

Article

Body Mass Index and Risk of Gallbladder Cancer: Systematic Review and Meta-Analysis of Observational Studies

Wenbin Tan^{1,†}, Min Gao^{2,†}, Ning Liu³, Guoan Zhang⁴, Tong Xu⁵ and Wen Cui^{4,*}

Received: 2 August 2015 ; Accepted: 11 September 2015 ; Published: 25 September 2015

- ¹ Department of Basical Medicine, Jining Medical University, 16 Hehua Road, Jining 272067, China; lzhzsdxsyx@gmail.com
- ² Department of Clinical Laboratory, Jining NO.1 People's Hospital, 6 Jiankang Road, Jining 272011, China; medchenjun@126.com
- ³ Department of Information Technology, Jining Medical University, 16 Hehua Road, Jining 272067, China; liuningsci@126.com
- ⁴ Department of Pathology, Jining Medical University, 16 Hehua Road, Jining 272067, China; zga2007@126.com
- ⁵ Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, 79 Guhuai Road, Jining 272029, China; ciwinglee@126.com
- * Correspondence: cuiwenmd@sina.com; Tel./Fax: +86-0537-3616-216
- † These authors contributed equally to this work.

Abstract: OBJECTIVES: To provide a quantitative assessment of the association between excess body weight, interpreted as increased body mass index (BMI), and the risk of gallbladder cancer (GBC). METHODS: We identified eligible studies in Medline and EMBASE up to 1 February 2015, and reference lists of retrieved articles. Summary relative risks with their 95% confidence intervals were calculated in a random-effects model. Subgroup analyses were performed according to study design, gender, geographic location, ascertainment of exposure and adjustment for confounders. RESUITS: A total of 12 cohort studies and 8 case-control studies were included in the meta-analysis. Overall, compared with "normal" weight, the summary relative risks of GBC were 1.14 (95% CI, 1.04–1.25) for overweight individuals (BMI 25–30 kg/m²) and 1.56 (95% CI, 1.41–1.73) for obese individuals (BMI > 30 kg/m²). Obese women had a higher risk of GBC than men did (women: SRRs 1.67, 95% CI 1.38–2.02; men: SRRs 1.42, 95% CI 1.21–1.66), and there was significant association between overweight and GBC risk in women (SRRs 1.26, 95% CI 1.13–1.40), but not in men (SRRs 1.06, 95% CI 0.94–1.20). CONCLUSIONS: Findings from this meta-analysis indicate that obesity is associated with an increased risk of GBC, especially in women. Overweight is associated with GBC risk only in women.

Keywords: overweight; obesity; body mass index; gallbladder cancer; meta-analysis

1. Introduction

Gallbladder cancer (GBC) is a highly fatal malignancy that differs from other cancers of the biliary tract, as being approximately two to five times more common in women than in men [1]. Prognosis of GBC remains poor due to its late clinical presentation, lack of effective non-operative therapy, and rapid turnover [2].

It has been established that history of gallstone is the leading cause of gallbladder cancer worldwide [3]. Additionally, genetic susceptibility, lifestyle factors, smoking, alcohol consumption and diabetes mellitus (DM) also increase the risk of GBC [4–7]. Excess body weight, interpreted as overweight (BMI 25–30 kg/m²) or obesity (BMI > 30 kg/m²), is increasingly recognized as an

important risk factor for various cancer types. Over the past decades, evidence from clinical studies has addressed the possible link between excess body weight and risk of GBC, but the findings have been somewhat contradictory. Early studies found no statistically significant results [8–10], whereas recent studies did observe a significantly increased risk [11,12].

Our clinical observations indicate a high frequency of obesity among patients with GBC. In the present study, we therefore carried out a systematic review and meta-analysis of all available evidence of observational studies following the meta-analysis of observational studies in epidemiology (MOOSE) guidelines [13] to clarify the association between excess body weight and risk of GBC (Tables S1 and S2).

2. Materials and Methods

2.1. Search Strategies

Two authors independently performed a literature search using Medline and EMBASE database up to 1 February 2015 with the following text words and/or Medical Subject Heading (MeSH) terms: "body mass index", "BMI", "overweight", "obesity" or "excess body weight", combined with "gallbladder cancer", "gallbladder neoplasm" or "biliary tract cancer". We also reviewed the reference lists of retrieved articles to search for additional studies. No language restrictions were imposed.

2.2. Study Selection Criteria

Published articles were included according to the following criteria: (1) the outcome of interest was GBC incidence or mortality; (2) the exposure of interest was overweight or obesity defined by BMI; (3) estimates of odds ratio (OR) or relative risk (RR) with corresponding 95% confidence intervals (CIs) (or data to calculate them) were reported. Two authors independently evaluated all of the studies retrieved from the databases. Any discrepancies between the two reviewers were solved by joint reevaluation of the manuscript. If there were multiple publications from the same study, the most comprehensive one which could provide detail information for subgroup analysis was selected, using other publications to clarify methodology or characteristics of the population.

2.3. Data Extraction and Quality Assessment

Three authors independently evaluated all of the studies retrieved according to the aforementioned inclusion criteria. Discrepancies between the three reviewers were solved by a joint reevaluation of the original article. The following information from each included study was extracted: the first author's last name, geographic location, year of study conducted, sample size, study design, gender and age of participants, duration of follow-up (cohort studies), BMI categories, assessment of BMI (measurement *versus* self-reported), and the effect estimates with 95% CIs. When studies provided more than one RR, we extracted all of them and applied the data according to subgroup analysis. The quality of each study was assessed independently by three reviewers using the Newcastle-Ottawa Scale (NOS). The NOS consists of three parameters of quality: selection, comparability, and outcome (cohort studies) or exposure (case-control studies). The NOS assigns a maximum of four points for selection, a maximum of two points for comparability, and a maximum of three points for exposure or outcome [14]. Any discrepancies between reviewers were addressed by a joint reevaluation of the original article.

2.4. Statistical Analysis

To examine associations between overweight/obesity and the risk of GBC, we computed SRRs for two categories of BMI as defined by the World Health Organization (WHO) for adults: overweight (BMI 25–30 kg/m²) and obesity (BMI > 30 kg/m² or a discharge diagnosis of obesity) compared with "normal" weight (BMI 18.5–24.9 kg/m²). If studies reported relative risk separately for men and women, we combined the gender-specific estimates to the pooled analysis. When non-standard BMI categories were provided, we selected the category that was most closed to those defined by the WHO. Summary relative risk (SRR) estimates with their corresponding 95% CIs were combined in a random-effects model. Subgroup analyses were performed according to study design (cohort and case-control studies), gender (men and women), and geographic location (non-Asia and Asia), BMI assessment (measurement and self-reported), Follow-up time (>10 years and <10 years), smoking status (smokers and non-smokers), Alcohol abuse (Yes and No). We performed sensitivity analysis to estimate the influence of each individual study on the summary results by repeating the random-effects meta-analysis after omitting one study at a time.

To investigate the sources of heterogeneity across these studies, we performed heterogeneity test, and sensitivity analysis. In heterogeneity test, we used the Cochran Q and I^2 statistics [15], which were used to test whether the differences found between studies were due to chance. For the Q statistic, a p-value of less than 0.10 was considered statistically significant heterogeneity. Publication bias was evaluated using funnel plots and the Egger's test [16]. In the presence of publication bias, we used the "trim and fill" method to correct such bias [17]. Meta-analyses were performed using STATA12.0 (StataCorp., College Station, TX, USA).

3. Results

3.1. Search Results and Study Characteristics

A total of 883 citations were identified through the literature search. Among the 883 citations, 34 were potentially relevant to the meta-analysis. Among the 34 full text articles, eight studies were not associated with GBC risk, three studies were excluded because gallbladder cancer was not distinguished from extra-hepatic bile duct cancer, and three studies did not provide RR with corresponding CI (or data to calculate them). Finally, a total of 12 cohort studies [8,9,11,18–26] (involving 5101 cases) and 8 case-control studies [10,12,27–32] (involving 1013 cases and 43,591 controls) with data on BMI and/or obesity related to GBC incidence were included in the meta-analysis (Figure 1). The main characteristics of the included studies were of acceptable quality (NOS < 7).

