
  

Automated Prediction of Hepatic Arterial Stenosis 

Justin J. Baraboo, BS1, Deendayal Dinakarpandian, MD, PhD1,  
Sherwin S. Chan, MD, PhD1,2 

1University of Missouri, Kansas City, MO; 2Children’s Mercy Hospital, Kansas City, MO  

Abstract  

Several thousand life-saving liver transplants are performed each year. One of the most common causes of early 
transplant failure is arterial stenosis of the anastomotic junction. Early detection of transplant arterial stenosis can 
help prevent transplant failure and the need to re-transplant. Doppler ultrasound is the most common screening 
method, but it suffers from poor specificity.  Positive screening cases proceed to angiography which is an invasive 
and expensive procedure. A more accurate test could decrease the number of normal patients who would have to 
undergo this invasive diagnostic procedure. We present a turnkey clinical decision support tool for automated 
prediction of stenosis based on Fourier spectrum analysis of Doppler sonograms to compute a Stenosis Index that has 
been shown to have higher accuracy than traditional measures. The results of the automated approach compare 
favorably with the manual approach. Software is available from the authors on request. 

Introduction 

Chronic liver disease, including cirrhosis, is one of the top 10 causes of death. It was ranked as the 8th and 10th leading 
cause of death in 1980 and 2014 respectively, with 24,584 deaths in 2014 (NCHS, CDC). Cirrhosis is the commonest 
indication for a liver transplant. According to the Liver Foundation (ALF), 6000 transplants are performed every year, 
with 16,000 on the waiting list. One of the most common early causes of hepatic transplant failure is stenosis of the 
arterial anastomosis between donor and recipient. If detected early, the stenosis can be treated, thereby preventing 
failure of a precious organ transplant. The definitive diagnosis of stenosis is by conventional angiography. However, 
angiography is expensive, invasive (requiring puncture of the femoral artery) and the imaging contrast agent can be 
nephrotoxic and/or trigger immune reactions. Ultrasound imaging of blood flow based on the Doppler effect is a safe 
alternative for screening for stenosis. A typical Doppler sonogram is shown in Figure 1. Different equations based on 
systolic and diastolic peak blood flow velocities, mean blood velocity and time to attain peak velocity (Dodd et al, 
1994; Park et al, 2011) have been used to predict the presence of stenosis (see right panel of Figure 1).  However, 
these are of limited accuracy as they suffer from both false positives and false negatives. One reason for their limited 
predictive accuracy is the fact that they are based on lossy representations that sample blood flow only at a few time 
points during each cycle. We have recently shown that Fourier analysis of the frequency dependent power distribution 
of blood flow downstream of the transplant anastomosis can be used to compute a Stenosis Index (SI) (Chan et al, 
2013; Le et al, 2016).  The SI measure, which takes into consideration the entire temporal profile of blood flow, can 
be thresholded to predict stenosis with 69% sensitivity and 90% specificity, compared with a specificity of 33% for 
the resistivity index (RI) in the same patient population. The reported specificity is a conservative estimate because 
the dataset used to compute accuracy was from subjects who underwent computed tomography angiography on 
suspicion of stenosis; these were the more difficult cases to pronounce as normal.  

The SI measure is currently calculated using interactive MATLAB scripts that require intermediate decisions by a 
human expert. This paper presents a fully automated image analysis clinical decision support tool for the diagnosis of 
hepatic arterial stenosis based on the SI index. As part of the process, we present methodology to solve the important 
problem of automatic waveform detection from noisy real world Doppler sonograms (see middle panel of Figure 1). 
As such, this tool has the potential to be used inline as part of the workflow in radiology clinics. 
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The rest of the paper is organized as follows. The Methods section details the algorithmic process for automatic 
waveform extraction and subsequent Fourier analysis. The Results & Discussion section describes the refinement and 
application of the tool to real world data. The last section summarizes the paper and suggests future work.  

