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Abstract

Many link prediction methods have been developed to infer unobserved links or predict

missing links based on the observed network structure that is always incomplete and subject

to interfering noise. Thus, the performance of existing methods is usually limited in that their

computation depends only on input graph structures, and they do not consider external

information. The effects of social influence and homophily suggest that both network struc-

ture and node attribute information should help to resolve the task of link prediction. This

work proposes SASNMF, a link prediction unified framework based on non-negative matrix

factorization that considers not only graph structure but also the internal and external auxil-

iary information, which refers to both the node attributes and the structural latent feature

information extracted from the network. Furthermore, three different combinations of inter-

nal and external information are proposed and input into the framework to solve the link pre-

diction problem. Extensive experimental results on thirteen real networks, five node attribute

networks and eight non-attribute networks show that the proposed framework has competi-

tive performance compared with benchmark methods and state-of-the-art methods, indicat-

ing the superiority of the presented algorithm.

Introduction

As a very important research direction in complex networks, link prediction is attracting a

large number of researchers from different disciplines, including computer science, biology,

physics and sociology, because of its wide application. It aims to infer the likelihood of the exis-

tence of a link between two nodes unconnected by means of the known structure information

in the network [1–3]. Link prediction can be used to explore the evolution mechanism of the

network [4,5], recommend trusted partners in business trade [6], recommend travel hotspots

[7,8], mine suspects in counterterrorism networks [9–11], analyse criminal networks [12,13]

and so on.

In recent years, with the development of complex network research, people have proposed

many ways to predict the links for specific networks in different fields from various
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perspectives [14–16]. In simple terms, the existing methods for link prediction can be divided

into three categories: unsupervised, supervised and other mixed methods. i) The first com-

putes similarity scores between two nodes based on the known topological structure of the net-

work. It is one of the most widely used methods in recent years and methods such as Common

neighbour(CN), Adamic-Adar index(AA), and Resource Allocation index(RA), became the

baseline for judging new methods [1]. This kind of method only depends on the information

of known topology structure in network. Therefore, its prediction results are easily affected by

network data sparsity (The number of edges known to be present is often significantly less

than the number of edges known to be absent.). In fact, this is still the biggest challenge in the

current research of link prediction. ii) The supervised approaches, on the other hand, attempt

to be directly predictive of link behaviour. They generally need to find the characteristics of the

node interaction and learn latent features from the topological structure of network [17–19].

Our work is to use this method to achieve multiple attribute fusion techniques to improve pre-

diction performance. iii) The mixed methods include many methods, such as those mainly

based on the probability model, perturbation-based frameworks, and matrix completion, etc.

The probability model is inherently high cost in computational complexity since its application

is limited [20,21]. In addition, structural perturbation-based and matrix completion methods

are the most recently proposed the state-of-the-art approaches. Lü LY et al. [22] assumed that

the regularity of a network is reflected in the consistency of structural features before and after

a random removal of a small set of links. Based on the perturbation of the adjacency matrix,

they proposed a universal structural consistency index that is free of prior knowledge of the

network organisation. Furthermore, Xu XY [23] and Wang WJ et al. [24] proposed a perturba-

tion framework based on matrix decomposition for link prediction. On the other hand, Pech

Ratha et al. [25] proposed a method for link prediction based on matrix completion.

Although these methods can achieve prediction tasks, there is still a shortcomings of insuffi-

cient useful information to some extent. Moreover, they are always challenged by high compu-

tational costs and data sparsity and network noise. In addition, with the increase of data scale,

how the proposed method can be scalable, transplantable and robust in large-scale networks

becomes the evaluation basis of the algorithm. Therefore, how to mine the network features,

solve the above challenges and improve the performance of link prediction become the main

concerns in this paper.

In fact, a complex network is an abstraction of real world, where the nodes represent enti-

ties that have very rich attribute information in the real environment. For example, individuals

in online social networks have sociological characteristics such as gender, age, religious belief,

educational background, and hobbies. The principle of social influence and homophily show

that users with similar attributes, or in some cases antithetical attributes, are likely to link to

one another [26–28], motivating the use of attribute information for link prediction. Addition-

ally, some previous studies have also empirically demonstrated that non-topological informa-

tion such as node attributes has a certain impact on the formation and evolution of social

networks [29–32]. Therefore, network structure and node attribute information can be consid-

ered when predicting links.

