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Hotspots of MLV integration in the hematopoietic
tumor genome
T Tsuruyama1,2, T Hiratsuka1 and N Yamada2

Extensive research has been performed regarding the integration sites of murine leukemia retrovirus (MLV) for the identification of
proto-oncogenes. To date, the overlap of mutations within specific oligonucleotides across different tumor genomes has been
regarded as a rare event; however, a recent study of MLV integration into the oncogene Zfp521 suggested the existence of a
hotspot oligonucleotide for MLV integration. In the current review, we discuss the hotspots of MLV integration into several genes:
c-Myc, Stat5a and N-myc, as well as ZFP521, as examined in tumor genomes. From this, MLV integration convergence within specific
oligonucleotides is not necessarily a rare event. This short review aims to promote re-consideration of MLV integration within the
tumor genome, which involves both well-known and potentially newly identified and novel mechanisms and specifications.
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INTRODUCTION
Retroviruses such as avian leukosis retrovirus,1 murine leukemia
retrovirus (MLV)2 and feline leukemic retrovirus3 are involved in
the development of a wide variety of diseases including malignant
neoplasms, most particularly soft tissue tumors or hematopoietic
tumors including lymphoma and leukemia. Retroviral genomes
are integrated into the host cellular genome, becoming proviral
genomes that contribute to tumorigenesis; this step is one of the
essential steps in the retroviral life cycle. The inserted retroviral
genome (the provirus) is thus replicated stably in the course of
host cell division.4 By becoming a part of host genome, the
provirus promoter and enhancer elements can instead promote
downstream gene expression.2 When the provirus is inserted into
the vicinity of cellular oncogenes controlling host cell growth and
expansion, the affected cells will occupy the lymph node tissues
and form lymphoma tissues.5,6 To date, many researchers have
analyzed the retrovirus integration sites, in order to identify
neighboring oncogenes that are transcriptionally activated in the
tumor genome.5

MLV integration represents an old but still relevant unsolved
problem in the field of oncology. To identify the selectivity of
genomic virus integration sites, the vast majority of previously
reported studies have used methods involving the infection of cell
culture systems with retroviruses, followed by the subsequent
identification and comparison of respective integration sites in the
transfected cell genomes.7 Previous studies have shown that
γ-retroviruses, including MLV, exhibit strong bias for integrating
near active gene promoters and associated CpG islands.8–11 On
the other hand, there are reports that transcriptionally active
genes are favored by integration,8 or that enhancers are major
target of MLV vector integration.10 As discussed later in this
review, the bromodomain and extraterminal domain (BET)
family of proteins are noted as the key factor of MLV integration
near transcription start sites.12 In particular, whole genome

analysis using second-generation sequencing has facilitated the
recent discovery that MLV integration site selection is driven by
strong enhancers and active promoters in an integration assay
using cultured cells.9,10 DNA secondary structural fluctuation
around an integration hotspot might contribute to the open
chromatin structure in the transcriptionally active site that
would likely promote proviral integration after the physical
breakage of the double-stranded DNA (dsDNA).13,14

In association with MLV integration bias, there have been
extensive discussions regarding the clinical application of MLV
vectors. For gene therapy, an MLV-based vector was found to have
integrated into the LIM domain only 2 (LMO2) gene in human
T cells in a gene therapy trial15,16 and thereby induced T-cell
leukemia in the two patients.17–20 However, the majority opinion
was that the selection of LMO2 as an insertion site in the patients
was accidental. In addition, the tumorigenesis caused by MLV
insertion has become an issue of concern with respect to the
clinical application of induced pluripotent stem (iPS) cells, whereas
the present protocol for iPS cell preparation uses a plasmid vector
that does not have tumorigenesis potential.21

A MODEL MOUSE STRAIN OF MLV-INDUCED
LYMPHOMAGENESIS
As an experimental model for studies of MLV-induced tumorigen-
esis, an inbred strain of mice such as AKR can be used that is
susceptible to spontaneous tumors by the integration of MLV;22

this susceptibility arises from endogenous (that is, previously
genetically acquired in the germ line) MLV provirus genomes.23

BXH224 and AKXD25 are well-known mouse strains that have been
used to study the process of leukemogenesis. Using these strains
and other strains, the identification of integration sites has been a
powerful tool for the study of oncogenes. In fact, many integration
sites have been registered in the retroviral-tagged cancer gene
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database (http://variation.osu.edu/rtcgd/), which has in turn been
used for the study of retroviral tumorigenesis, wherein a
numbering system based on the ecotropic viral integration site
(EviN; N= 1, 2, 3,..) was applied by Copeland and colleagues,26,27 to
summarize the MLV integration site. Notably, many integration
sites within identical genes are registered in the database;
however, integration site overlap at the oligonucleotide level is
rare in this database with the exception of c-Myc.

