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Abstract

Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous
learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are
near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of
instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance
to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the
good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the
solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided
feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant
improvement between the first and last trials and that solutions are significantly different from random tours that follow the
convex hull and do not have self-crossings. More importantly, we found that participants modified their current better
solutions in such a way that edges belonging to the optimal solution (‘‘good’’ edges) were significantly more likely to stay
than other edges (‘‘bad’’ edges), a hallmark of structural exploitation. We found, however, that more trials harmed the
participants’ ability to tell good from bad edges, suggesting that after too many trials the participants ‘‘ran out of ideas.’’ In
sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback
and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-
art heuristics.
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Introduction

We usually take for granted our capacities for vision, motor

control, and decision-making under uncertainty, without realizing

how computationally demanding these tasks may be [1–4]. Any

cursory examination of the resources needed to solve these tasks

would most likely reveal NP-Complete computational complexity

[5]. This term denotes a class of so-called ‘‘intractable’’ problems

whose solutions can be checked for correctness in polynomially-

bounded time, but finding the optimal solution would require an

exponential amount of time in the worst case (the hardest instance)

[5]. There is growing evidence, however, that humans find optimal

or near optimal solutions to instantiations of these hard problems

[6–8]. Although finding near optimal solutions may not necessarily

involve solving NP-complete problems, the consistency with which

humans conform to computationally optimal principles is intrigu-

ing. The strong connection between the computational and physical

worlds (e.g., see [9]) renders this apparent paradox relevant to

understanding how humans—and potentially other animals—are so

well prepared to deal with computational intractability.

A similar disconnection between the theoretical intractability of

problems and the practical performance of state-of-the-art

heuristics has led complexity theorists to develop more refined

analyses of hardness than those of worst-case complexity. These

refined analyses show that really hard instances seem to be rare in

practice and, hence, heuristic optimization specializes on solving

well the ‘‘typical’’ (i.e., non-artificial) instances [9–13]. There have

been two main ways to incorporate this instance-tune analysis into

complexity theory. One approach formally defines a richer family

of complexity classes, but sacrifices the straightforward application

of worst-case intractability—e.g., average-case complexity [14]

requires a representative distribution over instances that may be

hard to specify, smoothed analysis [13] is difficult to apply to

discrete problems, and parameterized complexity [15] requires a

non-trivial new dimension (parameter) of problem complexity.

Another approach, more appropriate for the purpose of our

paper, is to start from successful heuristics as a key to understand

the elements of good performance and to characterize instance

hardness. A key result in this approach has been the discovery of

hidden structures within instances that, once revealed, exponen-
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tially simplify the solution time [12]. Not surprisingly, good

heuristics seem to use these structures early on [16,17]. A direct

consequence of this structural exploitation is a search schedule that

spends more time improving the parts of the instance that are

likely sub-optimal while keeping intact what is already good

[11,18]. For example, state-of-the-art SAT solvers handle real-

world instances with tens of thousands of variables because they

are able to recognize the maximally-constrained variables and

know when to restart once this recognition is likely to be wrong

[12]. We hypothesize that these findings constitute a coherent

intellectual basis to study and understand the near-optimal human

performance on computationally intractable problems. In partic-

ular, the way human problem-solving techniques schedule

modifications through sequences of solutions may provide good

evidence for their structural exploitation even if the structures are

unknown.

In this paper, we provide evidence for this hypothesis by

studying problem-solving on the Traveling Salesman Problem

(TSP). The use of widely-studied optimization problems to test

human problem-solving provides the theoretical and practical

background necessary to probe very specific aspects of problem

solving. In particular, the TSP seems ideal for our purpose because

of the joint interest in optimization and psychology. In its most

popular version, it asks to find the shortest tour that passes through

a set of points (cities) on the Euclidean plane [5]. In operations

research and mathematical programming, it has been one of the

most commonly attacked problems because of its many applica-

tions in genome sequencing [19], semi-conductor manufacturing,

and touring optimization [20]. Consequently, it has been a

touchstone of the effectiveness for many popular algorithms (e.g.,

dynamic programming [21], simulated annealing [22], genetic

algorithms [23], neural networks [24])