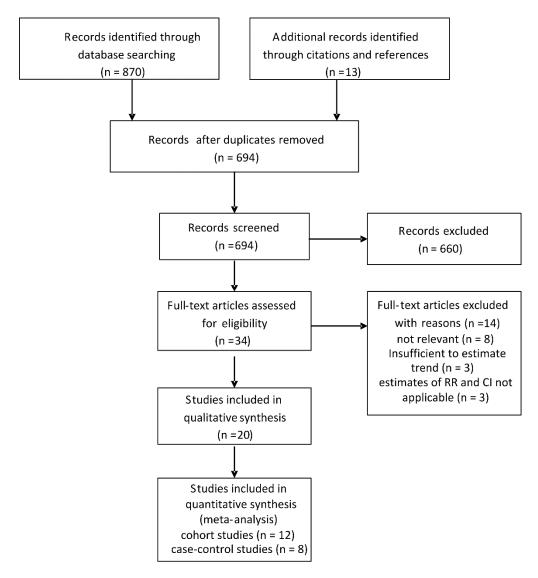


Figure 1. Flow chart of selection of studies included in the meta-analysis.

3.2. Quantitative Data Synthesis

As shown in Figure 2A,B, meta-analysis of the 20 studies in a random-effects model found that a statistically significant positive association was observed between BMI and GBC risk (overweight: SRRs = 1.14, 95% CI = 1.04–1.25, Q = 23.85, $I^2 = 24.9\%$; obesity: SRRs = 1.56, 95% CI = 1.41–1.73, m, $I^2 = 15.4\%$) compared to "normal weight". We then performed subgroup analyses by study design, gender, geographic location, ascertainment of exposure and adjustment for confounders, as shown in Table 3.

Author, Year, Country (Study Period), Source, [Reference No.]					_	Effect Estima	te ^a (95% CI)		
	, Case Size	Controls Size	Age: Mean or Range	BMI Ascertainment	BMI – Categories (kg/m ²)	Men	Women	Adjustments	NOS
Strom, 1995, Mexico and Bolivia (1984–1988) Hospital, [10]	65	110	45–75	Self-reported	<24.0 24.0–25.9 26.0–28.9 >28.0	Men and women 1.0 (reference) 1.5 (0.5–4.6) 2.2 (0.7–8.4) 1.6 (0.4–6.1)	NA	Age, sex, country	6
Zatonski, 1997, Australia, Canada, The Netherlands and Poland (1983–1988) Population, [32]	189	1479	62.7 m 64.2 f	Self-reported	Quartile 1 Quartile 2 Quartile 3 Quartile 4	1.0 (reference) 1.0 (0.3–3.0) 0.7 (0.3–2.0) 1.0 (0.3–2.8)	1.00 (reference) 1.70 (0.90–3.10) 1.50 (0.80–3.00) 2.10 (1.20–3.80)	Age, sex, center, education, alcohol, smoking, type of interview	7
Serra, 2002, Chile (1992–1995) Hospital, [31]	114	114	65.8 m 70.6 f	Self-reported	<25.0 25.0–29.9 ≥30.0	Men and women 1.0 (reference) 0.8 (0.4–1.4) 0.9 (0.4–1.8)	NA	Age, sex	7
Máchová, 2007, Czech (1987–2002) Population, [29]	93	37772	30-64	Measured	$ \begin{array}{r} 18.5-24.9 \\ 25-30 \\ \geqslant 30.0 \end{array} $	1.00 (reference) 1.01 (0.24–4.32) 0.76 (0.08–7.41)	1.00 (reference) 1.07 (0.58–1.95) 0.73 (0.36–1.50)	Age, smoking, height, hypertension	8
Hsing, 2008, China (1997–2001) Population, [28]	365	959	34–74	Self-reported	<18.5 18.5–22.9 23.0–24.9 ≥25	Men and women 0.62 (0.35–1.09) 1.0 (reference) 1.2 (0.85–1.68) 1.56 (1.17–2.10)	NA	Age, sex, education	6
Grainge, 2009, United Kingdom (1987–2002) Population, [27]	86	3007	72	Measured	<25 25–29.9 ≥30.0	Men and women 1.00 (reference) 1.03 (0.62–1.72) 1.51 (0.83–2.75)	NA	Smoking, alcohol, NSAID use	8
Nakadaira, 2009, Hungary (2003–2006) hospital, [30]	41	30	40-69	NA	≤24.9 25.0–29.9 ≥30.0	Men and women 1.00 (reference) 1.5 (0.4-5.0) 0.8 (0.3–1.8)	NA	Age	7
Alvi, 2011, Pakistan (1988–2007) hospital, [12]	60	120	18–75	Measured	<23 >23	Men and women 1.00 (reference) 1.98 (0.62–6.28)	NA	Sex, hypertension, diabetes, smoking	7

Table 1. Characteristics of eight case-control studies.

NA data not applicable; m, male; f, female; ^a relative risks are rate ratios, odds ratios, or standardized incidence ratios.

Author, Year, Country,	Total	Age: Mean			– Adjustments	NOS				
(Study Period) [Ref. No.]	Cohort	or Range	Cases	Years	Ascertainment	Categories (kg/m ²)	Men	Women	- Aujustinentis	NUS
Moller, 1994, Denmark			5	Discharge	Non-obese	1.00 (reference)	1.00 (reference)	4 72	6	
(1977–1987), [9]	43963	50 III 60 I	20	3	diagnosis	Obese	0.50 (0.1-1.8)	1.40 (0.9–2.1)	Age	0
Wolk, 2001, Sweden	28129	46.1	31	10.2 Discharge Non-obese 1.00 (reference) 1.00 (reference)	1.00 (reference)	Age, calendar year	7			
(1965–1993), [8]	20129	40.1	51	10.3	diagnosis	Obese	0.90 (0.1-3.4)	1.70 (1.1-2.5)	Age, calendar year	1
						18.5-24.9	1.00 (reference)	1.00 (reference)	Age, race, marital	
Calle, 2003, United States	900053	57	484	16	Self-reported	25.0-29.9	1.34 (0.97 - 1.84)	1.12 (0.86–1.47)	status, smoking,	U ['] X
(1982–1998), [18]						30.0-34.9	1.76 (1.06 - 2.94)	2.13(1.56-2.90)	aspirin, alcohol,	0
						50.0-54.9	· · · · · ·	2.13 (1.30-2.90)	estrogen therapy (w)	
Samanic, 2004, United	4500700	52.18 whites	338 m	12	Discharge	Non-obese	1.00 (reference)	NA	A an enlander waar	6
States (1969–1996), [25]	States (1969–1996), [25] m 47.63		556 m	12	diagnosis	Obese	1.63(1.10–2.41) ^b	INA	Age, calendar year	6
Encolond 2005 Norman						18.5-24.9	1.00 (reference)	1.00 (reference)		
Engeland, 2005, Norway	2001719	20-74	1,715	13	Measured	25.0-29.9	1.00 (0.84-1.17)	1.27 (1.10-1.47)	Age, birth cohort	7
(1963–2001), [19]			-,0			≥30.0	1.38 (1.01–1.89)	1.88 (1.60-2.21)	0	
						18.5-24.9	· · · · · · · · · · · · · · · · · · ·	1.00 (reference)		
Kuriyama, 2005, Japan	27520	> 10	22	0	C 1(1	25.0-27.4	1.00 (reference)	0.83 (0.23-2.98)	Age, smoking, health	7
(1984–1992), [22]	27539	≥40	33	9	Self-reported	27.5-29.9	0.46 (0.05-3.93)	3.43 (1.19–9.94)	insurance, alcohol	1
						≥30.0		4.45(1.39-14.23)	·	
	781283 m		102	10	Measured	21.0-22.9	1.00 (reference)		Age, smoking, alcohol,	
Oh, 2005, Korea						23.0-24.9	1.55 (1.10-2.20)			_
(1992–2001), [23]		≥20	182			25.0-26.9	1.15 (0.74-1.80)	NA		7
						27.0-29.9	1.25 (0.70-2.24)		exercise, region	
						18.5-24.9	1.0 (reference)			
Samanic, 2006, Sweden	362552	34.3	109	19	Measured	25.0-29.9	0.93 (0.62–1.39)	NA	Age, smoking	8
(1971–1999), [24]	m	0 - 10				≥30.0	1.40 (0.73–2.70)		8-,8	Ū.
						≤22.9	1.00 (reference)	1.00 (reference)		
Ishiguro, 2008, Japan						23.0-24.9	0.74 (0.28–1.92)	0.47 (0.22–0.98)	Age, gender, study	
(1994–2004), [20]	101868	40-69	90	10.9	Self-reported	25.0-26.9	1.26 (0.48–3.33)	0.62 (0.29–1.34)	area, diabetes,	6
						≥27.0	1.39 (0.45–4.34)	0.94 (0.48 - 1.88)	smoking, alcohol	
						23.0–24.9	1.00 (reference)	1.00 (reference)		
Jee, 2008, Korean	1213829	45.0 m 49.4 f	1882	10.8	Measured	25.0-29.9	0.97 (0.86–1.10)	1.27 (1.02–2.12)	Age, smoking	8
(1992–2006), [21]	121002)	10.0 III 19.111	1002	10.0	meusureu	≥30	1.65 (1.11–2.44)	1.44(0.98-2.12)	rige, billoking	0
						21.0-22.9	1.00 (1.11 2.11)	1.00 (reference)		
						23.0-24.9		1.06 (0.62–1.80)	Age, height,	
Song, 2008, Korean	170481 f	81 f 55.9	55.9 181	1 8.75	Measured			1.30(0.76-2.22)	smoking, alcohol,	7
(1994–2003), [26]	1,01011	00.7	101	0.70	manualla	27.0-29.9	1 1/ 1	1.86 (1.09–3.18)	exercise, pay level	
						≥7.0-2).) ≥30		2.10(0.97-4.51)	excretese, puy level	
							Men and women	2.10 (0.77 1.01)		
Hemminki, 2011, Sweden	30020	NA	28	11.2	Discharge	Non-obese	1.00 (reference)	NA	Age, sex, region,	7
(1964–2006), (11)	30020	1 173	20	11.4	diagnosis	obese	1.73 (1.16–2.57) ^c	INA	economic status	/
							1.75(1.10-2.57)			

