–57.56) 0.521

pNN20, % 5.03 (2.11–16.64) 5.47 (1.50–16.89) 0.836

pNN50, % 0.81 (0.21–2.59) 0.33 (0.05–1.91) 0.332

Frequency domain analysis

VLF, ms2 315.90 (158.39–799.24) 618.81 (256.84–1206.39) 0.060

LF, ms2 46.54 (26.07–140.48) 117.52 (43.48–255.24) 0.023

HF, ms2 35.97 (18.93–90.63) 43.65 (15.50–98.45) 0.758

LF/HF ratio 1.11 (0.86–1.85) 2.21 (1.32–3.82) 0.001

TP, ms2 366.35 (206.17–994.72) 792.28 (346.98–1642.62) 0.040

TO of HRT 0.29 (�0.34 to 1.27) �0.35 (�1.47 to 0.81) 0.146

TS of HRT 4.30 (3.37–5.87) 6.36 (3.72–9.31) 0.035

DC, ms 3.07 (2.08–3.87) 3.86 (2.58–5.41) 0.044

Heart rhythm complexity analysis

DFAa1 0.94 (0.81–1.11) 1.21 (1.01–1.37) <0.001

DFAa2 1.27 (1.13–1.35) 1.23 (1.16–1.29) 0.294

Slopes 1–5 0.0039 (�0.020 to 0.044) 0.053 (0.0033–0.087) 0.002

Scale 5 0.83 (0.72–0.97) 1.015 (0.82–1.19) 0.001

Area 1–5 3.96 (3.05–4.56) 4.55 (3.76–5.39) 0.009

Area 6–20 15.47 (13.48–17.91) 18.21 (15.66–20.97) 0.006

Data are presented as median (25th–75th percentiles). DC indicates deceleration capacity; DFA, detrended fluctuation analysis; HF, high frequency; HRT, heart rate turbulence; LF, low
frequency; pNN20, percentage of the absolute change in consecutive normal R-R interval >20 ms; pNN50, percentage of the absolute change in consecutive normal R-R interval >50 ms;
SDRR, standard deviation of normal R-R intervals; TO, turbulence onset; TP, total power; TS, turbulence slope; VLF, very low frequency.
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cardiovascular mortality. In multivariate Cox regression anal-
ysis, only DFAa1 (hazard ratio [HR]: 0.076; 95% CI, 0.016–
0.366; P=0.001) and area 1 to 5 (HR: 0.645; 95% CI, 0.447–
0.930; P=0.019) remained in the model (Table 3).

Age, left ventricular ejection fraction, VLF, LF, LF/HF ratio,
total power, TS of HRT, DFAa1, DFAa2, slopes 1 to 5, scale 5,

area 1 to 5, and area 6 to 20 were associated with MACE in
univariate Cox regression analysis. In multivariate Cox
regression analysis, age (HR: 1.058; 95% CI, 1.007–1.111;
P=0.026), DFAa1 (HR: 0.063; 95% CI, 0.012–0.338;
P=0.001), and DFAa2 (HR: 497.548; 95% CI, 12.991–
19056; P=0.001) remained in the model (Table 4).

Figure 1. Analysis of the discrimination power of heart rate variability (HRV) variables of cardiovascular mortality using receiver operating
characteristic curve analysis. A, Areas under the curve of significant cardiovascular mortality predictors of heart rhythm complexity including
detrended fluctuation analysis a1 (DFAa1), slope 5, scale 5, area 1 to 5, and area 6 to 20. B, Areas under the curves of significant cardiovascular
mortality predictors of linear HRV including very low frequency (VLF), low frequency (LF), low/high-frequency (LF/HF) ratio, total power,
turbulence slope (TS) and turbulence onset (TO) of heart rate turbulence (HRT), and deceleration capacity (DC). MSE indicates multiscale
entropy.