In psychology, it has drawn interest because of the surprisingly

good human performance on it. Additionally, the problem can

easily be visualized and understood, and problem-solving seems to

involve little cognitive load [25,26]. Although the good human

performance on the TSP has been known for long a time [25],

recent studies have shown that this performance is very close to

optimal and is competitive with heuristics on relatively small

instances [26–36]. However, current models of human perfor-

mance are usually drawn from one trial without feedback. This

would be like only analyzing the initial solution of a heuristic

search procedure, leaving unclear how well it schedules modifi-

cations and hence exploits structure. Although people seem easily

to understand the requirements that are necessary to find the

optimal solution, such as following the convex hull (the minimum

convex set of cities that contain all cities on an instance) and

avoiding self-crossing tours [26,29–31], this information is

insufficient to determine structural exploitation.

Consider, for example, the most basic version of optimization

by Simulating Annealing (SA) applied to the TSP, which, while

theoretically guaranteed to find the optimal solution provided

infinite trials [22], does not exploit structure. A routine run of SA

on an instance may take several orders of magnitude longer than

humans, even if SA only traverses the space of tours that follow the

convex hull and do not have self-crossing. For example, compare

the 1600 steps required by a favorable simulation of SA (Fig. 1, see

Supporting Information S1 for details) to the much fewer steps

typically required by human participants (Fig. 2A for an example)

to optimally solve instance 22 of our study. Although participants

may make additional mental tours and estimate their costs before

actually providing a new solution to the experimenter, it is clear

that human problem-solving is taking very efficient shortcuts in

solving the TSP, perhaps by exploiting deep structures of the

problem. In our simulation, SA does not have any understanding

of the structure of the problem beyond following the convex hull

and avoiding self-crossings. Good heuristics for the TSP, however,

explore the solution space by keeping edges that are likely good

while removing the rest [37], which may be a reasonable

characteristic of human problem-solving as well.

In this paper, we study data from 28 participants who solved 28

instances of the TSP, were provided feedback and were allowed to

solve any instance unlimited times. First, we show that allowing

repetitions and feedback significantly helps to improve solutions.

Additionally, we show that the human solutions are significantly

different from random tours that follow the convex hull and do not

have self-crossing. Second, we show that participants schedule

modifications so that edges that belong to the optimum are

significantly more likely to stay than other edges. Finally, we test

for the presence of a significant effect of practice. We show that

there is a power-law between total number of trials and

participant’s performance and that the ability to tell good from

bad edges diminishes with more trials.

Results

We use a confidence level of 95% for all our statistical tests.

Twenty-eight participants provided a total of 6441 solutions, with

an average of 230.03 solutions per participant (SD~153:82, Max

635, Min 39) on 28 instances of the TSP (See Materials and

Methods.) The mean practice time was 2.6 hours (SD~1:9) A

small percentage (6.7%) of solutions contained self-crossings,

which we excluded from analyses [31]. Fig. 3 shows a summary of

the number of trials per participant for each instance.

Figure 1. Simulated annealing optimization of instance 22. Solution costs of best run out of 1000 simulations. Solutions traversed are
constrained to tours that follow the convex hull and have no self-crossings. (Temperature schedule T(k)~0:99k1000).
doi:10.1371/journal.pone.0011685.g001
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We first found that the feedback and repetition allowed

participants to improve their solutions significantly. Fig. 4 shows

the mean deviation from optima (all participants) for the first and

last trials. We used a Welch-Satterthwaite two-sample t-test to

assess whether the deviation from the optima of the first trial

(M~0:039, SD~0:049, N~766) was significantly higher than

that of the last trial (M~0:012, SD~0:028, N~514) (Notice that

the last solution may not be the best solution and that not all

participants provided more than 1 trial to all instances.) The

improvement was significant, t(1248:7)~12:3, pv:01.