SL/KH STRAIN
SL/Kh represents an inbred mouse strain derived from AKR that
we have developed previously and wherein we have achieved
MLV-mediated induction of lymphoma.28–31 One of the advan-
tages of using this strain for the study of integration is the
extremely biased integration into specified genes that occurs in
these mice, as observed in tumors. This strain possesses
pathogenic endogenous ecotropic murine virus 11 (Emv11) that
has been mapped onto chromosome 7 and is shared with the AKR
mouse strain.23,32 In the SL/Kh strain, the pro- to pre-B cells in the
bone marrow expand28,33 and newly acquire more than
one copy of the proviral genome during the process of
lymphomagenesis;34 > 90% of these mice spontaneously develop
sIgM- pro- or pre-B lymphomas that are positive for BP-1 by the
age of 6 months.28,32 Notably, the phenotypic stability and the
tumor incidence are significantly higher than those in other
models, BXH224 and AKXD.25 We have thus used the SL/Kh mouse
strain to investigate MLV integration because of the high
incidence and reproducibility of the phenotype.29

PHENOTYPES OF MLV-INDUCED LYMPHOMAGENESIS
In the reported cases of spontaneous hematopoietic tumors,
granulocytes, B cells, T cells and their immature lineages serve as
host cells and can develop tumors such as leukemia or lymphoma
following MLV infection. The tumor phenotype in tumor-
susceptible strains might be attributed to the host genetic
background of the mice,22,24,35 as well as viral tropism and
the function of target genes.36 Tropism of the viruses, that is,
which type of cells are infected by viruses, is determined by the
presence of the retroviral receptor on the host cells and the Env
protein on the viral particle;37 both myeloid and lymphoid cell
lineages express retroviral receptor. In addition, the capsid
domain of Gag polyprotein, which is the major structural protein
among the MLV-encoded proteins, mediates the assembly of
many retroviral proteins. Capsid confers tropism that determines
the susceptibility to the intracellular restriction factors
Friend virus susceptibility1 (Fv1) on chromosome 4 that inhibits
the development of MLV by interaction with capsid.38 Tumor
phenotype might therefore directly depend on the gene
structure of proviral genome. Moloney MLV induces almost
exclusively lymphoid disease; however, when replacing the long
terminal repeat39 with that of retrovirus 4070A, the MLV causes
myeloid leukemias.39

With respect to the genetic background of mice, we
previously identified a locus responsible for pre-B-cell expansion,
Bomb1 near Mit319 on chromosome 3, via the genetic study
of SL/Kh. A congenic mouse on a NFS/N mouse background
carrying the Bomb1 locus of SL/Kh mice demonstrated expansion
of pre-B-cell lymphocytes28,33 and microsatellite instability near
Bank1 gene locus, an adaptor molecule of pre-B receptors in pre-
B-cell lymphomas in SL/Kh mice.40 Therefore, the microsatellite
instability of the responsible locus as well as other background
factors might cooperatively determine the phenotype of
the tumor.