Figure 2. Event-free survival curves for cardiovascular (CV) mortality (A) and major adverse cardiac events (MACE) (B) in the patients
according to detrended fluctuation analysis a1 (DFAa1) ≤0.98 or >0.98.
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Factors Associated With Noncardiovascular
Mortality and MACE Using a Cox Model

In univariate Cox regression analysis, age, hypertension,
duration of PD, and DFAa2 were significantly associated with

noncardiovascular mortality. In multivariate Cox regression
analysis, only age (HR: 1.085; 95% CI, 1.036–1.137; P=0.001)
and duration of PD (HR: 1.009; 95% CI, 1.003–1.016;
P=0.006) and none of the HRV variables remained in the
model (Table S3).

Table 3. Univariate and Multivariate Cox Regression Analyses to Predict Cardiovascular Mortality

Univariate Regression Multivariate Regression

HR (95% CI) P Value HR (95% CI) P Value

Age, y 1.058 (1.013–1.105) 0.011 . . . . . .

Sex 1.209 (0.500–2.290) 0.673 . . . . . .

DM 1.844 (0.713–4.768) 0.207 . . . . . .

HTN 2.282 (0.304–17.112) 0.422 . . . . . .

PD, Kt/V 1.346 (0.479–3.782) 0.573 . . . . . .

PD duration, mo �0.003 (0.988–1.007) 0.605 . . . . . .

Creatinine, mg/dL 0.885 (0.741–1.058) 0.180 . . . . . .

TGs, mg/dL 0.999 (0.996–1.002) 0.485 . . . . . .

T-Chol, mg/dL 0.993 (0.983–1.003) 0.163 . . . . . .

LDL, mg/dL 1.002 (0.992–1.013) 0.678 . . . . . .

HDL, mg/dL 0.966 (0.924–1.009) 0.120 . . . . . .

Glucose AC, mg/dL 1.007 (0.997–1.017) 0.196 . . . . . .

HbA1c, % 1.479 (1.008–2.170) 0.046 . . . . . .

CRP, mg/dL 1.032 (0.847–1.259) 0.753 . . . . . .

LVEF, % 0.965 (0.939–0.992) 0.010 . . . . . .

Mean R-R interval, ms 1.001 (0.997–1.004) 0.749 . . . . . .

SDRR, ms 0.992 (0.971–1.014) 0.475 . . . . . .

pNN20, % 0.998 (0.966–1.030) 0.881 . . . . . .

pNN50, % 1.000 (0.936–1.069) 0.994 . . . . . .

VLF, ms2 0.999 (0.998–1.000) 0.040 . . . . . .

LF, ms2 0.995 (0.991–1.000) 0.058 . . . . . .

HF, ms2 0.999 (0.995–1.003) 0.692 . . . . . .

LF/HF ratio 0.537 (0.339–0.851) 0.008 . . . . . .

TP, ms2 0.999 (0.998–1.000) 0.044 . . . . . .

TO of HRT 25 574 (0.145–4.59109) 0.100 . . . . . .

TS of HRT 0.826 (0.704–0.969) 0.019 . . . . . .

DC, ms 0.788 (0.601–1.034) 0.085 . . . . . .

DFAa1 0.071 (0.017–0.290) <0.001 0.076 (0.016–0.366) 0.001

DFAa2 25.232 (0.439–1449) 0.118 . . . . . .

Slopes 1–5 0.001 (<0.001–0.238) 0.015 . . . . . .

Scale 5 0.061 (0.011–0.320) 0.001 . . . . . .

Area 1–5 0.598 (0.414–0.864) 0.006 0.645 (0.447–0.930) 0.019

Area 6–20 0.858 (0.774–0.951) 0.003 . . . . . .