Directed search
We tested whether the solutions provided by participants can

be explained as random samples from the distribution of tours

that follow the convex hull and do not have self-crossings

[30,31,35]. For each of the first 21 instances, we compute the

distribution of these solutions by enumerating all tours with no

self-crossing that have 30% or less deviation from optimum (see

Fig. 5). (We did not find feasible to do this test for instances 22

through 28 due to the size of their solution spaces. Even though

considering only the tours that follow the convex hull and have no

self-crossing dramatically reduces the search space, the number of

solutions is still factorial of the number of cities.) For each

instance, we pooled solutions provided by participants and

computed a x2 goodness-of-fit test to check whether the

participants’ distributions of tour lengths were different from

those of random solutions. (Notice that this is a more stringent test

than checking whether the edges of the tours were similar because

several tours may have the same length; our approach decreased

the likelihood of rejecting the null hypothesis.) We found this

difference to be significant for all instances, pv:01, but instance 3,

x2(3,86)~5:06, p~0:17.
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Figure 2. Typical performance of participants on instance 22. A) Participant finds the optimal solution in 16 trials. The solutions and lengths
are depicted. B) Move quality for trials 2 and thereafter. For example, the first move shows the modifications performed to the better solution so far
(solution of trial 1) to achieve solution of trial 2. As another example, the 6th move shows the modification performed to the better solution so far
(solution of trial 4) to achieve solution of trial 7. A good modification (shown in black) is either to keep an edge that belongs to the optimum or to
remove an edges not in the optimum. The remaining modifications are shown in red.
doi:10.1371/journal.pone.0011685.g002

Figure 3. Trials per instance.
doi:10.1371/journal.pone.0011685.g003
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Move Quality: Efficient Exploration of Solution Space
We considered a good search procedure to be one that does not

waste time trying to optimize parts that are already optimal,

producing an efficient exploration of the solution space. We called

a move a modification to the current better solution during a

sequence of trials. We measured the move quality by the difference

between the proportions of edges kept and removed that belong to

the optimal solution. The move quality then is a continuous

number between 21 and 1. A move quality from 21 to 0 is

considered bad (i.e., good edges are more likely to be removed

than bad edges), 0 is random (random modification), and 0 to 1 is

good (i.e., good edges more likely to stay than bad edges.) (See

Materials and Methods for details.)

Across participants and instances, we found that the move

quality, M~0:38(0:35,0:40), was significantly higher than move

quality of a random move (movie quality = 0), t(4165)~28:93,

pv:01. Participants seemed to make purposeful changes to parts

of the solution that led to better solutions. By performing a two-

way analysis of variance for the effect of instance and participant

on move quality, we found that instance, F(27,4619)~28:04,

pv:01, and participant, F (27,4619)~3:735, pv:01, had signif-

icant main effects, but there was a larger between-instance than

between-participant variability, suggesting that participants had

similar search procedures but the structure of some instances

might have been harder to exploit than others. Fig. 6A shows the

mean move quality per participant; Fig. 6B shows the mean move

quality per instance.

Effect of Trials on Move Quality
We analyzed the effect of trials (within instance) on move quality

to understand how the solution space exploration changes with

more solution attempts. We assessed the fixed effect of trial on

move quality by performing a hierarchical logistic regression,

controlling for the random effect of participant and instance on the

slope and intercept of the regression. We fitted an overdispersed

binomial distribution with a logit link [38] (see Supporting

Information S1 for details.)

In the regression, we expressed the trial predictor in units of 8

trials so that it approximately matched the average number of

trials per instance (M~7:83, SD~15:4). (This will be useful when

later we analyze the additional effect of instance difficulty on

move quality.) We found a significant negative fixed effect of

trial, t(4618)~{30:54, pv:01, on move quality. There was a

maximum of 3.8% (2.6, 4.6) reduction in move quality per each

eight trials around the center of the predictor (the center of

predictor in eight-trial units is M~2:34, SD~3:36) Fig. 7 shows

the fixed and random effects of the regression and a moving

average of the raw data across participants on the seven instances

with larger number of trials.