Table 2. Characteristics of 12 cohort studies.

NA data not applicable; m, male; f, female; ^a relative risks are rate ratios, odds ratios, or standardized incidence ratios; ^b combined whites and blacks; ^c combined obesity and family obesity.

Study ID			RR (95% Cl)	Weight %
cohort	_			
Calle 2003 M [18]			1.34 (0.97, 1.84)	6.12
Calle 2003 W [18]			1.12 (0.86, 1.47)	7.86
Engeland 2005 M [19] Engeland 2005 W [19]			1.00 (0.84, 1.17) 1.27 (1.10, 1.47)	13.38 14.90
Curiyama 2005 W [22]			1.77 (0.44, 7.08)	0.43
Suriyama 2005 M [22]	è		0.46 (0.05, 3.93)	0.18
Dh 2005 M [23]	`		1.55 (1.10, 2.20)	5.42
Samanic 2006 M [24]			0.93 (0.62, 1.39)	4.25
lee 2008 M [21]			0.97 (0.86, 1.10)	16.62
Jee 2008 W [21]			1.27 (1.02, 2.12)	4.99
Ishiguro 2008 M [20]			1.26 (0.48, 3.33)	0.87
Ishiguro 2008 W [20]			0.62 (0.29, 1.34)	1.36
Song 2008 W [26]			1.56 (1.06, 2.27)	4.68
Subtotal ($I^2 = 45.5\%$, $p = 0$	037)		1.15 (1.02, 1.29)	81.05
case-control				
Strom 1995 M/W [10]		\rightarrow	2.20 (0.70, 8.40)	0.54
Zatonski 1997 M [32]	<		0.81 (0.39, 1.68)	1.49
Zatonski 1997 W 132J			1.60 (1.02, 2.52)	3.52
Serra 2002 M/W [31]	<		0.80 (0.40, 1.40)	1.97
Machova 2007 M [29]	< + <u>+</u> +	_	1.01 (0.24, 4.32)	0.40
Machova 2007 W 1291			1.07 (0.58, 1.95)	2.10
Hsing 2008 M/W [28]			1.20 (0.85, 1.68)	5.57
Nakadaira 2009 M/W 1301	←	>	1.50 (0.40, 5.00)	0.52
Grainge 2009 M/W [27]			1.03 (0.62, 1.72)	2.86
Subtotal ($I^2 = 0.0\%, p = 0.0$	75)		1.16 (0.96, 1.41)	18.95
Overall ($I^2 = 24.9\%, p = 0$.	41)		1.14 (1.04, 1.25)	100.00
	5 1	5		
Study ID		R	RR (95% CI)	
Study ID cohort		F	RR (95% CI)	Weigh %
cohort Moller 1994 M [9]		0	0.50 (0.10, 1.80)	%
Cohort Moller 1994 M [9] K Moller 1994 W [9]		0	0.50 (0.10, 1.80) .40 (0.90, 2.10)	% 0.48 4.69
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] ←	*	0 1 0	0.50 (0.10, 1.80) .40 (0.90, 2.10) 0.90 (0.10, 3.40)	0.48 4.69 0.33
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] ← Wolk 2001 W [8]		0 1 0 1	0.50 (0.10, 1.80) .40 (0.90, 2.10) 0.90 (0.10, 3.40) .70 (1.10, 2.50)	% 0.48 4.69 0.33 4.93
D cohort Moller 1994 M [9] Wolk 2001 M [8] Wolk 2001 W [8] Calle 2003 M [18]	• • • • • • • • • • • • • • • • • • •	0 1 0 1 1	0.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94)	% 0.48 4.69 0.33 4.93 3.42
ID cohort Moller 1994 M [9] Wolk 2001 M [8] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 W [18]		0 1 0 1 1 2	2.50 (0.10, 1.80) .40 (0.90, 2.10) 9.90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90)	% 0.48 4.69 0.33 4.93 3.42 7.58
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Samanic 2004 M [25]		0 1 0 1 1 2 1	1.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31
D pohort Moller 1994 M [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Samanic 2004 M [25] Engeland 2005 M [19]		0 1 0 1 1 2 1 1	1.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .38 (1.01, 1.89)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46
D cohort Moller 1994 M [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 W [19] Calle 2005 M [19] Calle 2005 M [19] Calle 2005 M [19] Calle 2005 M [19]		0 1 0 1 1 2 1 1 1 1	50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .38 (1.01, 1.89) .88 (1.60, 2.21)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74
D sohort Moller 1994 M [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Engeland 2005 W [19] Surjana 2005 W [22]		0 1 0 1 1 2 1 1 1 1	1.50 (0.10, 1.80) (.40 (0.90, 2.10) (.90 (0.10, 3.40) (.70 (1.10, 2.50) (.76 (1.06, 2.94) (.13 (1.56, 2.90) (.63 (1.10, 2.41) (.38 (1.60, 2.21) (.45 (1.39, 14.23)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74
D pohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Samanic 2004 M [25] Engeland 2005 M [19] Engeland 2005 M [19] Curiyama 2005 W [22] Dh 2005 M [23]		00 11 12 11 11 11 11 14 14 11	50 (0.10, 1.80) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 76 (1.06, 2.94) 13 (1.56, 2.90) 63 (1.10, 2.41) 38 (1.01, 1.89) 88 (1.60, 2.21) 45 (1.39, 14.23) 19 (0.83, 1.69)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] C		0 1 0 1 1 2 1 1 1 1 1 4 4 1 1	50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .38 (1.01, 1.89) .88 (1.60, 2.21) .45 (1.39, 14.23) .19 (0.83, 1.69) .40 (0.73, 2.70)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Engeland 2005 W [19] Kuriyama 2005 W [22] Dh 2005 M [24] Samanic 2006 M [24] Shiguro 2008 M [20] ←		0 1 1 2 1 1 1 1 1 1 4 1 1 - 1	250 (0.10, 1.80) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 7.6 (1.06, 2.94) 1.3 (1.56, 2.90) 6.3 (1.10, 2.41) 3.8 (1.01, 1.89) 8.8 (1.60, 2.21) 4.5 (1.39, 14.23) 1.9 (0.83, 1.69) 3.9 (0.45, 4.34)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77
D pohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Engeland 2005 M [19] Engeland 2005 W [19] Ch 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] ← Shiguro 2008 W [20] ←		0 1 1 2 1 1 1 1 1 4 1 1 - 1 0	450 (0.10, 1.80) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 76 (1.06, 2.94) 13 (1.56, 2.90) 63 (1.10, 2.41) 38 (1.01, 1.89) 88 (1.60, 2.21) 45 (1.39, 14.23) 19 (0.83, 1.69) 40 (0.73, 2.70) 39 (0.45, 4.34) 94 (0.48, 1.88)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03
D cohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [19] Engeland 2005 M [19] Engeland 2005 M [19] Calle 2005 M [21] Samanic 2006 M [20] € (shiguro 2008 M [20] €		0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .38 (1.61, 1.89) .88 (1.60, 2.21) .45 (1.39, 14.23) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27
D sohort Moller 1994 M [9] ← Moller 1994 W [9] Wolk 2001 M [8] ← Wolk 2001 W [8] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Engeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] shiguro 2008 M [20] ← lee 2008 M [21] lee 2008 W [21]		0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 (0.10, 1.80) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 76 (1.06, 2.94) 13 (1.56, 2.90) 63 (1.10, 2.41) 38 (1.60, 2.21) 45 (1.39, 14.23) 19 (0.83, 1.69) 39 (0.45, 4.34) 94 (0.48, 1.88) 65 (1.11, 2.44) 44 (0.98, 2.12)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 0.77 2.03 5.27 5.45