CRP indicates C-reactive protein; DC, deceleration capacity; DFA, detrended fluctuation analysis; DM, diabetes mellitus; HbA1c, hemglobin A1c; HDL, high-density lipoprotein; HF, high
frequency; HR, hazard ratio; HRT, heart rate turbulence; HTN, hypertension; LDL, low-density lipoprotein; LF, low frequency; LVEF, left ventricular ejection fraction; PD, peritoneal dialysis;
pNN20, percentage of the absolute change in consecutive normal R-R interval >20 ms; pNN50, percentage of the absolute change in consecutive normal R-R interval >50 ms; SDRR,
standard deviation of normal R-R intervals; T-Chol, total cholesterol; TGs, triglycerides; TO, turbulence onset; TP, total power; TS, turbulence slope; VLF, very low frequency. Glucose AC,
fasting blood glucose; Kt/V, urea clearance, normalized for total body water.
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Adding Heart Rhythm Complexity Variables to
Linear HRV Variables or Another Heart Rhythm
Complexity Variable to Discriminate
Cardiovascular Mortality
DFAa1 significantly improved the discriminatory power of
SDRR, VLF, LF, and HF in the IDI model and SDRR, LF, and HF in
the NRI model (Table 5). In addition, area 1 to 5 significantly
improved the discriminatory power of SDRR, VLF, LF, HF, and
LF/HF ratio in the IDI model and SDRR, VLF, LF, and HF in the
NRI model. Furthermore, the combination of DFAa1 and area 1
to 5 significantly improved the AUC to 0.787 (P=0.0144) from
the original AUC of area 1 to 5, and the improvement was
significant in both the NRI and IDI models.

Discussion
This study had 3 major findings. First, cardiovascular mortality
in the PD patients was highly associated with worse heart
rhythm complexity. Second, of all linear HRV variables and the
heart rhythm complexity variables, DFAa1 had the greatest
single discriminatory power to predict cardiovascular mortal-
ity and MACE. Third, heart rhythm complexity variables DFAa1
and MSE area 1 to 5 significantly improved the discriminatory
power of the linear HRV variables for cardiovascular mortality.

The increasing prevalence of chronic kidney disease is a
major burden for healthcare systems, and a significant
portion of these patients will progress to ESRD and require
renal replacement therapy.25 In these patients, CVD is the
leading cause of morbidity and mortality.26,27 Consequently,
predicting the cardiovascular outcomes in this high-risk
population is of paramount importance in clinical practice.
The pathophysiology of CVD in ESRD patients includes
accelerated atherosclerosis, congestive heart failure, poor
control of hypertension, left ventricular hypertrophy, auto-
nomic dysfunction, pulmonary hypertension, and SCD.4,25,28–
31 HRV analysis is a powerful tool for evaluating these
diseases, and worse HRV has been reported to be associated
with the risk of atherosclerosis-related vascular complica-
tions,14,32,33 SCD,34 poor outcomes of congestive heart
failure,6,10 and pulmonary hypertension.35,36 In ESRD
patients, traditional linear HRV variables have also been
shown to predict the outcomes.37 Brotman et al reported that
autonomic dysfunction as measured by traditional linear HRV
analysis might be an important risk factor for ESRD- and
chronic kidney disease–related hospitalizations.38 However,
traditional linear HRV variables, and especially time-domain
variables, have limited predictive power for clinical out-
comes.39 In contrast to the abundant data on linear HRV
variables, few studies have investigated heart rhythm com-
plexity in ESRD patients. Ferrario et al reported that heart
rhythm complexity and MSE variables were associated with
physical condition and left ventricular systolic function.40

However, to the best of our knowledge, only 1 outcome study
has used heart rhythm complexity variables in ESRD patients.
Suzuki et al showed that DFAa1, but not linear HRV variables,
was an independent risk factor associated with clinical
outcomes in hemodialysis patients.37 However, they did not
perform MSE analysis, which has been shown to have
remarkable power to predict outcomes in various dis-
eases.10,16,41 In contrast to the study by Suzuki et al, we
enrolled patients receiving PD in the present study. In
hemodialysis patients, large variations in hemodynamic and
fluid status are caused by the hemodialysis process and
schedule. These variations will influence linear HRV and heart
rhythm complexity and possibly confound their results in
ESRD patients. In contrast, PD patients have more stable fluid
and hemodynamic status than hemodialysis patients.42

Consequently, HRV and heart complexity variables obtained
from PD patients have less variation and fewer confounders
than those from patients receiving hemodialysis. Conse-
quently, we chose PD patients to investigate changes in heart
rhythm complexity in this study. In our previous studies, we
found that PD patients had worse heart rhythm complexity
compared with patients with normal renal function.15 In
addition, heart rhythm complexity has been associated with
the severity of abdominal aorta calcification, which is a
documented risk factor for cardiovascular events.14 We also
previously showed the strength of DFAa1 in the prediction of
short-term outcomes (follow-up time: 2.8 years).43 In the
current study, we evaluated more linear HRV and heart
rhythm complexity variables with a long follow-up period (up
to 9 years; median follow-up time: 6.37 years) and showed
the ability of heart rhythm complexity variables to predict
long-term cardiovascular outcomes in PD patients.