RETROVIRAL GENOME INTEGRATION INTO THE HOST GENOME
Molecular integration mechanism
The molecular biology of MLV integration is fairly well understood.
Following retroviral infection via viral receptor molecules on host
cell membrane, viral dsDNA synthesis by reverse transcriptase
begins in the cytoplasm and is completed before or after virus
entry into the nucleus. A viral enzyme integrase (IN) that is
encoded in the retroviral genome cleaves the termini of the viral
DNA; the viral dsDNA then forms a pre-integration complex and
enters the nucleus. IN forms a tetramer or oligomer at the
terminus of the pre-integration complex DNA; these catalyze the
host DNA cleavage reaction in a staggered manner. It has been
suggested that the terminal ends of the dsDNA might be critical
for integration, and that the presence of a dinucleotide capsid at
the terminal 3′-ends is particularly essential.13,41 Subsequently, the
free energy change released from the broken phosphodiester
bonds in the host dsDNA promotes the formation of new bonds
joining the viral DNA ends to the ends of cleaved host DNA. DNA
synthesis extends from the host DNA flanking the host-viral DNA
junctions and fills in the gaps adjacent to the viral DNA, displacing
the viral DNA ends. Consequently, four bases are duplicated on
either side of the MLV proviral genome; during HIV-1 integration,
five nucleotides are duplicated.42 These duplicated nucleotides
have been analyzed from the perspective of integration selectivity;
however, no significant tendency of the sequence motifs has been
identified. For this reason, integration has been believed to be
random as for the target nucleotides.

HOTSPOTS OF MLV INTEGRATION
Using the tumor DNAs from spontaneous tumor model mice such
as BXH2, AKXD and SL/Kh, inverse PCR was performed,26,42,43

which involves digestion of the host cell DNA with a restriction
enzyme such as SacII, which recognizes CpG islands near gene-
coding regions, followed by a ligation reaction using T4-ligase.36

The development of inverse PCR-dependent cloning has allowed
the identification of numerous integration sites that have in turn
been used for the identification of novel oncogenes26 such as
Stat5a,43 Hipk2, Fiz144 and Zfp521,45 which are frequent integration
loci. Before this technical development, the distribution of
integration sites within a given gene were not sufficiently
investigated and there were few studies providing detailed data
regarding the integration within a short segment in a single gene.
Here, the term ‘hotspot of integration’ is used to imply that the
integration site is shared by more than one different tumor,
despite the fact that the probability is prospected to be
substantially lower for integration into such a narrow range.

Hotspots in c-Myc and N-myc
Systematic analysis of integration site has been limited to the
study of integration into the c-myc proto-oncogene.46–48 Here we
reviewed MLV integration sites within the c-myc promoter area in
particular. As mentioned previously, the systematic analysis did
not elucidate a definite trend. However, several integration sites
were shared by tumors in various strains of mice, suggesting that
certain sites might be preferred by MLV integration.49 In a
systematic analysis of SL3-3 MLV integration sites, many nucleo-
tides were shared by different tumors. For instance, nucleotide
numbers 773, 832, 864 and 889 (M1234.5 in GENBANK) were
actually shared by different tumors in different strains (Figure 1
and Table 1). We noted that c-Myc promoter consists of
palindromic and mirror symmetry sequence motifs around the
integration sites (Figure 1).
Similarly, MLV integration sites were shared by lymphoid tumors

in the third exon and the 3′-flanking sequence in N-myc.50,51

Numbers 6328 and 6344 (M12731) were shared by different
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tumors in different strains and mirror symmetry sequence motifs
around the integration sites (Figure 2).

Hotspots in Stat5a
Next, we consider the MLV integration sites in Stat5a. The
encoded STAT5A protein is a member of the signal inducer and
activator of transcription (STAT) family. These proteins form a
dimer that translocates into the nucleus and exerts transcriptional
activity by binding to the γ-interferon activation site palindromic
element in the promoters of target anti-apoptotic genes.52,53 The
products of these genes, such as c-Myc, Pim-1, Bcl-xL and
Cyclin D1,54 regulate proliferation and anti-apoptosis in hemato-
poietic cells; STAT5A in particular contributes to IL-7-induced B-cell
precursor expansion.43,49

In pre-B-cell lymphoma in SL/Kh mice, MLV integration within
the 400 bp second intron of the Stat5a gene was observed.43

Notably, several integration sites were shared by different tumors
of this strain.32,41,43 In particular, a 170 bp segment within the
second intron was found to be the hotspot for MLV integration
(Figure 3). Furthermore, within this region, several nucleotides
were shared by different pre-B-cell tumors.