In recent years, with the development of other fields related to complex networks, some

methods of link prediction have been proposed based on the attribute information of nodes

[33,34]. These methods, such as relational learning[35–37], semantic mining[16,33,38]. ran-

dom walk[39,40], matrix factorization[41], have been proposed to leverage attribute informa-

tion for link prediction. However, due to the diversity and heterogeneity of information and

the difference of fusion methods, the overall effect of these algorithms is insufficient. There-

fore, the algorithmic question of how to simultaneously incorporate these two sources of infor-

mation remains largely unanswered. More recently, Gong N Z et al.[39] proposed an approach
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based on random walk algorithm to predict links as well as to infer node attributes, it suffers

from scalability issues. Backstrom and Leskovec [42] presented a supervised random walk

algorithm for link prediction, but this approach only incorporates node information for neigh-

boring nodes. Taking these influence into account, we would like to consider: Can this external

information about the nodes contribute to infer an interaction relationship between the

nodes? What is the role of this external auxiliary information in predicting the interaction of

nodes? How much dependency exists between external information and internal interaction?

What methods of fusion are the most effective?

Because non-negative matrix factorization (NMF) [43, 44] has the advantages of non-nega-

tive, extensibility and interpretability of physical phenomena, it has been widely used in the

study of complex networks [45–47]. For example, Yang et al. [48] designed a probabilistic

latent variable model which combined the NMF and block structure of matrices for link pre-

diction, but they did not use the node attribute information. Chen BL et al. [41] proposed a

non-negative matrix factorization for link prediction that combines network structure and

node-attribute information, but this approach does not fully explore the combination form of

structure and attribute information in depth, and the complexity is high. As previous studies

have shown that node sociological information can assist prediction, and NMF based on

matrix decomposition not only has non-negative and interpretable advantages, but also can

easily integrate heterogeneous information, make multiple information work together.

Inspired by the advantages of non-negative matrix factorization, in this work, we use it to fuse

heterogeneous multi-source information for link prediction problem.

In this paper, we propose a unified framework, SASNMF, for link prediction of coupled

multivariate information based on NMF. The framework combines local information of a

node attribute with global information of the topological structure to solve the link prediction

problem from a new perspective of the macro/micro-level. Furthermore, the effects of different

combinations of multivariate information on the prediction results are verified under the

same framework. Experimental results on 13 real-world network datasets display that the pro-

posed framework has competitive performance compared with baseline and several state-of-

the-art algorithms, indicating the superiority of our algorithm. Specifically, this paper makes

the following contributions.

First, we develop a prediction framework based on NMF, and auxiliary information from

two different levels of macroscopic and microscopic information is coupled to realize the pur-

pose of node relationship prediction.

Second, two kinds of auxiliary information are mined and used to alleviate the problem

that the structural information cannot be fully utilized due to data sparsity and reduce the

effect of the noise in the forecast.

Third, several different combination modes of auxiliary information are proposed, and the

performance is compared and analysed separately under the same framework for the datasets

with and without attributes.

Materials and methods

Preliminaries

In this section, we first describe the problem of link prediction. In addition, we review the con-

ventional NMF method.

Problem description. For a social network can be represented as an undirected graph

G = (V,E), where V = {v1,v2,� � �vn} is the set of users (nodes) and E� V × V is the set of existing

relations (edges) between users. The interaction relation between nodes is formally marked as

an adjacency matrix An×n in network with n vertices. The element of the ith row and the jth
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column in the matrix correspond to the link between node i and j in the network, where Aij =

1 if there is a link from i to j and Aij = 0 otherwise. Generally, the adjacency matrix A repre-

sents the macro-relations of the network topology. The problem of link prediction is inferring

the probability of an existent link between nodes x and y based on known information in the

network, and the probability is expressed as score Pxy. The score can be viewed as the similarity

of nodes x and y. The higher Pxy is, the more similar x is to y. According to the score, all nonex-

istent links in the network can be sorted in descending order. The links at the top are the most

likely to exist. In this paper, we compute the score Pxy based on NMF.