D obort doller 1994 M [9] doller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [19] Calle 2005 M [19] Calle 2005 M [19] Calle 2005 M [19] Calle 2005 M [21] Calle 2005 M [22] Charles 2008 M [20] e 2008 M [21] ce 2008 W [21] Song 2008 W [26]		0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 (0.90, 2.10) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 76 (1.06, 2.94) 13 (1.56, 2.90) 63 (1.10, 2.41) 38 (1.01, 1.89) 88 (1.60, 2.21) 45 (1.39, 14.23) 19 (0.83, 1.69) 40 (0.73, 2.70) 39 (0.45, 4.34) 94 (0.45, 4.34) 44 (0.98, 2.12) 110 (0.97, 4.51)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 2.03 5.27 5.45 1.63
D ohort Aoller 1994 M [9] ← Aoller 1994 W [9] Volk 2001 M [8] ← Calle 2003 M [18] Calle 2003 M [19] Carriyama 2005 M [19] Carriyama 2005 M [19] Carriyama 2005 M [21] Shiguro 2008 M [20] ← ee 2008 M [21] ee 2008 W [26] Carriyama 2011 M/W [11]		0 1 0 1 1 1 1 1 1 1 1 - 1 1 1 - 1 1 1 1	50 (0.10, 1.80) 40 (0.90, 2.10) 90 (0.10, 3.40) 70 (1.10, 2.50) 76 (1.06, 2.94) 13 (1.56, 2.90) 63 (1.10, 2.41) 38 (1.60, 2.21) 45 (1.39, 14.23) 19 (0.83, 1.69) 39 (0.45, 4.34) 94 (0.48, 1.88) 65 (1.11, 2.44) 44 (0.98, 2.12)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45
D sohort Moller 1994 M [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 W [18] Calle 2003 M [19] Engeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow shiguro 2008 M [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($T^2 = 14.9\%$, $p = 0$	275)	0 1 0 1 1 1 1 1 1 1 1 - 1 1 1 - 1 1 1 1	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.90) \\ .63 & (1.10, 2.41) \\ .38 & (1.01, 1.89) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .19 & (0.83, 1.69) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19
D sohort Moller 1994 M [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 W [8] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Engeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] shiguro 2008 M [20] \leftarrow lee 2008 M [21] lee 2008 W [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($P = 14.9\%, p = 0$ case-control Strom 1995 M/W [10] \leftarrow	275)	0 1 0 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.90) \\ .63 & (1.10, 2.41) \\ .38 & (1.01, 1.89) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .19 & (0.83, 1.69) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19
D sohort Moller 1994 M [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 W [8] Salle 2003 M [18] Samanic 2004 M [25] Singeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] \leftarrow ee 2008 M [21] ee 2008 W [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($T^2 = 14.9\%, p = 0$ case—control Strom 1995 M/W [10] \leftarrow	275)	0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \textbf{A}, \textbf{50} \ (0,10,1.80) \\ \textbf{A0} \ (0.90,2.10) \\ \textbf{90} \ (0.10,3.40) \\ \textbf{70} \ (1.10,2.50) \\ \textbf{77} \ (1.10,2.50) \\ \textbf{77} \ (1.10,2.50) \\ \textbf{77} \ (1.10,2.50) \\ \textbf{78} \ (1.01,1.89) \\ \textbf{88} \ (1.01,1.89) \\ \textbf{88} \ (1.01,1.89) \\ \textbf{88} \ (1.01,1.89) \\ \textbf{88} \ (1.01,1.89) \\ \textbf{43} \ (1.01,1.89) \\ \textbf{44} \ (0.73,2.70) \\ \textbf{39} \ (0.45,1.34) \\ \textbf{94} \ (0.48,1.88) \\ \textbf{.65} \ (1.11,2.44) \\ \textbf{.44} \ (0.98,2.12) \\ \textbf{.73} \ (1.16,2.57) \\ \textbf{.62} \ (1.45,1.81) \\ \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 0.74 0.77 2.03 5.27 5.45 1.63 5.19 79.40
D whort Moller 1994 M [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Samanic 2004 M [25] Engeland 2005 W [19] Calle 2005 M [22] Charlow 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow e 2008 M [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($T^2 = 14.9\%$, $p = 0$ catonski 1997 M [32] \leftarrow fatonski 1997 W [32]	275)	0 1 1 1 1 1 1 1 1 1 1 1 1 1	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .70 (1.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.0, 2.41) .88 (1.60, 2.21) .45 (1.39, 14.23) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44) .40 (0.98, 2.12) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76
D sohort Moller 1994 M [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 M [8] Calle 2003 M [18] Samanic 2004 M [25] Singeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] \leftarrow Shiguro 2008 M [20] \leftarrow Shiguro 2008 M [20] \leftarrow Shiguro 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($T^2 = 14.9\%$, $p = 0$ Catonski 1997 M [32] Serra 2002 M/W [31] \leftarrow	275)	0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.94) \\ .13 & (1.56, 2.94) \\ .13 & (1.56, 2.94) \\ .13 & (1.56, 1.18) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .45 & (1.39, 14.23) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .44 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \\ .62 & (1.45, 1.81) \\ \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.77 0.35 1.63 5.163 5.19 7.540 0.54 0.80 2.76
D whort doller 1994 M [9] \leftarrow doller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [19] Engeland 2005 M [19] Engeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow e 2008 M [21] e 2008 M [21] Song 2008 W [20] \leftarrow case-control Strom 1995 M/W [19] \leftarrow Catonski 1997 M [32] \leftarrow Catonski 1997 M		$0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 3.40) .90 (0.10, 3.40) .90 (0.10, 3.40) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .88 (1.60, 2.21) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.84, 1.88) .65 (1.11, 2.44) .94 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .76 (0.88, 7.41)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 1.63 5.19 79.40 0.54 0.80 2.76 1.69 0.20
D where the set of t		0 1 1 1 1 1 1 1 1 1 1 1 1 1	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.60, 2.24) .38 (1.60, 2.21) .45 (1.39, 14.23) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44) .40 (0.8, 2.12) .10 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .76 (0.08, 7.41) .73 (0.36, 1.50)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 0.74 0.74 0.75 1.63 5.19 79.40 0.54 0.80 2.76 1.69 0.20 1.87