 
 

A B C 

Figure 2. The scheme for predicting stenosis with the Stenosis Index (SI).  A sonogram image is reduced into a 
region of interest and the waveform extracted.  A discrete Fourier transform is applied and the SI computed to 
predict stenosis (liver background image from Abu-Wasel et al, 2013). 

Figure 1. A) A typical sonogram image.  The waveform is located in the lower left corner where the outer rectangle 
is known by a machine setting.  The other features are dynamically extracted. B) Different types of noise and 
deformities a waveform can have: light noise above the waveform (top), noise corrupting the waveform (middle), 
missing waveforms (second from bottom). C) Existing measures to predict stenosis. 
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Methods 

Dataset 

The dataset used in this paper is a set of 50 Doppler sonograms randomly selected from an IRB, HIPAA compliant 
study of 159 patients totaling over 717 images capturing the blood flow distribution of the left, right and proper hepatic 
arteries.  All patients had catheter angiography for suspected transplant hepatic arterial stenosis or had computed 
tomography (CT) scans that showed no arterial narrowing between January 2006 and December 2010 at a single 
tertiary care medical center. All ultrasounds were performed in a 30-day window prior to angiography or CT. 

Algorithms 

There are three main phases in the automated process used to predict stenosis (Figure 2). First, the envelope of the 
waveform is determined using an automated sequence of steps (Figure 3). Next, the envelope is used as input to derive 
a Fourier spectrum. Finally, the power distribution of the Fourier spectrum is used to calculate the Stenosis Index 
(Figure 1). 

Determination of Region of Interest: Instrumental parameters are used to locate the baseline and upper bound (red 
“outer rectangle” in Figure 1) of the initial region of interest (ROI). Alternatively, specific patterns of solid white 
(baseline) and solid black pixels (upper edge of sonogram) are used to find the respective bounds. The ROI is narrowed 
down to a smaller rectangle (cyan line in Figure 1) that bounds the waveform by analyzing the first and second 
derivatives, and the transition from bright to dark, of the marginal distribution of pixel brightness in the vertical 
dimension. In other words, the waveform is expected to be found below the region where the sharpest drop in average 
brightness occurs. 

Waveform Envelope Determination by Edge Detection: The envelope or crest of the waveform in a Doppler sonogram 

represents the instantaneous peak velocity. This is the highest during systole and lowest during diastole. A horizontal 
edge detection filter is used to find the wave envelope. This is a simple mask that integrates the differences in 

 
Figure 3.  Overview of steps for extracting a waveform envelope from a sonogram.  The region of interest 
is initially determined using presets for the outer boundary and then further reduced to the inner rectangle. 
Methods listed on the right are then used for envelope detection. 
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intensities of a local area above and below a given pixel, so that an edge of white waveform below and dark background 
above scores the highest. 

Waveform Envelope Determination by 95th percentile: The distribution of velocity at each time point is analyzed to 
find the 95th percentile of the instantaneous velocity distribution. This is taken to be the estimate of the local peak 
velocity or the top of the waveform at each timepoint.  

Noise compensation: Instantaneous mean velocities within the small rectangle (local mean at every time point) are 
calculated first. The sonogram is then padded with artificial counts (‘pseudocounts’ as prior) up to half of the mean 
instantaneous velocity. The rationale is to compensate for random noise above the waveform, but without altering the 
outline of the waveform. The 95th percentile is recalculated after padding. 

Isolation of corrupted waveform sections: Autocorrelation was used to find the putative frequency of the waveform. 
This was followed by slicing the sonogram timeline into slices, with each slice corresponding to the estimated 
wavelength. The slices (individual waves) were aligned to each other to identify parts of the sonogram that were 
markedly dissimilar to the other waves. The corresponding subsequence of the sonogram was eliminated from further 
analysis.  