To test the algorithm’s accuracy, the observed links, E, are randomly divided into two parts:

the training set, Etrain is treated as known information, while the probe set, Etest has no known

information and is used for testing in the prediction experiment. The proportion of links in

these two parts ranges from 90% to 20%. Thus, when the training set consists of 90% of links,

the remaining 10% of links constitute the test set. Furthermore, in the experiment, we con-

ducted the simulations of SASNMF 100 times for each network and only report the average

values in this paper.

NMF review. Given a matrix V 2 Rn�m
þ

, the NMF aims to find two nonnegative factor

matrices W 2 Rn�k
þ

and H 2 Rk�m
þ

that make V� V0 = WH. In general, the k, (m + n)k�mn,

is the number of latent features or the inner rank of V. The matrix W is called the basis matrix,

and H is the coefficient matrix. The column vector of the original matrix V is the weighted

sum of all column vectors of matrix W, while the weighted coefficient is just the elements of

the corresponding column vector of matrix H.

The optimization problem of NMF is a convex optimization problem[49]. Due to its NP-

hardness and lack of appropriate convex formulations, the nonconvex formulations with rela-

tively easy solvability are generally adopted, and only local minima are achievable in a reason-

able computational time. Hence, the classic and also more practical approach is to perform

alternating minimization of a suitable cost function as the similarity measures between V and

the product WH[44].In this paper, our goal is to find V0 as an approximation of V to imple-

ment the task of link prediction. Then, the problem of link prediction in networks can be cast

as the following NMF problem:

minW�0;H�0 ‘ðV;WHÞ; ð1Þ

where ‘ð; Þ is a general loss function. Generally speaking, the form of Euclidean distances are

commonly used as this function. Assuming that there are two matrices X and Y, according to

the definition of Euclidean distance, this loss function can be written as following form:

‘ðX;YÞ ¼ kX � Yk2

F ¼
P

ijjðXij � YijÞj
2

ð2Þ

In this work, we will also make use of such Euclidean loss. Then, our problem of link predic-

tion is to solve the following optimization problem:

minW;HkV � WHk2

F s:t:W � 0;H � 0 ð3Þ

where k�kF indicates the Frobenius norm, constrain W� 0,H� 0 requires that all the elements

in matrices W and H are non-negative. The Frobenius norm of the matrix X is denoted by

kXkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijjxijj

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXHXÞ

p
.

Although there have been some notable results on NMF, they are far to be perfect with lots

of open questions remained to be solved. More details can be found in Ref. 44.
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Methods

Prediction framework: SASNMF

Because of the influence of the data sparsity, and that the observed links are only a small pro-

portion of all possible links, the methods that rely solely on network structural information

have the problem of low prediction accuracy. According to the introduction above, the influ-

ence of data sparsity can be alleviated, and the link prediction accuracy can be improved by

using the auxiliary information of the network. Therefore, in this paper, we attempt to fully

integrate the auxiliary information to make up for the incomplete topology information so

that the prediction performance is improved. According to the NMF algorithm, we use the

adjacent matrix An×n, which represents the macroscopic information of the network topology

structure, and the auxiliary attribute similarity matrix Sn×n, which represents the microcosmic

information, to create the NMF framework. Here, we need to find two nonnegative factors

matrices W and H to satisfy the form of V�WH. Thus, the matrix A is decomposed into