D sohort Moller 1994 M [9] Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Singeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] e 2008 M [21] song 2008 W [26] Herminki 2011 M/W [11] Subtotal ($I^2 = 14.9\%$, $p = 0$ Catonski 1997 M [32] Serra 2002 M/W [31] Serra 2002 M/W [29] Machova 2007 M [29] Machova 2007 M [29] Machova 2008 M/W [28]		$0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.90) \\ .63 & (1.10, 2.41) \\ .38 & (1.01, 2.41) \\ .38 & (1.01, 1.89) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .94 & (0.48, 1.88) \\ .60 & (0.48, 1.88) \\ .56 & (1.11, 2.44) \\ .44 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \\ .62 & (1.45, 1.81) \\ \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.54 0.80 2.76 1.69 0.20 0.87 8.22
D whort Moller 1994 M [9] \leftarrow Moller 1994 W [9] \leftarrow Moller 1994 W [9] Wolk 2001 M [8] \leftarrow Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [19] Engeland 2005 M [19] Engeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow shiguro 2008 M [20] \leftarrow Song 2008 W [21] Song 2008 W [21] Song 2008 W [22] Hemminki 2011 M/W [11] Subtotal ($f^2 = 14.9\%, p = 0$ Catonski 1997 M [32] \leftarrow Zatonski 1997 M [32] \leftarrow Samachova 2007 M [29] \leftarrow Machova 2007 M [29] \leftarrow Shiguro 2008 M/W [28] Srainge 2009 M/W [27]		$0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 3.40) .90 (0.10, 3.40) .90 (0.10, 3.40) .76 (1.06, 2.94) .13 (1.56, 2.90) .63 (1.10, 2.41) .88 (1.60, 2.21) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.83, 1.69) .40 (0.82, 2.12) .10 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .76 (0.88, 7.41) .73 (0.36, 1.50) .56 (1.17, 2.10) .51 (0.38, 2.75)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76 0.20 1.87 8.22 2.57
D obort Moller 1994 M [9] Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 M [19] Engeland 2005 M [19] Calle 2005 M [21] Calle 2005 M [22] Charload State 1 Calle 2008 M [20] Calle 2008 M [20] Ca		0 1 1 1 1 1 1 1 1 1 1 1 1 1	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.0, 2.41) .88 (1.60, 2.21) .45 (1.39, 14.23) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44) .40 (0.98, 2.12) .10 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .76 (0.08, 7.41) .73 (0.36, 1.50) .56 (1.17, 2.10) .51 (0.83, 2.75) .80 (0.30, 1.80)	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76 1.69 0.20 0.87 8.22 2.57 1.22
D sohort Moller 1994 M [9] Moller 1994 W [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 M [18] Calle 2003 W [18] Samanic 2004 M [25] Singeland 2005 W [19] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] Shiguro 2008 M [20] ee 2008 M [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($I^2 = 14.9\%, p = 0$ Catonski 1997 M [32] Serra 2002 M/W [31] Serra 2007 M [29] Machova 2007 M [29] Srainge 2009 M/W [27] Srainge 2009 M/W [27] Srainge 2009 M/W [27] Srainge 2009 M/W [27] Shigura 2009 M/W [30] Shigura 2009 M/W [30] Shigura 2009 M/W [30] Stata 2009 M/W [30] Shigura 2009 M/W		0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.90) \\ .63 & (1.10, 2.41) \\ .38 & (1.01, 1.89) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .19 & (0.83, 1.69) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .41 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \\ .62 & (1.45, 1.81) \\ \hline \end{array}$	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.58 5.31 7.68 5.31 7.64 1.9 2.19 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76 0.20 1.69 0.20 1.87 8.22 2.57 1.22 0.74
The set of	91)	$0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.189) .88 (1.60, 2.21) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44) .44 (0.98, 2.12) .10 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .90 (0.40, 1.80) .90 (0.40, 1.80) .56 (1.17, 2.10) .51 (0.83, 2.75) .80 (0.30, 1.80) <	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.03 5.27 1.63 5.19 79.40 0.54 0.80 2.76 1.87 8.22 2.57 1.22 0.74 20.60
D sohort Moller 1994 M [9] Moller 1994 M [9] Wolk 2001 M [8] Calle 2003 M [18] Calle 2003 W [18] Calle 2003 W [18] Calle 2003 W [18] Calle 2003 W [19] Curiyama 2005 M [19] Curiyama 2005 W [19] Curiyama 2005 W [21] Curiyama 2005 W [22] Dh 2005 M [23] Samanic 2006 M [24] shiguro 2008 W [20] ee 2008 M [21] ee 2008 M [21] ee 2008 W [21] Song 2008 W [26] Hemminki 2011 M/W [11] Subtotal ($I^2 = 14.9\%$, $p = 0$ catonski 1997 M [32] Serra 2002 M/W [31] Serra 2002 M/W [31] Serra 2007 M [29] Kachova 2007 W [29] Frainge 2009 M/W [29] Samanic 2009 M/W [21] Subtotal ($I^2 = 5.5\%$, $p = 0$.	91)	$0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 1.50 & (0.10, 1.80) \\ .40 & (0.90, 2.10) \\ .90 & (0.10, 3.40) \\ .70 & (1.10, 2.50) \\ .76 & (1.06, 2.94) \\ .13 & (1.56, 2.90) \\ .63 & (1.10, 2.41) \\ .38 & (1.01, 1.89) \\ .88 & (1.60, 2.21) \\ .45 & (1.39, 14.23) \\ .19 & (0.83, 1.69) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .40 & (0.73, 2.70) \\ .39 & (0.45, 4.34) \\ .41 & (0.98, 2.12) \\ .10 & (0.97, 4.51) \\ .73 & (1.16, 2.57) \\ .62 & (1.45, 1.81) \\ \hline \end{array}$	% 0.48 4.69 0.33 4.93 3.423 7.58 5.31 7.46 15.74 0.77 0.35 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76 1.69 0.20 1.87 8.22 2.57 1.22 0.74
(D cohort Moller 1994 M [9] Wolk 2001 M [8] Wolk 2001 W [8] Calle 2003 M [18]	91)	$0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	4.50 (0.10, 1.80) .40 (0.90, 2.10) .90 (0.10, 3.40) .90 (0.10, 2.50) .76 (1.06, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.56, 2.94) .13 (1.189) .88 (1.60, 2.21) .19 (0.83, 1.69) .40 (0.73, 2.70) .39 (0.45, 4.34) .94 (0.48, 1.88) .65 (1.11, 2.44) .44 (0.98, 2.12) .10 (0.97, 4.51) .73 (1.16, 2.57) .62 (1.45, 1.81) .60 (0.40, 6.10) .00 (0.30, 2.80) .10 (1.20, 3.80) .90 (0.40, 1.80) .90 (0.40, 1.80) .90 (0.40, 1.80) .56 (1.17, 2.10) .51 (0.83, 2.75) .80 (0.30, 1.80) <	% 0.48 4.69 0.33 4.93 3.42 7.58 5.31 7.46 15.74 0.74 6.19 2.19 0.77 2.03 5.27 5.45 1.63 5.19 79.40 0.54 0.80 2.76 1.63 0.54 0.80 2.76 1.87 8.22 2.57 1.22 0.74 20.60