Hotspots in Zfp521
The Zfp521 (zinc finger protein 521) gene was identified as a
common integration site 3 (Evi3) in the genomes of B-cell
lymphomas in the AKXD mouse strain.45,55 We also reported that
this gene is the most frequent integration site as well in pre-B-cell
lymphoma in SL/Kh mice.32 The encoded ZFP521 regulates and
activates pre-B-cell receptor signal pathways.45

In more than 140 male SL/Kh mice, 480% pe-B-lymphoma
genomes acquired the integrated proviral genome.32 Specifically,
the integration sites in the genome of pre-B-cell tumors in SL/Kh
mice (p, q, r, s, t) are shown in Figure 4. The integration occurred
once or twice within a 50 bp segment located in the region of the
second to the third exon of Zfp521 in the pre-B-cell lymphoma
genome during the lifetime of the mouse. Two independent
integrations into the identical gene in the genome of a single
mouse are undoubtedly a rare occurrence. Therefore, we can state
that the second to the third exon is one of the hotspots of MLV
integration.

Common features of hotspot sequences
As discussed in above, the sharing at the nucleotide level within
the integration tissues in the hematopoietic tumors are not rare
events as would be expected, as shown by SL3-3 integration in
c-Myc and Emv11 in Zfp521, in spite of the fact that it is statistically

almost impossible that MLV targets the specified short oligonu-
cleotide as the integration sites. Therefore, the common features
of these hotspots within the host genes should be considered.
To date, reports have indicated that the promoter region and
enhancer comprise the targets of the integration,9,10 or transcrip-
tional active site are favored for intefration.8,56 With respect to the
latter and as discussed in further detail later, BET mediates the
association of MLV IN and the transcriptional start site in the open
chromatin of the host cell.10

With respect to DNA structure, the integrations within Zfp521
frequently occurred at ~ 10 bp intervals and were symmetrically
distributed on either side of the most frequent integration site
(p, q, r, s, t in Figure 4).45,55 The 10 bp intervals suggest that MLV
integration sites are distributed on the nucleosome surface of the
10 bp periodical outward-facing DNA major grooves in chromatin.
To our knowledge, no distinct data has been published regarding
10 bp periodical integration of MLV into the host genome;
however, it has been demonstrated that HIV-1 integration sites
are periodically distributed on the nucleosome surface by
statistical analysis.46 Our data of 10 bp interval between integra-
tion in Zfp521 provides the first direct evidence of periodical
retroviral integration.
The transcriptional factor-binding motifs within the promoter

and enhancer might also be involved in the choice of integration
site.57 In addition, the junction of DNA between the viral and host
genome might generate novel motifs required for binding
transcription factors and other adaptor proteins, to effect higher
transcription of the target gene.32,41 For example, the MLV
integration site induces the formation of transcription factor
complexes on palindromic sequences during the development of
pre-B lymphomagenesis and alters the transcriptional activity of
Stat5a. Conversely, the transcription factor preference for parti-
cular DNA sequence motifs might determine the selection of the
integration site. MLV integration induces the formation of
transcription factor complexes consisting of GATA, CREB and
C/EBPβ on palindromic sequences and on the TATA-box in the
Stat5a gene. The presumed secondary structure in the open
chromatin such as the hairpin structure in the 170 bp segment in
Stat5a might assist the binding of transcription factors that
enhance host gene transcription (Figure 2).38 Furthermore,
the palindromic motifs might contribute to posttranscriptional
stabilization of MLV-host gene chimera RNA through the
generation of secondary structure after transcription or of open
chromatin structure that controls the transcriptional activity of the
host gene when the double helix DNA is rewound. In actuality,
such DNA structures are anticipated using m-fold analysis
(http://mfold. rna. albany. edu/?q=mfold/DNA-Folding-Form)
(Figure 3).
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781 TGTGCCCAGT CAACATAACT GTACGACCAA AGGCAAAATA CACAATGCCT TCCCCGCGAG      
841 ATGGAGTGGC TGTTTATCCC TAAGTGGCTC TCCAAGTATA CGTGGCAGTG AGTTGCTGAG       
901 CAATTTTAAT AAAATTCCAG ACATCGTTTT TCCTGCATAG ACCTCATCTG CGGTTGATCA
961 CCCTCTATCA

Figure 1. MLV integration sites within c-myc (M12345). Sequence motifs in the c-myc promoter. The shown sequence represents the mirror
symmetry in blue and palindrome in red. The white and black boxes with lines represent the pairs of palindromic and mirror symmetry motifs,
respectively. The downward arrows indicate the previously reported integration sites shown by the numbers.
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Table 1. Each host gene locus is indicated via its registered number in GenBank