Determination of Optimal Sonogram Subsequence: The objective is to find the best subsequence of three cycles of the 
signal in a given sonogram. In the first step, an estimate of the average pulse rate (frequency) is made by analyzing 
the small rectangular region for a periodic pattern.  

Estimation of Prediction Error: A gold standard set of 50 sonogram envelopes was created manually by painting the 
waveform on the set of 50 randomly chosen sonograms. This was compared with each method for predicting the 
envelope. Error was estimated as the mean squared error and percent absolute error. The bias component of error was 
estimated by calculating the mean difference between the prediction and the ground truth.  

Fourier Transform & SI Index: The envelope was subjected to a discrete Fourier transform. The SI index was 
calculated as described in (Chan et al, 2013) by taking the ratio of the power in the high frequency components to that 
in the low frequency components of the Fourier spectrum. 

Implementation: The project was implemented in the Eclipse IDE using Java 1.8.0_101.  We implemented all modules 
of the software except for the discrete Fourier transform, which was imported from Project Nayuki’s implementation 
(Nayuki, 2016). Analysis and charts were generated in R 3.2.0. 

Results & Discussion 

Blood flow velocity should be ideally measured at or just beyond the arterial anastomosis of the liver transplant to 
detect the presence of stenosis. However, this junction is often obscured by overlying bowel gas which greatly 
attenuates and scatters the sound waves needed for ultrasound imaging. As an alternative, downstream blood flow 
within the right or left hepatic arteries is often measured. In contrast to imaging the carotid artery, which is relatively 
close to the surface of the body, imaging of arteries within the abdomen is more challenging. Respiration can cause 
the artery to move in and out of the imaging field, the orientation of flows can be both towards and away from the 
probe, and flow in adjacent blood vessels can be superimposed on arterial flow measurements. Automatic detection 
of the waveform is therefore not a trivial task. Even an expert ultrasound technician might occasionally make errors 
in locating the systolic peak and diastolic trough in blood velocity. Sample images of Doppler sonograms of hepatic 
arteries are shown in the middle panel of Figure 1. Features of the Doppler sonogram that make extraction of the 
envelope challenging are aliasing of the waveform, ‘salt and pepper’ noise, faint or sparse signals, patchy waveforms 
with interior ‘holes,’ inversion of the waveform, incomplete/interrupted waveform, and wrap around start and end 
points. More than half the real world images suffer from one of the above defects, making it challenging to automate 
envelope extraction.   

Aliasing and ‘salt and pepper’ noise make it hard to detect the junction between the crest of the wave and background. 
‘Holes’ within waveforms make it challenging for an edge detection algorithm to find the correct edge. Inversion of 
the waveform is caused by blood flow directed away from the ultrasound probe; any automation should also take this 
possibility into account. For a more accurate Fourier transform, a minimum sample size of three contiguous waves is 
necessary. When only a subset of a sonogram is usable, the waveform detection algorithm should be able to detect 
and extract the corresponding subsequence. Finally, in the cases where the sonogram is useless, the detection algorithm 
should be ideally able to conclude that a repeat sonogram is needed.  
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Figure 4. Envelope detection by using an edge filter. 

 

 

The larger orange rectangle encompassing the region of interest (ROI) (labeled ‘outer rectangle’ in Figure 2) was first 
isolated based on instrument specific parameters. The cyan line in Figure 2 represents the upper bound of a more 
focused rectangular ROI corresponding to peak velocities (extraction procedure is described under Methods). The 
result of wave envelope detection with a simple horizontal edge filter is shown in Figure 4. The speckled nature of the 
Doppler waveform causes the edge filter to frequently underestimate the peak velocities. In contrast, the 95th percentile 
of the instantaneous velocity distribution performs quite well (Figure 5). When the sonogram is sparse, the diastolic 
minimum velocity is overestimated as noise above the waveform might correspond to the 95th percentile. A common 
technique for overcoming random noise is Gaussian smoothening. However, since the interior of the waveform has 
many dark areas, and the data is highly directional (waveform below, background above) this wasn’t found to be 