Figure 2. (**A**) Forest plot of risk of gallbladder cancer associated with overweight in general population; (**B**) Forest plot of risk of gallbladder cancer associated with obesity in general population. M, men; W, women; RR, relative risk.

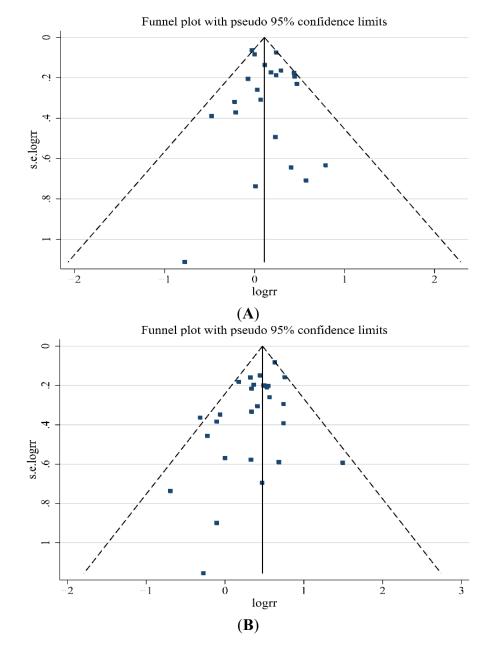
		Overw		Obesity						
	Studies, n	RR (95% CI)	$p_{\rm h}$	Q	I ² ,%	Studies, n	RR (95% CI)	$p_{\rm h}$	Q	I ² ,%
Study design										
Cohort studies	12	1.15 (1.02-1.29)	0.04	22.03	45.5	12	1.62 (1.45-1.81)	0.28	19.98	14.9
Case-control studies	8	1.16 (0.96-1.41)	0.68	5.75	0	8	1.37 (1.10–1.71)	0.39	9.52	5.5
Follow-up time										
>10 years	6	1.12 (1.00-1.27)	0.04	17.78	49.4	9	1.65 (1.49–1.83)	0.40	13.58	4.3
<10 years	2	1.52 (1.06-2.19)	0.54	1.22	0	3	1.69 (0.91-3.17)	0.10	6.32	52.5
Control source										
Hospital	3	1.14 (0.61-2.03)	0.30	2.39	16.4	4	1.07 (0.66-1.74)	0.57	2.03	0
Population	4	1.18 (0.96-1.46)	0.67	3.19	0	4	1.43 (1.09-1.89)	0.30	6.12	18.3
Sex										
Men	9	1.06 (0.94-1.20)	0.24	10.33	22.5	11	1.42 (1.21-1.66)	0.85	5.63	0
Women	8	1.26 (1.13-1.40)	0.45	6.84	0	10	1.67 (1.38-2.02)	0.06	16.38	45.0
Geographic region										
Asia	6	1.19 (0.98-1.45)	0.06	15.00	46.7	7	1.48 (1.26-1.74)	0.43	8.07	0.9
Non-Asia	9	1.14 (1.05–1.25)	0.43	12.20	1.7	13	1.58 (1.40-1.80)	0.22	22.38	19.6
BMI ascertainment										
Self-reported	7	1.18 (1.01–1.36)	0.46	9.74	0	7	1.65 (1.32-2.05)	0.20	12.16	26.0
Measured	7	1.14 (1.01–1.30)	0.04	17.40	48.3	8	1.51 (1.29–1.77)	0.20	13.52	26.1
Adjustment for confoun	ders smoking									
Yes	10	1.16 (1.02–1.31)	0.16	20.42	26.5	11	1.55 (1.31-1.83)	0.21	19.06	21.3
No	5	1.14 (0.98–1.32)	0.21	7.10	29.5	9	1.59 (1.40–1.80)	0.32	12.61	12.8
Alcohol intake										
Yes	7	1.27 (1.10-1.47)	0.37	10.87	8.0	7	1.64 (1.31-2.07)	0.15	13.31	32.4
No	8	1.08 (0.98–1.19)	0.25	12.59	20.6	13	1.56 (1.40–1.73)	0.36	18.44	7.8

Table 3. Subgroup analysis of relative risks for association between body mass index (BMI) and gallbladder cancer risk.

RR, relative risk; CI, confidence interval; BMI, body mass index; *p*_h, *p*-value for heterogeneity; *Q*, Cochran's Q statistics.

In stratified analysis by study design, a statistically significant positive association between BMI and GBC risk was observed for the cohort studies (overweight: SRRs = 1.15, 95% CI = 1.02–1.29; obesity: SRRs = 1.62, 95% CI = 1.45–1.81). Moreover, in cohort studies with follow-up time >10 years, overweight and obesity were strongly associated with incidence of GBC (overweight: SRRs = 1.12, 95% CI = 1.00–1.27; obesity: SRRs = 1.65, 95% CI = 1.49–1.83), while only overweight was observed associated with GBC risk in cohort studies with follow-up time < 10 years (SRRs = 1.52, 95% CI = 1.06–2.19). For the case-control studies, only obesity was strongly associated with GBC risk (SRRs = 1.37, 95% CI = 1.10–1.71). The SRRs of GBC incidence for obesity in population-based case-control studies was 1.43 (95% CI = 1.09–1.89); no significant association between obesity and GBC risk was observed in hospital-based case-control studies.

A significant gender-specific difference was observed in the association between obesity and GBC risk, and obese women had a higher risk of GBC (women: SRRs = 1.67, 95% CI = 1.38-2.02; men: SRRs = 1.42, 95% CI = 1.21-1.66). However, overweight men are not associated with risk of GBC (SRRs = 1.06, 95% CI = 0.94-1.20).


In stratified analysis by geographic location, the association between obesity and the risk of GBC was similar for both Asia and non-Asia (Table 3). For non-Asians, overweight was strongly associated with GBC incidence (SRRs = 1.14, 95% CI = 1.05–1.25; no significant association between overweight and the GBC risk was observed for Asians. In stratified analysis by BMI ascertainment, both overweight and obesity had a higher risk of GBC in self-report studies

In addition, when stratified by potential confounders, overweight people with smoking and alcohol consumption were strongly associated GBC risk, no significant association between overweight and the risk of GBC was found in those without smoking and alcohol consumption (non-smokers: SRRs = 1.14, 95% CI = 0.98-1.32; non-alcoholics: SRRs = 1.08, 95% CI = 0.98-1.19), indicating that smoking and alcohol consumption are positive confounders. No differences were observed in the association between obesity and GBC incidence when stratified by smoking and alcohol consumption.

3.3. Sensitivity Analyses and Publication Bias

In the sensitivity analyses, we removed one study at a time and calculated the SRRs. We found that there were no changes in the direction of effect when any one study was excluded, supporting the robustness of our results. For example, when the study of Engeland *et al.* [19] was excluded (which seemed to have a strong influence on the estimate of effect), the SRR remained similar with the overall pooled RRs (SRRs = 1.15, 95% CI = 1.03-1.28, $I^2 = 17.8\%$).

No indication of publication bias was observed in the literature on BMI and GBC risk in overweight group based on the Egger's test (p = 0.483) results (Figure 3A). For BMI and GBC risk in the obesity group, the funnel plot showed a little asymmetry (Figure 3B), indicating some evidence of bias. However, when the "trim and fill" approach was performed, data was unchanged, suggesting that the effect of publication bias could be negligible.

Figure 3. (A) Funnel plot of studies evaluating the association between overweight and gallbladder cancer risk (p = 0.483); (B) Funnel plot of studies evaluating the association between obesity and gallbladder cancer risk (p = 0.019).

4. Discussion and Conclusions

In this meta-analysis, we found that overweight and obesity were associated with 14% and 56% excess risk of GBC, respectively. Our results are consistent with previous studies that the association between obesity and GBC risk was higher in women than men. Women with overweight had a higher risk of GBC, while no significant association between overweight and the GBC risk was observed for men.