Host gene Location Previously reported sites SL/Kh Tumor phenotype Reference

c-myc Promoter
M12345

725 T cell 47

768 T cell 71

773 773 T cell 72

782, 788 Lymphoma AF52467873

801 804 B cell AF52431573

811 T cell 72

820 B cell 47

832 832 Unknown AF52432473

853 Pre-B cell
864 864 T cell Z6982574

876, 886, 889 889 B cell BH85954726

926 Unknown AF1931425

932
939 939 T, B mixed 5

966 966 B cell 75

Pim-1 3′ of the last 6980 6980 B cell 77

M13945 Eleventh exon 6982 B cell 77

6991 T cell 78

7000, 7005 7005 T cell 78

7064 7063 T cell 78

Sox4
AX695422 First exon

12 168 B cell, pre-B cell 26

12 173 B cell 75

12 175 B cell 75

12 176 T cell 26

12 182 Pre-B cell myeloid 26

N-myc 3′ 6307 ND 72

M12731 6311 T cell 5

6313, 6314, 6315 76

6328 6328 T, B mix 5

6329 6336 Lymphoma 73

6344 6338 Pre-B cell 50

6345 6344 Pre-B cell 26

Zfp521 First intron
AC142257 83 098, 83 101 83 098 B cell, pre-B cell 45,55

83 117 83 117 B cell, pre-B cell 45,55

Meis 1
AL603984 Upstream of the first exon 199 385

199 389 199 389 B cell BH86008126

199 389 Myeloid BH86052126

AL645570 Eleventh intron 77 862 Pre-B cell
77 872 Pre-B cell

77 878 Myeloid BH86007726

Cyclin D2 Promoter
AC163747 130 896 B cell 77

130 903 T cell 75

SL/Kh indicates the integration sites in pre-B-cell lymphoma in SL/Kh mice. The superscripted numbers indicate the reference number in the text. Previous
reported sites indicate the nucleotide number based on the GenBank sequence for the individual accession numbers listed. In the c-myc gene, No. 1491
represents the transcriptional start nucleotide. ND, no determined.

5’-ACTTGCTAAACGTTTCCCACACGGACAGTCACTGCCACTTTGCACATTTTGATTTTTTTT-3’

N-myc

Mirror symmetry

6338
63446328

Figure 2. MLV integration within N-myc (number 6300-, M12731) (Table 1). The red letters indicate the mirror symmetry motif in the N-myc
gene. The two vertical arrows indicate the paired regions of mirror symmetry. The black and blue downward arrows represent the integration
sites in SL/Kh mice and other previously reported sites.
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Previously, Holman et al.58 also suggested that palindromes are
statistically favored by MLV integration. Palindromic motifs were
also observed in the hotspots in c-Myc, Stat5a, and Zfp521
In Zfp521, the integration occurred at the site indicated as ‘:’ in the
sequence 5′-CTGAATTG AAAC:AACTTCAGCTGTTT-3′ with 10 bp
periodicity at p, q, r, s and t (Figure 4).45 Such alternating
palindrome sequences are definitely rare motifs. It is noticed that
the integration occurs at the middle position, r, of the above
sequence, suggesting that the sequence may confer the selectivity
of the integration into the position surrounding the palindrome.
This plot represents a probability density function of MLV
insertional mutation. Pim1 and Sox4 are also targets of MLV
integration in hematopoietic tumor genomes.12,27,41 In Pim1
(M13945), the hotspots of integration are positioned in the
palindromic sequences at the site indicated by a colon (‘:’) as
follows: 5′-CCCTGCG:TGAC:GACGCAGGG-3′ and 5′-CCAGGTCC
CTGGAGGAGCCTC:CCAC:AAGGGAAAGAGACTACTTCACTGGTCCTGG-3′,
where the pair of underlined sequences and dotted-underlined
sequences represent palindromic sequences. In Sox4 (AX695422),
the integration sites are positioned near the middle of the
palindrome as well in 5′-GGAGCGCGGGGGCGTTAGTGG
A:CCCGCG:CT:CC-3′ (Table 1). The preference for the palindrome
requires a rigorous statistical study. However, as the sharing of
integration sites by different tumors has been found to not be a

rare event as had been expected, the DNA structure factor may
contribute to the integration site selection.
To better understand the contribution of the host gene to MLV

integration, we need to review recent research advances in the
control of open chromatin regions in association with IN
interaction with histones and its binding to the host gene by
recruitment of BET.