Heart rhythm complexity measures the complexity rather
than only changes in the variability of heart rate interval. MSE
and DFA are based on different theories to measure the
complexity underlying heart rate dynamics. MSE analysis,
based on chaos theory, has been shown to be capable of
extending the traditional entropy algorithm to quantify
information richness over multiple time scales in physiologic
systems.22 DFA, another heart rhythm complexity analysis
method, based on fractal theory, can be used to determine
the statistical self-affinity of a biological signal.21 The
breakdown of DFA has been shown to cause more random
dynamics during coactivation of sympathetic and vagal
systems.44 Measurements of heart rhythm complexity have
been associated with the prognosis of heart failure,10

outcomes of acute stroke,41 primary aldosteronism,45 critical
illnesses requiring extracorporeal life support,16 and post–
myocardial infarction heart function.46 In the patients with
congestive heart failure included in the DIAMOND-CHF
(Danish Investigations of Arrhythmia and Mortality on
Dofetilide) trial, DFAa1, rather than traditional linear HRV
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variables, was shown to be an independent predictor of
mortality after adjusting for clinical variables.11 In the present
study, our data supported that worse heart rhythm complex-
ity, as indicated by both DFA and MSE variables, was
significantly associated with cardiovascular mortality and

MACE. Among these variables, DFAa1 had the best predictive
power for cardiovascular mortality and MACE compared with
the other linear HRV and heart rhythm complexity variables.

SCD and life-threatening arrhythmias accounted for 76% of
all cases of cardiovascular mortality in this study. Previous

Table 4. Univariate and Multivariate Cox Regression Analyses to Predict MACE

Univariate Regression Multivariate Regression

HR (95% CI) P Value HR (95% CI) P Value

Age, y 1.044 (1.007–1.083) 0.019 1.058 (1.007–1.111) 0.026

Sex 1.025 (0.470–2.234) 0.950 . . . . . .

DM 1.997 (0.865–4.606) 0.105 . . . . . .

HTN 3.056 (0.413–22.638) 0.274 . . . . . .

PD, Kt/V 1.202 (0.456–3.170) 0.710 . . . . . .

PD duration, mo 1.002 (0.993–1.010) 0.679 . . . . . .

Creatinine, mg/dL 0.917 (0.786–1.071) 0.273 . . . . . .

TGs, mg/dL 0.998 (0.995–1.002) 0.341 . . . . . .

T-Chol, mg/dL 0.994 (0.985–1.003) 0.162 . . . . . .

LDL, mg/dL 1.004 (0.994–1.014) 0.411 . . . . . .

HDL, mg/dL 0.977 (0.941–1.014) 0.222 . . . . . .

Glucose AC, mg/dL 1.007 (0.998–1.015) 0.124 . . . . . .

HbA1c, % 1.369 (0.964–1.945) 0.080 . . . . . .

CRP, mg/dL 1.013 (0.837–1.225) 0.896 . . . . . .

LVEF, % 0.966 (0.943–0.990) 0.005 . . . . . .

Mean R-R interval, ms 1.001 (0.998–1.004) 0.373 . . . . . .

SDRR, ms 0.989 (0.969–1.008) 0.262 . . . . . .

pNN20, % 0.992 (0.963–1.022) 0.598 . . . . . .

pNN50, % 0.986 (0.920–1.058) 0.702 . . . . . .

VLF, ms2 0.999 (0.998–1.000) 0.027 . . . . . .

LF, ms2 0.995 (0.991–1.000) 0.030 . . . . . .