Several biological mechanisms were hypothesized for the possible carcinogenesis of gallbladder associated with excess body weight. Obesity is often accompanied with metabolic syndrome, characterized by insulin resistance, hyperglycemia, dyslipidemias, and hypertension [33]. In obese adults, alterations occur in the circulating levels of insulin, insulin-like growth factor (IGF)-1, adipokines, inflammatory factors, and pro-inflammatory cytokines. These mediators associated

with the obesity, contribute to cancer-related processes, including growth signaling, inflammation, and vascular alterations [34]. Furthermore, obesity and metabolic syndrome are risk factors for gallstone disease [35], which may indirectly increase the risk of GBC [36]. In addition, female sex hormones adversely influence hepatic bile secretion and gallbladder function [37]. Estrogens increase cholesterol secretion and diminish bile salt secretion, while progestins act by reducing bile salt secretion and impairing gallbladder emptying leading to stasis [38]. These may partially explain the stronger association observed with overweight or obesity in women than in men.

Our meta-analysis has several strengths. (1) This meta-analysis was based on 20 epidemiologic studies, which might minimize the possibility of selection bias. (2) Most of the included studies provided more than one RRs, which could be applicable to accurately subgroup analysis. (3) The included studies evaluated multiple confounders including smoking and alcohol. The relationships between BMI and risk of GBC in each study were derived from regression after adjustment at least for age and gender.

Our meta-analysis has limitations that affect interpretation of the true results. First, inadequate control for confounders may bias the results, leading to exaggeration or underestimation of risk estimates. Thus, when interpreting the association between excess body weight and GBC risk, possible unmeasured or residual confounding factors should be considered. Five studies were of acceptable quality (NOS < 7), mainly due to the adjustments made for confounders. Smoking and alcohol abuse is closely related to GBC risk. Subgroup analysis results also shown that overweight people with smoking and alcohol consumption were strongly associated GBC risk, while no significant association between overweight and the risk of GBC was found in those without smoking and alcohol consumption, suggesting that data from unadjusted studies might lead to an overestimation of overweight in the development of GBC. Interestingly, no differences were observed in the association between obesity and GBC incidence when stratified by smoking and alcohol consumption, suggesting that obesity might be an independent risk factor. Gallstone is closely related to GBC risk [39]. Meanwhile, obesity tends to be accompanied with DM, which is also associated with increased GBC risk [4,40]. However, most studies did not adjust for these risk factors. This could have led to an overestimation of the true association between obesity and risk of GBC. Second, although BMI is the most commonly used anthropometric tool to assess relative weight and classify obesity, BMI cannot make the distinction between an excess body weight due to high levels of fat mass or muscle mass. Generally, an excess fat mass is more frequently associated with metabolic syndrome than a high level of muscle mass, leading to increased risk of GBC. Furthermore, obese individuals differ in regional body fat distribution. Adipose tissue now is considered as an endocrine organ, playing an important role in tumor microenvironment. Abdominal adiposity might play a more important role than peripheral type of obesity in the development of abdominal cancer. Other tools, such as waist circumference (WC), waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR), which are more useful than BMI in determining abdominal adiposity, might be more sensitive in predicting the risk of abdominal cancer. However, little clinical evidence can be achieved to compare the screening potential of each tool. Third, several studies in this meta-analysis relied on self-reported weight and height data, which may attenuate the relative risk estimates. However, the SRRs for BMI ascertained by measurement were similar to those by self-reported. Finally, as in any meta-analysis, the possibility of publication bias is of concern, because a few studies with null results tend not to be published. However, the results from this study did not provide evidence for such a bias.

There was significant heterogeneity observed across studies about overweight and GBC risk, but the heterogeneity is low and acceptable with $I^2 = 31.9\%$, so we could combine studies in a meta-analysis. We analyzed this review in both fixed effects and random effects, and found that they had no significant differences. Thus, the more conservative one, random effects, was chosen finally. Next, when we tried to carry out subgroup analysis to investigate sources of heterogeneity, statistical heterogeneity was lower in analysis of case-control studies, population based studies,

Non-Asia studies and studies of BMI ascertainment by self-report, indicating that these might account for heterogeneity observed in studies about overweight and GBC risk.

In summary, findings of this meta-analysis provide evidence that excess body weight may increase GBC risk. Further studies that meet strict criteria on this subject are needed to strengthen the association between BMI and GBC risk, especially those adjusting potential confounding factors such as gallstones and DM.

Acknowledgments: This work was supported by grants from the National Natural Science Foundation of China (No. 81271876), Natural Science Foundation of Shandong Province (No. ZR2011HL004), Jining Science and Technology Project (No. 2014JNNK21-Liu Ning, 2010-Tan Wenbin), Program for Innovation of Graduate Education of Shandong Province (No. SDYY14014).

Author Contributions: Wenbin Tan and Min Gao conceived and designed the study. Wenbin Tan and Min Gao performed a literature search and identified eligible studies. Guoan Zhang, Tong Xu and Wen Cui extracted data from retrieved studies. Ning Liu carried out statistical analysis and interpreted results. The authors do not have any possible conflicts of interest. All drafts of the reports were written by Wenbin Tan and Min Gao. All authors read and approved the final paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BMI OR RR HR SRRs	Gallbladder cancer Body mass index Odds ratio Relative risk Hazard ratio Summary relative risks Confidence intervals Diabetes mellitus
DM	Diabetes mellitus

References

- 1. Misra, S.; Chaturvedi, A.; Misra, N.C.; Sharma, I.D. Carcinoma of the gallbladder. *Lancet Oncol.* 2003, *4*, 167–176. [CrossRef]
- Foster, J.M.; Hoshi, H.; Gibbs, J.F.; Iyer, R.; Javle, M.; Chu, Q.; Kuvshinoff, B. Gallbladder cancer: Defining the indications for primary radical resection and radical re-resection. *Ann. Surg. Oncol.* 2007, 14, 833–840. [CrossRef] [PubMed]
- 3. Hsing, A.W.; Bai, Y.; Andreotti, G.; Rashid, A.; Deng, J.; Chen, J.; Goldstein, A.M.; Han, T.Q.; Shen, M.C.; Fraumeni, J.F., Jr.; *et al.* Family history of gallstones and the risk of biliary tract cancer and gallstones: A population-based study in Shanghai, China. *Int. J. Cancer* **2007**, *121*, 832–838. [CrossRef] [PubMed]
- Jamal, M.M.; Yoon, E.J.; Vega, K.J.; Hashemzadeh, M.; Chang, K.J. Diabetes mellitus as a risk factor for gastrointestinal cancer among American veterans. *World J. Gastroenterol.* 2009, 15, 5274–5278. [CrossRef] [PubMed]
- Hou, L.; Xu, J.; Gao, Y.T.; Rashid, A.; Zheng, S.L.; Sakoda, L.C.; Shen, M.C.; Wang, B.S.; Deng, J.; Han, T.Q.; *et al.* CYP17 MspA1 polymorphism and risk of biliary tract cancers and gallstones: A population-based study in Shanghai, China. *Int. J. Cancer* 2006, *118*, 2847–2853. [CrossRef] [PubMed]
- Ji, J.; Hemminki, K. Variation in the risk for liver and gallbladder cancers in socioeconomic and occupational groups in Sweden with etiological implications. *Int. Arch. Occup. Environ. Health* 2005, 78, 641–649. [CrossRef] [PubMed]
- Moerman, C.J.; Bueno, D.M.H.; Runia, S. Smoking, alcohol consumption and the risk of cancer of the biliary tract; a population-based case-control study in The Netherlands. *Eur. J. Cancer Prev.* 1994, *3*, 427–436. [CrossRef] [PubMed]
- 8. Wolk, A.; Gridley, G.; Svensson, M.; Nyren, O.; McLaughlin, J.K.; Fraumeni, J.F.; Adam, H.O. A prospective study of obesity and cancer risk (Sweden). *Cancer Causes Control* **2001**, *12*, 13–21. [CrossRef] [PubMed]
- 9. Moller, H.; Mellemgaard, A.; Lindvig, K.; Olsen, J.H. Obesity and cancer risk: A Danish record-linkage study. *Eur. J. Cancer* **1994**, *30*, 344–350. [CrossRef]