RECENT ADVANCE OF MOLECULAR BASIS OF MLV
INTEGRATION
BET proteins and MLV integration
Recent studies have yielded great advancements in our under-
standing of MLV integration.59 BET proteins (Brd2, Brd3 and Brd4)
are the cellular-binding partners of MLV IN and preferentially
engage open chromatin regions that are enriched for transcription
start sites, CpG islands, DNaseI-hypersensitive sites and proto-
oncogenes.11,56,60–63 BET family proteins behave as a scaffold
on chromatin to recruit E2F proteins, histone deacetylases,
histone H4-specific acetyltransferases including GCN5, and
chromatin remodeling proteins.64 The BET proteins are character-
ized by an extraterminal domain and two N-terminal bromodo-
mains that recognize and bind acetylated lysines on histone
H3 and H4 tails on chromatin.65 In vitro interaction analysis and

Figure 3. MLV integration sites within Stat5a. The sequence represents the whole sequence of AF049104 from (5′-)1061th–1207th nt (-3′)
(Stat5a gene sequence in GenBank, renumbered according to the nucleotide number form the start of the gene, BLAST: https://blast.ncbi.nlm.
nih.gov). The colored letters in blue and red represent the pair of palindromic sequences in the above sequence of which stem of the hairpin
structure that is anticipated by m-fold analysis. dG, dH and dS represent Gibbs free energy, enthalpy, and entropy change (kcal/mol) in folding.
[Na+]= 1.0 mM. Folding temperature is equal to 37 1C. The most frequent site (N0.1130, shown by a red arrow) that is shared by different pre-B-
cell tumor is shown.41

Figure 4. MLV integration within Zfp521. The numbers of mice with MLV integration are presented. In the vertical sequence of Zfp521, underlines
represent the four oligonucleotides duplicated by the integration in the host cell genome when the integration occurs at p, q, r, s, or t. There were
mice that have more than one integration sites in the lymphoma tissue genome. The r and s positions are shared by hematopoietic tumor of SL/Kh
and AKXD strains. Four integration site data are added to our previously data. A hotspot ‘s’ consists of two nucleotide nucleotides G and C.45,55
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co-immunoprecipitation of MLV IN in human cells revealed that
different MLV IN domains including the C-terminal domain, the
catalytic core domain and the IN C-terminus interacts with the BET
family of proteins.66 It has also been shown that purified
recombinant Brd4 (1–720) bound with high affinity to MLV IN
and stimulated MLV concerted integration in vitro.59 Through the
recognition of open chromatin structure, BET proteins have been
suggested to contribute to the tethering of the MLV pre-
integration complex to the host DNA.11,67 Furthermore, BET
protein knockdown and treatment with the cell-permeable small
molecule JQ-1, a BET bromodomain inhibitor, were shown to
reduce MLV integration frequencies at transcription start sites.60

These observations suggest that BET proteins navigate the MLV
genome and promote efficient MLV integration around transcrip-
tion start sites associated with an open chromatin structure.56

In addition, BRD4 has a critical role in germinal center response
by regulating Bcl-6 and nuclear factor-κB activation.68 The double
bromodomain protein Brd2 promotes B-cell expansion and
mitogenesis.69 Accordingly, these proteins might broadly con-
tribute to tumorigenesis in cooperation with MLV integration in
the development of spontaneous lymphoma.70 Recent advances
suggest that integration selection needs to be understood in the
context of the epigenetic modification of histones or nucleo-
somes. Such control mechanisms of transcriptional activity will
likely provide novel standpoints of oncogene function and a
better understanding of MLV insertional mutagenesis as well.

CONCLUSION
Detailed analysis of MLV integration between tumors within and
between mouse strains indicates that the convergence of
integration sites within a narrow oligonucleotide range is not
necessarily a rare event, and that the integration mutagenesis
process might be unique among tumor mutagenesis mechanisms.
Furthermore, specific DNA structural factors may contribute to the
integration site selection, facilitating the generation of ‘hotspot’
motifs in tumor genomes.
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