We performed a second regression to analyze the effect of

instance difficulty on move quality. Given that the instances were

presented in order of difficulty (see Methods and Materials for

details), we used the instance presentation order (i.e., from 0 to 27)

as a proxy for its difficulty and assumed that difficulty increased

linearly. We developed a hierarchical logistic regression model to

assess the fixed main effects of trial and instance difficulty on move

quality. We controlled for the random effect of participant on the

intercept and slope of trial, and the effect on participant on

the slope of instance difficulty. Additionally, we controlled for the

random effect of instance on the intercept and slope of trial. This

regression allowed to measure the main effects of number of trials

and instance difficulty while allowing changes between partici-

pants and between instances. (An additional regression ruled out

the interaction between number of trials and instance difficulty,

p~:02)

We found a negative effect of instance difficulty of 0.45% (.03,

.05) and a negative effect of eight trials of 2.6% (1.7, 3.5)—around

the center of the predictors (instance difficulty: M~18:9; trials

M~2:34). This time, the effect of trials was lower than the previous

regression. Given that the measured effect of eight trials can be

approximately compared to the effect of solving a harder instance,

it could be concluded that the effect of trials was 5.7 times larger

(odds ratio: 2.6/0.45) than increasing the instance difficulty. This

suggested that the number of trials had a major infuence on the

quality of the moves, whereas the difficulty did not.

Power law of practice vs. performance
A Pearson product-moment coefficient was computed to assess

the power-law relationship between practice (the total number of

trials) and the mean deviation from optima (performance)

obtained by each participant. There was a negative correlation

between these two variables, r(26)~{:96, pv:01 (see Fig. 8.)

This is consistent with the effect of trials on move quality. Given

that participants were prone to random (i.e., non-directed)

modifications at later trials, it was harder for them to reach a

better solution and to improve the overall performance measure.

Figure 4. Mean deviation from optimum found by participants in the first and last trials.
doi:10.1371/journal.pone.0011685.g004
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We additionally analyzed whether prior practice had an effect

on the cost of the first solution to a previously-unseen instance. We

performed a hierarchical logistic regression model considering

instances as random intercept and prior practice as a fixed effect

on the cost of the first solution to a previously-unseen instance

(only instances were used as random effects to improve the

precision of the effect measurement [a two-way ANOVA showed a

higher variance by instance, F (27,711)~7:48, pv:01, than

participant, F (27,711)~2:49, pv:01]. See Supporting Informa-

tion S1 for details.) Surprinsingly, the effect of prior practice on the

cost of the first solution to a previously-unseen instance was

significantly negative, t(709)~{28, pv:01; however, this was

likely confounded with the effect of the instance difficulty because

harder instances were more likely to be preceded by longer prior

practice—the easier instances were presented first (See Materials

and Methods for details on the Procedure.)

Discussion

Our results provide evidence that humans (implicitly) know a

great deal more about the structure of the TSP than previously

shown in the literature. In particular, participants improved their

solutions significantly after getting feedback and repetition. A

reasonable concern would be that the unlimited repetition would

allow participants to search the space of solutions exhaustively.

However, we found that participants followed a very directed

search pattern. Their solutions were significantly different from

random samples of tours that follow the convex hull and do not

have self-crossings, a common feature of human solutions [30,31].

When we analyzed the sequences of solutions, participants focused

their search primarily on the sub-optimal parts of the current

better solution leaving intact what was already good. This suggests

that participants knew distinctive structural properties of the TSP
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Figure 5. Instances, random length distributions of tours that follow the convex hull and have no self-crossing, and participants’
distributions of tour lengths. The random and participants’ distributions are significantly different.
doi:10.1371/journal.pone.0011685.g005
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to accurately infer the edges that belong to the optimal solution,

paralleling the behavior of heuristics that exploit structures. We

found, additionally, that this capacity decayed with more trials,

suggesting that participants ran out of ideas and became more

exhaustive (i.e., non-directed) toward the end of the search. This is

consistent with the power law between practice and performance:

it required an increasing number of trials to find a better solution

and, therefore, improve performance.