HF, ms2 0.998 (0.994–1.003) 0.450 . . . . . .

LF/HF ratio 0.742 (0.506–0.983) 0.038 . . . . . .

TP, ms2 0.999 (0.999–1.000) 0.024 . . . . . .

TO of HRT 6008 (0.080–4.59108) 0.129 . . . . . .

TS of HRT 0.829 (0.719–0.955) 0.009 . . . . . .

DC, ms 0.793 (0.621–1.011) 0.062 . . . . . .

DFAa1 0.120 (0.034–0.428) 0.001 0.063 (0.012–0.338) 0.001

DFAa2 45.451 (1.194–1730.765) 0.040 497.548 (12.991–19056.259) 0.001

Slopes 1–5 0.001 (<0.001–0.183) 0.009 . . . . . .

Scale 5 0.096 (0.022–0.427) 0.002 . . . . . .

Area 1–5 0.668 (0.483–0.925) 0.015 . . . . . .

Area 6–20 0.881 (0.804–0.966) 0.007 . . . . . .

CRP indicates C-reactive protein; DC, deceleration capacity; DFA, detrended fluctuation analysis; DM, diabetesmellitus; HbA1c, hemglobin A1c; HDL, high-density lipoprotein; HF, high frequency;
HR, hazard ratio; HRT, heart rate turbulence; HTN, hypertension; LDL, low-density lipoprotein; LF, low frequency; LVEF, left ventricular ejection fraction; MACE,major adverse cardiac events; PD,
peritoneal dialysis; pNN20, percentage of the absolute change in consecutive normal R-R interval >20 ms; pNN50, percentage of the absolute change in consecutive normal R-R interval
>50 ms; SDRR, standard deviation of normal R-R intervals; T-Chol, total cholesterol; TGs, triglycerides; TO, turbulence onset; TP, total power; TS, turbulence slope; VLF, very low frequency.
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studies have shown that worse traditional HRV can predict
SCD and life-threatening arrhythmias.47,48 The current study
provides solid evidence that both linear HRV including HRT and
heart rhythm complexity analysis can be used to predict
cardiovascular outcomes in PD patients. The linear HRV
variables including VLF, LF/HF ratio, total power and TS of HRT
were significantly associated with cardiovascular mortality
after univariate Cox regression analysis in this study. The heart
rhythm complexity analysis had better correlation with
cardiovascular mortality and MACE compared with linear
HRV variables, which implies that heart rhythm complexity
variables provide more useful information. Furthermore, com-
bining linear HRV and heart rhythm complexity variables
further significantly improved the discriminatory power to
predict cardiovascular mortality, and this combination pro-
vided more accurate information to build the ROC curve model
to predict cardiovascular mortality in the PD patients. Overall,
we demonstrated the superiority of heart rhythm complexity,
and especially DFAa1, compared with linear HRV analysis in
predicting cardiovascular mortality and MACE in PD patients.

This study has several limitations. First, this was a cohort
study conducted at a single center with a small number of
patients, and consequently only a few significant associations
between the outcomes and predictors were observed. There-
fore, the results of this study may have been underpowered,

and further studies with larger sample sizes are needed to
confirm our findings. Second, we enrolled PD patients in this
study, and further studies are needed to confirm whether the
results can be applied to hemodialysis patients. Patients
receiving hemodialysis have high variation in daily hemody-
namic status due to the hemodialysis process, making cardiac
rhythm analysis and interpretation of the results more complex.

In conclusion, heart rhythm complexity analysis could predict
long-term cardiovascular mortality and MACE in the PD patients
in this study. DFAa1 had the greatest discriminatory power to
predict cardiovascular outcomes. In addition, DFAa1 and MSE
area 1 to 5 significantly improved the discriminatory power of the
linear HRV variables for cardiovascular outcomes, suggesting the
advantage of combining linear HRV and heart rhythm complexity
variables in outcome evaluations.
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Table 5. AUCs of Cardiovascular Mortality Prediction Before and After Adding DFAa1 and MSE Area 1 to 5 to Linear and Nonlinear
Variables in NRI and IDI Models