A ¼W1H1;W1 2 Rn�k
þ
;H1 2 Rk�n

þ
, where k� n. In the same way, the similarity matrix S is

decomposed into S ¼W2H2;W2 2 Rn�m
þ

;H2 2 Rm�n
þ

, where m� n. Then, we map these two

pieces of information into two low-rank approximation spaces, in which W1 and W2 represent

the bases in their latent spaces. According to formula (3), we have

minW1 ;H1
kA � W1H1k

2

F s:t: W1 � 0;H1 � 0 ð4Þ

minW2 ;H2
kS � W2H2k

2

F s:t: W2 � 0;H2 � 0 ð5Þ

However, our goal is to develop an indicator that can couple multivariate information to

help improve the accuracy of link prediction. Therefore, formula (4) and (5) are combined

into the following new form

Q ¼ minW1 ;H1
kA � W1H1k

2

F þminW2 ;H2
kS � W2H2k

2

F ð6Þ

The information shown in the above formula (6) are only a simple combination of both the

topological structure and auxiliary attribute, and they are not fully integrated into the same

feature space. Therefore, we need to find a common factor matrix W to combine this informa-

tion and then to make it a guider within the processing of the link prediction problem. That is,

we develop a framework for link prediction that can employ a low-rank latent feature space

representation to realize network structure prediction and add the lack of information within

the network. Furthermore, let W = W1 = W2 to indicate that the two pieces of information in

the network are mapped to the same feature space. At the same time, to avoid overfitting and

to leverage the effects extent between the topology information and auxiliary attribute infor-

mation in the link prediction results, we need to constrain and mediate the framework through

setting up parameters. Finally, the objective function is created as follows:

Q ¼ minW;H1 ;H2
ðkA � WH1k

2

F þ akS � WH2k
2

F þ bðkH1k
2

F þ kH2k
2

FÞÞ ð7Þ

s:t:W � 0;H1 � 0;H2 � 0

where W 2 Rn�k
þ
;H1;H2 2 Rk�n

þ
, α is an equilibrium parameter for mediating the effect of the

structure and attribute, and β is a regularization parameter to avoid overfitting.

Although it is difficult to obtain the global optimal solution of Q, the local can be imple-

mented by a multiplicative iteration method.

Link prediction based on NMF with multivariate attributes
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To (7) decompose, by introducing the Lagrangian multiplier ψ,φ,ϕ for the nonnegativity of

W, H1 and H2; we obtain the loss function without constraints:

L ¼
1

2
ð kA � WH1k

2

F þ akS � WH2k
2

F þ bðkH1k
2

F þ kH2k
2

FÞ
� �

þ Tr cTW
� �

þ Tr φTH1ð Þ þ Tr ϕTH2ð Þ ð8Þ

Then, taking partial derivatives of L with respect to W, H1 and H2, we have

@L
@W
¼ � AHT

1
þ aSHT

2

� �
þWH1H

T
1
þ aWH2H

T
2
þ c ð9Þ

@L
@H1

¼ � WTAþWTWH1 þ bH1 þ φ ð10Þ

@L
@H2

¼ � aWTSþ aWTWH2 þ bH2 þ ϕ: ð11Þ

In terms of the Karush-Kuhn-Tucker (KKT) complementary slackness condition ψW = 0,

φH1 = 0 and ϕH2 = 0, and Let @L
@W ¼ 0, @L

@H1
¼ 0 and @L

@H2
¼ 0, we can derive the following updat-

ing rules with respect to W, H1 and H2:

W � W: � ðAHT
1
þ aSHT

2
Þ:=ðWH1H

T
1
þ aWH2H

T
2
Þ ð12Þ

H1 � H1: � ðW
TAÞ:=ðWTWH1 þ bH1Þ ð13Þ

H2 � H2: � ðaW
TSÞ:=ðaWTWH2 þ bH2Þ ð14Þ

where .� and ./ represent the elementwise multiplication and division, respectively. The score

between nodes can be obtained by W and H1. Then, we can predict the edges.

To sum up, pseudo code of the proposed Link prediction algorithm based on NMF with

coupling multivariate information is described as follows:

Algorithm Name: SASNMF

Input: A: the adjacency matrix of the given network, S: the

auxiliary information matrix, k: number of features, α and β: parameters.

Output: the approximate matrix of the network A

1: divide A into Atrain,Atest

2: get the number of latent features k by Colibri

3: Initialize W, H1 and H2.

4: do while

5: update W, H1 and H2 by means of formulas (12),(13) and (14).