Although our conclusions are based on participants of a long

experiment with a large number of opportunities for practicing, we

believe our results generalize to the casual subject as well. In a

number of previous experiments from the literature, it has been

Figure 6. Move quality of participants. The move quality between 21 and 0 indicates a redundant search procedure that wrongly removes edges
that are in the optimum (good edges) and keeps edges not in the optimum (bad edges); move quality of 0 indicates random move; move quality
between 0 and 1 indicates a move that is more likely to keep good edges than bad edges. The mean move quality across participants and instances is
significantly higher than the random move quality (pv:01) Move quality is more homogenous between participants (A) than participants (B).
doi:10.1371/journal.pone.0011685.g006

Figure 7. Effect of trials on move quality. The random effect and moving average of the raw data are plotted up to 2 standard deviations
(SD~15:4) of the number of trials per instance.
doi:10.1371/journal.pone.0011685.g007
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shown that people provide very good solutions to the TSP, even

without feedback [26–36]. It is plausible that the solutions of these

experiments are only a fraction of the solutions that people think

are good. In our experiment, the repetition facilitated trying

several solutions while feedback indicated which solutions were

more desirable.

The quality of the search procedure found in our study makes

even more puzzling the question as to why humans are so good at

solving the TSP. Previous studies have suggested that the

characteristics of the visual system, such as visual acuity and

attention, allow to decompose the problem hierarchically and

merge subsolutions efficiently [28,33,36] or that humans have a

natural capacity to assess optimality visually [34]. In our study, it is

difficult to reach a more specific answer as to how humans explore

the solution space efficiently when feedback and repetitions are

allowed, but we believe that people may know structural properties

of intractable problems well. We could not conclude that this was a

learned capacity through practice wihtin our study; we even found

a negative effect of practice on the cost of solutions, which may

well be confounded with the effect of instance difficulty. Moreover,

we found a very small effect of difficulty on the move quality; this

suggests that the capacity to detect good from bad edges is nearly

independent of the instances considered in our experiment.

In general, the use of widely-studied optimization problems

provides a useful starting point to analyze structure exploitation and

how this is learned. Intrinsically-structured problems, such as the

popular game Sudoku, are particularly appealing. A generalization

of this game, called quasi-group completion [39], has already provided

a means to studying heuristics that exploit structural properties, and

may help to serve the same purpose in psychology.Theoretically, it

can be computationally harder to detect structures than to solve the

instance itself [40,41]. However, there is a point where learning

these structures is ultimately beneficial in the long-term because

most naturally-occurring instances of hard problems are highly

structured. It is likely that this kind of structural learning plays a key

role in human problem-solving [42,43].

A general issue is to understand the source of the structure of the

typical instance. Important steps have been taken in understanding

the ‘‘shape’’ of the solution space of general optimization problems

[44] and how easily structures suddenly appear in any given

system [45]. This supports the idea that structural discovery is an

essential part of human problem-solving.

Finally, we believe our hypothesis and results may release some

of the tension between cognitive modelers that consider worst-case

intractability a secondary issue (e.g., rational analysis) and those

who do not. For example, bounded-rationality theory [46], and

the more sophisticated fixed-parameter tractable cognition theory

[47] try to put some computational complexity bounds on the

computational-level models of behavior. Taking this issue on the

grounds of how models can be integrated under a coherent

framework that is both flexible and plausible [48], we believe that

rational analyses that arrive at wildly worst-case intractable models

should not be a big concern because worst cases are uncommon.

Materials and Methods

Ethics statement
The present experiment was not submitted for approval to a

centralized ethics review board because a committee from the

Departamento de Ingenierı́a Informática reviewed the ethical aspects as

part of the proposal and defense of one of the author’s thesis.

Additionally, it was felt that the study involved no more than the

reasonable minimal risks that exist in daily life; anticipated benefits

for the subjects and the importance of the knowledge expected to

be acquired outweighed these risks.

Participants were asked to agree to the terms of an electronic

consent form before they could participate in the study. It was

explained that their electronic agreement was considered volun-

tary willingness to take part in the experiment, from which they

could drop out at any time without penalty.