Figure 5. The lower panels show the instantaneous distribution of velocity corresponding to a single time point of 
the sonogram in the above panels and corresponding 95th percentile value of blood flow. The sonogram on the 
right has been augmented with pseudocounts to skew the velocity distribution. As a result, the new 95th percentile 
(black line) threshold is shifted to a lower velocity. 
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useful. Instead we make use of a velocity prior to overcome the problem of noise above the waveform. As described 
in the Methods section, ‘pseudocounts’ were added to bias the instantaneous velocity distribution closer to the 
baseline, and thus prevent overshoot.  

To tackle incomplete waveforms or those that contain only a few good regions, a combination of autocorrelation and 
self-similarity of individual waves (described under methods) was used to detect regions of degraded sonogram. The 
corresponding subsequence of the sonogram was eliminated by ‘digital apoptosis' and excluded from downstream 
Fourier analysis. 

The comparative performance of different approaches to tracing the wave envelope is shown in Table 1 and the left 
panel of Figure 6. The addition of pseudocounts close to the baseline reduces the error in waveform detection for both 
the whole sonogram as well as the best contiguous section of the sonogram having three peaks (3Form). Overall, the 
contiguous section of three peaks has the lowest mean squared error. The error histogram (Figure 6) and the low 
median error (Table 1) indicate that the vast majority of images have very low error, with most of the error coming 
from just a few images. The subsequence of the three best peaks has the lowest absolute percent error. This indicates 
the benefit of focusing on the best part of sonogram and the success of the automated method for isolating it. We 
found that the systematic error (average of signed error) is positive and less than one percent. This indicates that 
choosing the 95th%ile does not systematically underestimate the true envelope. 

Table 1. Comparison of error estimates with/without pseudocounts for full versus best 3-wave form. 

 3Form (pseudocounts) 3Form  Full Waveform (pseudocounts) Full Waveform 
Avg MSE ± SD 157 ± 16.9 220 ± 21.4 181 ± 17.3 261 ± 22.8 
Median MSE 50 41 70 51 
Avg Absolute % Error 7.1 ± 0.36 8.3 ± 0.63 8.1 ± 1.58 9.7 ± 0.87 

 

A comparison of the Fourier spectrum obtained by interactive and automated methods is shown in Figure 7. The first 
large peak represents the fundamental frequency of the Doppler sonogram corresponding to the pulse rate. The series 
of peaks to the right represent higher frequency components that we have previously shown to carry relatively more 
power in normal versus stenosed arteries. The similarity between the two spectra illustrates the success of automation 
in approximating the interactive method of computing the Stenosis Index.  

 

 
Figure 6. Left: Percent error in envelope estimation by best 3-wave subsequence with & without pseudocounts 
(‘buffer’), and full sonogram with & without pseudocounts; Right: Distribution of MSE contribution from random 
sample of 50 images. 
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Figure 7. Left: Interactive estimation of Fourier spectrum and Stenosis Index from sonogram by human expert; Right: 
Fully automated estimation of Fourier spectrum and Stenosis Index for same sonogram. 

 

 

Conclusions & Future Work 

We have described an automated clinical decision support tool for the prediction of arterial stenosis in liver transplant 
recipients. Strengths of the approach are automated extraction of the waveform from noisy sonograms and the use of 
Fourier analysis for comprehensive analysis of blood flow. Ideally, there should be a low number of false negatives, 
even if it means having more false positives. This is true for the Stenosis Index, which has high sensitivity and 
moderate specificity. It can be therefore used as a screening tool to pick up early signs of stenosis.  The software is 
currently being evaluated by radiologists prior to an IRB approved clinical study of its effectiveness. The technique 
used for waveform extraction is general enough to be applied to other forms of Doppler data. We are also planning to 
explore machine learning alternatives (Krishnamoorthy et al, 2015) to the Stenosis Index. 
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