6: get W and H1 after until object function convergence

7: end while

8: output W × H1

Link prediction based on NMF with multivariate attributes
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Computational complexity analysis

The computational complexity of SASNMF algorithm mainly comes from two parts. One is to

extract auxiliary information, including external auxiliary information from node sociological

attributes and internal auxiliary information extracted from topology structure. The second is

iterative update matrices W, H1 and H2 at the same time.

Given an attributed network with n nodes, m attributes, then the matrix of attributes simi-

larity, Sn×n, is obtained by using cosine similarity algorithm based on node’s attribute vectors.

So the time complexity is O(n2). Similarly, the time complexity of the internal auxiliary infor-

mation extracted based on topology structure is also O(n2).

When updating W, H1 and H2, to reduce the time overhead, we utilizes the objective relative

error as the stopping criterion and set to less than 10−6 in experiment. In addition, the decom-

posed dimension is a k-dimensional vector, their time complexities are O(n2k) time. So the total

time cost of the algorithm is O(n2 + n2 + n2k). Since k can be treated as constants, complexity of

the step is O(n2). To sum up, the computational cost of our approach is nearly to O(n2).

Of course, we can also improve our algorithm according to the relevant literature to achieve

parallel computing[50], so as to obtain performance optimization. This is what we want to do

in the future.

Auxiliary information preprocessing

Here, we propose that the auxiliary information can be derived not only from external data

but also from internal network structure information. SASNMF allows us to directly model

such information into the framework to enhance the prediction performance. To distinguish

sources of multivariate auxiliary information, we call those extracted from the network struc-

ture as internal auxiliary information and attributes of nodes as external auxiliary

information.

It is an essential of our work that this external auxiliary information, node properties, is pre-

processed. Considering the privacy of users, these information has been treated anonymously.

When pretreated these attribute values, such as age, using directly actual measure values. Oth-

ers, such as religious belief, are assigned a determined value in term of an appointed numerical

range required. In addition, the numerical 0 or 1 is employed also to express two kinds of dif-

ferent status value. For these information, we use the vector Zm to denote that the node has m

attributes. All of the node’s attribute information in network G is represented as matrix Zn×m.

The matrix element Zij represents the jth attribute value of the ith node. However, owing to the

heterogeneity of node attribute, it is impossible that exert the better indicative effect of attri-

butes on the prediction results through using a linear combination. Therefore, all of the attri-

butes are normalized by the column of attribute matrix, that is, formula Zij ¼
ZijPn

k¼1
Zkj

.

Although it has been processed, the effectiveness of this attribute matrix in prediction is still

very poor. Therefore, it is necessary to calculate the similarity between the attribute vectors Zm

of each node and to form the attribute similarity matrix before it can be applied to the predic-

tion framework. To compute the similarity between attributes, the Euclidean distance, cosine

similarity or Pearson method can be used to calculate. Here, the three common similarity mea-

sures were tested and analyzed respectively. Finally, we use the measure of similarity based on

cosine, Sij ¼

Pm

l¼1
Zil :ZjlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

l¼1
Zil

2 :
Pm

l¼1
Zjl

2
p , to realize the evaluation of attribute similarity.

This internal auxiliary information is actually the latent feature of node, which the local

structure information for the nodes themselves need be extracted from the input network by

Link prediction based on NMF with multivariate attributes
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unsupervised structure similarity methods. In this work, for analysing the influence of node

latent feature on the prediction performance, we employ seven similarity indices to compute

the score, Sim, of the structure similarity between any two nodes as the internal auxiliary infor-

mation. Furthermore, the prediction performance are analysed by comparing the node attri-

bute with the structure information.

Multivariate information combination mode

To test the effectiveness and analyse the influence to predict under different coupling modes of

auxiliary information, we propose the following combination methods.

i. A+S mode: the adjacent matrix A and external auxiliary information S are combined to

input into the proposed framework. This method is directly marked as SASNMF.

ii. A+Sim mode: the adjacent matrix A and internal auxiliary information Sim are combined

to input into the proposed framework. The Sim is regarded as matrix S in the proposed

framework. Thus, this method is marked as �+SASNMF, where � represented any similarity

methods.

iii. Sim+S mode: the adjacent matrix A is replaced as the internal auxiliary information Sim.