Variables AUC (95% CI) P Value, DeLong test cNRI (95% CI) P Value, cNRI IDI (95% CI) P Value, IDI

Area 1–5 0.674 (0.564–0.783) ��� ��� ��� ��� ���
Plus DFAa1 0.787 (0.709–0.864) 0.0144 0.75 (0.326–1.174) 0.0016 0.103 (0.043–0.163) 0.0008

SDRR 0.519 (0.408–0.631) ��� ��� ��� ��� ���
Plus DFAa1 0.757 (0.672–0.841) 0.003 0.821 (0.399–1.244) <0.001 0.097 (0.041–0.154) 0.0007

Plus Area 1–5 0.792 (0.715–0.869) 0.0004 0.952 (0.551–1.353) <0.001 0.176 (0.075–0.277) 0.0006

VLF 0.632 (0.505–0.760) ��� ��� ��� ��� ���
Plus DFAa1 0.758 (0.675–0.840) 0.0029 0.416 (�0.037 to 0.870) 0.0797 0.057 (0.017–0.097) 0.0056

Plus Area 1–5 0.787 (0.709–0.864) 0.0008 0.75 (0.326–1.174) 0.0007 0.124 (0.042–0.206) 0.0029

LF 0.662 (0.533–0.791) ��� ��� ��� ��� ���
Plus DFAa1 0.755 (0.672–0.839) 0.0099 0.553 (0.125–0.981) 0.0199 0.058 (0.017–0.100) 0.0057

Plus Area 1–5 0.788 (0.712–0.865) 0.0053 0.720 (0.313–1.127) 0.0025 0.118 (0.032–0.203) 0.0068

HF 0.544 (0.399–0.689) ��� ��� ��� ��� ���
Plus DFAa1 0.764 (0.684–0.845) 0.0002 0.785 (0.362–1.209) 0.001 0.101 (0.045–0.158) 0.0004

Plus Area 1–5 0.790 (0.713–0.868) 0.0001 0.839 (0.417–1.26) 0.0004 0.175 (0.071–0.280) 0.001

LF/HF ratio 0.725 (0.613–0.838) ��� ��� ��� ��� ���
Plus DFAa1 0.739 (0.635–0.843) 0.2597 �0.012 (�0.477 to 0.453) 0.9601 0.003 (�0.014 to 0.021) 0.7149

Plus Area 1–5 0.775 (0.682–0.867) 0.0824 0.232 (�0.229 to 0.693) 0.329 0.074 (0.005–0.142) 0.0345

AUC indicates area under the curve; cNRI, category-free (continuous) net reclassification improvement; DFA, detrended fluctuation analysis; DFAa1, short-term DFA; HF, high frequency;
IDI, integrated discrimination improvement; LF, low frequency; MSE, multiscale entropy; NRI, net reclassification improvement; SDRR, standard deviation of normal R-R intervals; VLF, very
low frequency.
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SUPPLEMENTAL MATERIAL



Table S1: Holter variables in the CV-mortality, non-CV-mortality and survival 

groups 

CV mortality (N=21) Non-CV mortality (N=24) Survival (N=88) P Value 

Time Domain Analysis 

Mean RR, ms 775.05(691.95~873.86) 737.04 (666.43~833.07) 775.28 (693.96~870.03) 0.690 

SDRR, ms 37.53 (29.76~46.62) 36.96 (21.89~45.94) 42.93 (28.92~58.40) 0.227 

pNN50, % 0.81 (0.21~2.59) 0.25 (0.04~1.58) 0.36 (0.07~2.17) 0.524 

pNN20, % 5.03 (2.11~16.64) 3.17 (1.21~13.56) 6.02 (1.91~19.03) 0.377 

Frequency Domain Analysis 

VLF, ms2 315.90 (158.39~799.24) 441.70 (132.54~971.36) 667.63 (326.79~1291.94) 0.029 