Participants
In this paper, we analyzed twenty-eight participants (2 women,

26 men, mean age = 21.7, SD = 2) who were eligible to go to the

finals of a ‘‘Traveling Salesman Championship,’’ in which sixty-

eight undergraduate students (4 women, 64 men, mean age = 21.9

years, SD = 2.1) from the Departamento de Ingenierı́a Informática of the

Universidad de Santiago, Chile, volunteered to participate by

responding to flyers posted on the Department’s news board and

a web banner in one of the authors’ home page. To be eligible to

go to the Finals, a participant had to provide solutions of at most

5% deviation from optimum for each of 28 instances of the

Traveling Salesman Problem (TSP); we analyze the solutions

provided for these instances. There were prizes awarded to the

three best participants of the championship, who provided the best

overall solutions to all instances of the finals. Participants were

treated in accordance with the ‘‘Ethical Principles of Psychologists

and Code of Conduct’’ [49] and local regulations of the

Universidad de Santiago and the Ministry of Education of Chile.

Materials
Game. The experiment was presented as a game-like Adobe

Flash application [50] embedded on a web page. Once the player

logged on to the system, the game forced full-screen game playing

and kept the playable area at 8006600 pixels.

The application presented the ‘‘lobby’’, ‘‘game play,’’ and

‘‘results’’ screens. The first screen, the ‘‘lobby’’ (Fig. 9A), showed

the participant’s position in the general rankings, a pop-down

menu with the list of instances available to solve, and a centered

text area about the instance currently selected on the pop-down

menu that described the number of cities, relative difficulty, and

some historical background. To start playing, the participant had

to click on ‘‘Play’’ button. There was another button to close the

application.

The second screen (the ‘‘gameplay’’, Fig. 9B) showed the actual

instance to solve. The cities were shown as rotating blue ellipses.

Figure 8. Relationship between practice and performance per
participant. There is power law relationship between performance
(mean deviation from optima of best solutions) as a function of practice
(total number of trials.) (r(26)~{:96, pv:01).
doi:10.1371/journal.pone.0011685.g008
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The participant would make a tour by sequentially clicking cities on

the screen. An edge was shown as a thick light gray line connecting

the cities. The cities that were currently part of the tour would stop

rotating and turn gray. The last city clicked, and from which the

tour would continue, was shown in red. Once the last city of the

instance was selected, the application would automatically complete

the tour (i.e., the participant did not need to select the first city

again.) At any time, the participant could press an ‘‘undo’’ button on

the top-left corner of the screen that recursively removed the last city

clicked. It was not possible to exit the application at the gameplay

screen unless the web browser was manually shut down. The

application remotely recorded the time spent solving an instance,

the sequence of points selected, and the undo actions.

During the gameplay screen, the participant’s account was

locked to prevent practice without recording in other computers.

After recording a complete solution, the account would be

unlocked. If the game were forced to close during ‘‘gameplay,’’

the participant would be unable to log in again, forcing him or her

to contact the researcher to assess the situation.

Once the instance was solved, the third screen (the ‘‘results’’,

Fig. 9C) showed the solution’s deviation from the optimum as a

percentage. Messages with sounds would appear if the solution

found was the best yet found by the individual participant or

between participants. If the solution found were the optimum, a

message would congratulate the participant. If the solution found

had a deviation larger than 5%, the participant would not be

allowed to advance to the next instance. Unless the optimum was

found, a button would allow the participant to play the same

instance immediately. Another button would take the participant

to the ‘‘lobby.’’ A typical game session is shown in Fig. 9D.

Instances. Instances 1 through 10 and 17 through 21 (see

Fig. 5) were extracted and scaled from [32]. The other 13

instances (Fig. 5) were extracted from [26]. For instances 1

through 21, we computed all solutions with up to 30% deviation.

A

B

C

D

trial 1

tour length 1

trial 2

tour length 2

instance
selection

play another instance

play selected 
instance

play same
instance

Figure 9. Game to capture human problem-solving on the Traveling Salesman Problem. A) Instance selection screen. B) Tour construction
screen. C) Results screen. D) A typical game session. An instance is solved several times until the optimum is found, a 5% or less of deviation from
optimum is found, or the player decides to play a previously solved instance.
doi:10.1371/journal.pone.0011685.g009
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For the rest of the instances, we computed the optimal solution

with the Concorde solver [20].