- Strom, B.L.; Soloway, R.D.; Rios-Dalenz, J.L.; Rodriguez-Martinez, H.A.; West, S.L.; Kinman, J.L.; Polansky, M.; Berlin, J.A. Risk factors for gallbladder cancer. An international collaborative case-control study. *Cancer* 1995, *76*, 1747–1756. [CrossRef]
- 11. Hemminki, K.; Li, X.; Sundquist, J.; Sundquist, K. Obesity and familial obesity and risk of cancer. *Eur. J. Cancer Prev.* **2011**, *20*, 438–443. [CrossRef] [PubMed]
- 12. Alvi, A.R.; Siddiqui, N.A.; Zafar, H. Risk factors of gallbladder cancer in Karachi-a case-control study. *World J. Surg. Oncol.* **2011**, *9*, 164. [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. *JAMA* 2000, 283, 2008–2012. [CrossRef] [PubMed]
- 14. Wells, G.A.; Shea, B.; O'Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. *The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses*; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2013.
- 15. Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. *Stat. Med.* **2002**, *21*, 1539–1558. [CrossRef] [PubMed]
- 16. Sterne, J.A.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. *J. Clin. Epidemiol.* **2001**, *54*, 1046–1055. [CrossRef]
- 17. Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* **2000**, *56*, 455–463. [CrossRef] [PubMed]
- 18. Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N. Engl. J. Med.* **2003**, *348*, 1625–1638. [CrossRef] [PubMed]
- Engeland, A.; Tretli, S.; Austad, G.; Bjorge, T. Height and body mass index in relation to colorectal and gallbladder cancer in two million Norwegian men and women. *Cancer Causes Control* 2005, *16*, 987–996. [CrossRef] [PubMed]
- 20. Ishiguro, S.; Inoue, M.; Kurahashi, N.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Risk factors of biliary tract cancer in a large-scale population-based cohort study in Japan (JPHC study); with special focus on cholelithiasis, body mass index, and their effect modification. *Cancer Causes Control* **2008**, *19*, 33–41. [CrossRef] [PubMed]
- 21. Jee, S.H.; Yun, J.E.; Park, E.J.; Cho, E.R.; Park, I.S.; Sull, J.W.; Ohrr, H.; Samet, J.M. Body mass index and cancer risk in Korean men and women. *Int. J. Cancer* **2008**, *123*, 1892–1896. [CrossRef] [PubMed]
- 22. Kuriyama, S.; Tsubono, Y.; Hozawa, A.; Shimazu, T.; Suzuki, Y.; Koizumi, Y.; Suzuki, Y.; Ohmori, K.; Nishino, Y.; Tsuji, I. Obesity and risk of cancer in Japan. *Int. J. Cancer* 2005, *113*, 148–157. [CrossRef] [PubMed]
- Oh, S.W.; Yoon, Y.S.; Shin, S.A. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study. J. Clin. Oncol. 2005, 23, 4742–4754. [CrossRef] [PubMed]
- 24. Samanic, C.; Chow, W.H.; Gridley, G.; Jarvholm, B.; Fraumeni, J.J. Relation of body mass index to cancer risk in 362,552 Swedish men. *Cancer Causes Control* **2006**, *17*, 901–909. [CrossRef] [PubMed]
- 25. Samanic, C.; Gridley, G.; Chow, W.H.; Lubin, J.; Hoover, R.N.; Fraumeni, J.J. Obesity and cancer risk among white and black United States veterans. *Cancer Causes Control* **2004**, *15*, 35–43. [CrossRef] [PubMed]
- Song, Y.M.; Sung, J.; Ha, M. Obesity and risk of cancer in postmenopausal Korean women. J. Clin. Oncol. 2008, 26, 3395–3402. [CrossRef] [PubMed]
- 27. Grainge, M.J.; West, J.; Solaymani-Dodaran, M.; Aithal, G.P.; Card, T.R. The antecedents of biliary cancer: A primary care case-control study in the United Kingdom. *Br. J. Cancer* **2009**, *100*, 178–180. [CrossRef] [PubMed]
- Hsing, A.W.; Sakoda, L.C.; Rashid, A.; Chen, J.; Shen, M.C.; Han, T.Q.; Wang, B.S.; Gao, Y.T. Body size and the risk of biliary tract cancer: A population-based study in China. *Br. J. Cancer* 2008, *99*, 811–815. [CrossRef] [PubMed]
- Machova, L.; Cizek, L.; Horakova, D.; Koutna, J.; Lorenc, J.; Janoutova, G.; Janout, V. Association between obesity and cancer incidence in the population of the District Sumperk, Czech Republic. *Onkologie* 2007, *30*, 538–542. [CrossRef] [PubMed]
- 30. Nakadaira, H.; Lang, I.; Szentirmay, Z.; Hitre, E.; Kaster, M.; Yamamoto, M. A case-control study of gallbladder cancer in Hungary. *Asian Pac. J. Cancer Prev.* **2009**, *10*, 833–836. [PubMed]

- 31. Serra, I.; Yamamoto, M.; Calvo, A.; Cavada, G.; Baez, S.; Endoh, K.; Watanabe, H.; Tajima, K. Association of chili pepper consumption, low socioeconomic status and longstanding gallstones with gallbladder cancer in a Chilean population. *Int. J. Cancer* **2002**, *102*, 407–411. [CrossRef] [PubMed]
- 32. Zatonski, W.A.; Lowenfels, A.B.; Boyle, P.; Maisonneuve, P.; Bueno, D.M.H.; Ghadirian, P.; Jain, M.; Przewozniak, K.; Baghurst, P.; Moerman, C.J.; *et al.* Epidemiologic aspects of gallbladder cancer: A case-control study of the SEARCH Program of the International Agency for Research on Cancer. *J. Natl. Cancer Inst.* **1997**, *89*, 1132–1138. [CrossRef] [PubMed]
- Hursting, S.D.; Hursting, M.J. Growth signals, inflammation, and vascular perturbations: Mechanistic links between obesity, metabolic syndrome, and cancer. *Arterioscler. Thromb. Vasc. Biol.* 2012, 32, 1766–1770. [CrossRef] [PubMed]
- 34. Dali-Youcef, N.; Mecili, M.; Ricci, R.; Andres, E. Metabolic inflammation: Connecting obesity and insulin resistance. *Ann. Med.* **2013**, *45*, 242–253. [CrossRef] [PubMed]
- 35. Shebl, F.M.; Andreotti, G.; Meyer, T.E.; Gao, Y.T.; Rashid, A.; Yu, K.; Shen, M.C.; Wang, B.S.; Han, T.Q.; Zhang, B.H.; *et al.* Metabolic syndrome and insulin resistance in relation to biliary tract cancer and stone risks: A population-based study in Shanghai, China. *Br. J. Cancer* **2011**, *105*, 1424–1429. [CrossRef] [PubMed]
- 36. Randi, G.; Franceschi, S.; La Vecchia, C. Gallbladder cancer worldwide: Geographical distribution and risk factors. *Int. J. Cancer* **2006**, *118*, 1591–1602. [CrossRef] [PubMed]
- 37. Cirillo, D.J.; Wallace, R.B.; Rodabough, R.J.; Greenland, P.; LaCroix, A.Z.; Limacher, M.C.; Larson, J.C. Effect of estrogen therapy on gallbladder disease. *JAMA* **2005**, *293*, 330–339. [CrossRef] [PubMed]
- Gabbi, C.; Kim, H.J.; Barros, R.; Korach-Andre, M.; Warner, M.; Gustafsson, J.A. Estrogen-dependent gallbladder carcinogenesis in LXRbeta-/- female mice. *Proc. Natl. Acad. Sci. USA* 2010, 107, 14763–14768. [CrossRef] [PubMed]
- 39. Stinton, L.M.; Shaffer, E.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer. *Gut Liver* **2012**, *6*, 172–187. [CrossRef] [PubMed]
- 40. Ren, H.B.; Yu, T.; Liu, C.; Li, Y.Q. Diabetes mellitus and increased risk of biliary tract cancer: Systematic review and meta-analysis. *Cancer Causes Control* **2011**, *22*, 837–847. [CrossRef] [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).