LF, ms2 46.54 (26.07~140.48) 115.53 (26.78~178.73) 117.52 (43.48~271.73) 0.048 

HF, ms2 35.97 (18.93~90.63) 39.58 (10.48~64.91) 45.32 (17.44~105.24) 0.529 

LF/HF ratio 1.11 (0.86~1.85) 2.42 (0.94~4.97) 2.21 (1.40~3.73) 0.003¶ 

TP, ms2 366.35 (206.17~994.72) 613.19 (184.49~1191.64) 801.91 (376.83~1805.07) 0.035 

TO of HRT 0.29 (-0.34~1.27) 0.34 (-1.18~1.42) -0.44 (-1.50~0.66) 0.198 

TS of HRT 4.30 (3.37~5.87) 4.80 (3.48~9.01) 6.98 (3.93~9.33) 0.041 

DC, ms 3.07 (2.08~3.87) 3.55 (1.89~4.46) 3.94 (2.74~5.80) 0.046 

Detrended fluctuation analysis 

DFAα1 0.94 (0.81~1.11) 1.22 (0.90~1.39) 1.21 (1.04~1.37) <0.001¶ 



DFAα2 1.27 (1.13~1.35) 1.20 (1.08~1.27) 1.24 (1.18~1.29) 0.271 

Multiscale entropy 

Slope1-5 0.0039 (-0.020~0.44) 0.054 (-0.0007~0.089) 0.053 (0.0052~0.086) 0.008¥ 

Scale5 0.84 (0.72~0.97) 1.025 (0.81~1.20) 1.01 (0.83~1.18) 0.005¶ 

Area1-5 3.96 (3.05~4.56) 4.41 (3.37~5.31) 4.60 (3.85~5.42) 0.025¶ 

Area6-20 15.47 (13.48~17.91) 17.85 (15.60~20.72) 18.21 (15.66~21.13) 0.020¶ 

Post hoc analysis with Bonferroni correction 

1. ¶: CV-mortality group only significantly lower than the survival group, P<0.05/3

2. ¥: CV-mortality group significantly lower than both the non-CV-mortality and survival groups, P<0.05/3

Data are presented as median (25th~75th percentile). SDNN=standard deviation of normal RR intervals; 

pNN20=percentage of the absolute change in consecutive normal RR interval > 20 ms; pNN50=percentage of the 

absolute change in consecutive normal RR interval > 50 ms; VLF=very low frequency; LF=low frequency; HF=high 

frequency; TP=total power; HRT=heart rate turbulence; TO=turbulence onset; TS=turbulence slope; 

DC=deceleration capacity and DFA=detrended fluctuation analysis 



Table S2: Analysis of the discriminatory power of HRV variables for CV 

mortality and MACEs with receiver operating characteristic curves  

CV mortality MACEs 

AUC (95% CI) AUC (95% CI) 

Linear HRV variables 

Mean RR 0.534 (0.398 to 0.670) 0.536 (0.425 to 0.647) 

SDRR 0.519 (0.408 to 0.631) 0.560 (0.461 to 0.659) 

pNN20 0.487 (0.347 to 0.628) 0.512 (0.388 to 0.637) 

pNN50 0.577 (0.437 to 0.717) 0.443 (0.322 to 0.565) 

VLF 0.632 (0.505 to 0.760) 0.640 (0.539 to 0.742) 

LF 0.662 (0.533 to 0.791) 0.669 (0.564 to 0.773) 

HF 0.544 (0.399 to 0.689) 0.563 (0.441 to 0.685) 

LF/HF ratio 0.725 (0.613 to 0.838) 0.702 (0.593 to 0.810) 

TP, ms2 0.645 (0.517 to 0.772) 0.654 (0.553 to 0.755) 

TO of HRT 0.645 (0.534 to 0.757) 0.624 (0.531 to 0.718) 

TS of HRT 0.654 (0.540 to 0.768) 0.668 (0.572 to 0.764) 

DC, ms 0.649 (0.516 to 0.782) 0.653 (0.538 to 0.768) 

Heart rhythm complexity variables 

DFAα1 0.763 (0.681 to 0.845) 0.730 (0.633 to 0.826) 



DFAα2 0.583 (0.440 to 0.725) 0.614 (0.501 to 0.728) 

Slope 1-5 0.695 (0.595 to 0.795) 0.688 (0.590 to 0.786) 