The game presented the instances in order of increasing

difficulty. The difficulty was assessed based on the time it took

the authors and the Concorde solver to solve them optimally

[20].

Procedure
We allowed a registration period of two weeks prior to the

beginning of the championship. Participants would register and

read an online consent form. We asked them to provide an alias to

be used online and an email for follow-up. We published the list of

players online before the championship started. The experiment

lasted 14 days (from one Sunday midnight to another Sunday

midnight.) The ranking was manually updated every two days

because we wanted to balance the need for solitary practice and

competition against others.

Measures of practice, performance, and move quality
Practice and performance. Practice was measured as the

total number of trials across instances. The cost of a solution for an

instance was measured as the deviation from the instance’s

optimum. The performance of a participant on an instance was

measured as the cost of his or her best solution for that particular

instance. The general performance of a participant was measured

as the participant’s mean performance on all the instances. The

performances of participants were used to rank them and give

prizes.
Move Quality. An instance of a TSP problem is defined as (1)

a set of tours T and (2) a tour length function l : T?N which is

computed as the sum of Euclidean distances, rounded to the

nearest integer, between the cities of the tour [51]. A solution

s�[T with l(s�)ƒl(s) for all s [ T is called a global optimum or

simply optimum.

A search procedure traverses the solution space T through a

series of solutions

s1, . . . ,sk{l , . . . ,sk, . . . ,sn,

from the initial solution s1 to the final solution sn. Let sk

be an intermediate solution. Without lost of generality, let sk{l

be the best solution found prior to sk (i.e., l~ arg minj

Vi [ 1,j{1½ � l(sk{j)ƒl(sk{jzi)
� �

). We consider sk an attempt to

improve sk{l . A move sk{l?sk contains the modifications

performed to sk{l to reach sk. Notice that a move only depends

on the intermediate solution sk and the sequence of solutions

s1, . . . ,sk{1 from which the solution sk{l can be determined.

We propose the move quality as a measure that assesses the degree

to which the modifications made to the previously better solution

are aimed at correcting sub-optimal edges while retaining what is

already good. A simple definition of what is good are the edges

that appear in all optimal solutions, and consequently, bad edges

are those edges that do not appear in any optimal solution. The

edges that appear in all optimal solutions are called the backbone

[37,40]. Incidentally, the relative size of an instance’s backbone is

a good measure of its difficulty [52,53].

Let b be the backbone of an instance, sk{l\sk be the set of

edges that are kept between solutions sk{l and sk, and sk{l\sk the

set of edges that are removed from sk{l in solution sk. We want

the edges kept to be more likely to be part of the backbone than

the edges removed. Because few edges are removed at each

move, one way of capturing this intuition is by comparing the

proportion of correctly kept and removed edges. Let pkept be

p(sk{l\sk [ bDb,sk{l ,sk) and premoved be p(sk{l\sk [ bDb,sk{l ,sk),
the proportion of edges kept and removed that belong to the

backbone, respectively. We define the move quality as the difference

pkept{premoved of these two proportions. This measure varies from

21 to 0 (bad move; the proportion of good edges removed is larger

than the proportion of good edges kept), 0 (random move), and 0

to 1 (a good move; the proportion of good edges kept is larger than

the proportion of good edges removed.) The confidence interval

for pkept{premoved can be easily obtained [54] by

move quality[ pkept{premoved+
ffiffiffi
2
p

|SE|Erf{1(1{a)
h i

,

where

SE~
pkept(1{pkept)

n1
z

premoved(1{premoved)

n2

� �1
2

is the standard error, Erf{1(z) is the inverse of the Gaussian

distribution integral

2ffiffiffi
p
p
ðz

0

e{t2 dt,

1{a is the confidence level, n1 and n2 are the number of edges

kept and removed, respectively.

Supporting Information

Supporting Information S1 Simulations and Regressions.

Found at: doi:10.1371/journal.pone.0011685.s001 (0.18 MB

PDF)
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