Scale 5 0.705 (0.604 to 0.805) 0.676 (0.572 to 0.779) 

Area 1-5 0.674 (0.564 to 0.783) 0.639 (0.532 to 0.746) 

Area 6-20 0.682 (0.574 to 0.791) 0.662 (0.556 to 0.769) 

SDRR=standard deviation of normal RR intervals; pNN20=percentage of the absolute 

change in consecutive normal RR interval > 20 ms; pNN50=percentage of the 

absolute change in consecutive normal RR interval > 50 ms; VLF=very low 

frequency; LF=low frequency; HF=high frequency; TP=total power; HRT=heart rate 

turbulence; TO=turbulence onset; TS=turbulence slope; DC=deceleration capacity 

and DFA=detrended fluctuation analysis 



Table S3: Univariate and multivariate Cox regression analyses to predict non-

CV mortality 

Univariate regression Multivariate regression 

HR (95% CI) P value HR (95% CI) P value 

Age, years 1.077 (1.031~1.125) 0.001 1.085 (1.036~1.137) 0.001 

Sex 0.452 (0.198~1.033) 0.060 

DM 1.312 (0.488~3.526) 0.590 

HTN 0.381 (0.151~0.961) 0.041 

PD KT/V 0.931 (0.318~2.722) 0.896 

PD duration, month 1.008 (1.002~1.015) 0.015 1.009 (1.003~1.016) 0.006 

Creatinine, mg/dL 0.927 (0.788~1.090) 0.360 

TGs, mg/dL 1.000 (0.998~1.002) 0.824 

T-Chol, mg/dL 1.001 (0.993~1.009) 0.801 

LDL, mg/dL 1.005 (0.995~1.014) 0.313 

HDL, mg/dL 1.003 (0.971~1.037) 0.838 

Glucose AC, mg/dL 0.995 (0.981~1.011) 0.556 

HbA1c, % 0.913 (0.558~1.494) 0.717 

CRP, mg/dL 1.041 (0.879~1.231) 0.644 

LVEF, % 1.023 (0.980~1.068) 0.306 



Mean RR, ms 0.998 (0.995~1.001) 0.291 

SDRR, ms 0.990 (0.969~1.010) 0.319 

pNN20, % 0.985 (0.951~1.021) 0.423 

pNN50, % 1.021 (0.974~1.070) 0.391 

VLF, ms2 0.999 (0.999~1.000) 0.141 

LF, ms2 0.999 (0.997~1.002) 0.595 

HF, ms2 1.001 (0.999~1.003) 0.254 

LF/HF ratio 1.053 (0.936~1.185) 0.391 

TP, ms2 1.000 (0.999~1.000) 0.279 

TO of HRT 48.31 (<0.001~2.4*108) 0.622 

TS of HRT 0.910 (0.809~1.024) 0.117 

DC, ms 0.998 (0.820~1.215) 0.982 

DFAα1 0.546 (0.132~2.264) 0.404 

DFAα2 0.058 (0.005~0.699) 0.025 

Slope 1-5 7.731 (0.008~7499) 0.560 

Scale 5 1.033 (0.238~4.476) 0.965 

Area 1-5 0.976 (0.716~1.330) 0.875 

Area 6-20 0.981 (0.882~1.091) 0.729 

DM=diabetes mellitus; HTN=hypertension; PD=peritoneal dialysis; 



TGs=triglycerides; T-Chol=total cholesterol; LDL=low-density lipoprotein; 

HDL=high-density lipoprotein; CRP=C-reactive protein; LVEF=left ventricular 

ejection fraction; SDRR=standard deviation of normal RR intervals; 

pNN20=percentage of the absolute change in consecutive normal RR interval > 20 

ms; pNN50=percentage of the absolute change in consecutive normal RR interval > 

50 ms; VLF=very low frequency; LF=low frequency; HF=high frequency; TP=total 

power; HRT=heart rate turbulence; TO=turbulence onset; TS=turbulence slope; 

DC=deceleration capacity and DFA=detrended fluctuation analysis 
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