This method is marked as A (= �)+SASNMF, where � represented any similarity methods.

For two types of network datasets: the second combination method, ii), is only used for the

network without node attributes, while all of the methods are used for a network with real-

world node attributes. Our experiments show that both types of auxiliary information can

increase the performance of link prediction.

Results

Datasets description

We consider the following 13 real-world networks drawn from disparate fields. Among them,

one contains external attributes, and we generate internal attributes for all of them.

The five networks with external attribute information: i) Lazega-lawyers [51]: The network

is a social network between 71 partners and associates in some New England law firms. In

addition, each entity in the network is described by features such as gender, office-location,

age, and years employed. We did some preprocessing of the features (binarized the features

such as the age and years employed) and then constructed a kernel matrix of pairwise similari-

ties. In this article, we choose seven attributes to calculate. ii) Facebook [52]: The network is

extracted from the Facebook online social network. A user can provide profile information

(e.g., age, gender, education and information). By selecting some informative attributes in this

profile information, we create a feature vector for each user. iii) WebKB [53]: The network

consists of 4 subnetworks (Cornell, Texas, Washington and Wisconsin) gathered from 4 uni-

versities. The node represents a webpage that is annotated by 1703-dimensional binary valued

word attributes. The first three of them are used for our experiments.

The eight networks without external attributes information: i) Karate [54]—social network of

friendships between 34 members of a karate club at a US university in the 1970s; ii) Jazz [55]—jazz

musician network, the link denotes the relationship between two persons if they played together in

the same band; iii) USAir [56]—the air transportation network of US Airlines; iv) Political blogs

(PolitB) [57]—the network of hyperlinks between weblogs on US politics; v) C. elegans [58]—the

neural network of C. elegans worms; vi) Adjnoun [59]—The adjnoun network is the network of

common adjectives and noun adjacencies for the novel “David Copperfield” by Charles Dickens;

vii) Netsci [59]—Netsci is a collaboration network of researchers who publish papers on network

Link prediction based on NMF with multivariate attributes
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science; and viii) Metabolic [58]—the metabolic network of the nematode worm C. elegans. These

networks are often used as benchmark networks to test the predictive performance of new methods.

The basic topology features of these networks are summarized in Table 1. The symbol N and E

are the total number of nodes and links, respectively.<K> is the average degree.<d> is the mean

shortest distance. C is the clustering coefficient, and #attributes is the number of node attributes.

Evaluation metrics

Like many existing prediction studies [1], in our work adopts also the most frequently-used

metrics AUC (area under the ROC curve) to measure the performance of link prediction [60].

This metric is viewed as a robust measure in the presence of data imbalance [19].

The AUC can be interpreted as the probability that a randomly chosen missing link (a link

in Etest) is given a higher score than a randomly chosen nonexistent link (a link in U\E, where

U denotes the universal set). In the implementation, among n independent comparisons, if

there are n0 occurrences of the missing link having a higher score and n@ occurrences of the

missing link and nonexistent link having the same score, we define the accuracy as:

AUC ¼
n0 þ 0:5n@

n
ð15Þ

If all the scores are generated from an independent and identical distribution, the accuracy

should be approximately 0.5. Therefore, the degree to which the accuracy exceeds 0.5 indicates

how much better the algorithm performs than pure chance.

In addition, we have adopted the Precision metric, which is also one of the most popular

index of evaluation link prediction [61]. Given the ranking of the non-observed links in

decreasing order according to their scores. The precision is defined as the ratio of relevant

items selected to the number of items selected. That is to say, if we take the top-L links as the

predicted ones, among which ‘ links are right, then,

Precision ¼
‘

L
ð16Þ

Clearly, a higher value of precision means a higher prediction accuracy.

Although the computing result is not unique through taking different L values for a

single algorithm, in order to ensure the fairness for all comparison algorithms, the same

Table 1. The basic topology features of real networks.

Network N E <K> <d> C #attributes

Lazega-lawyers 71 378 10.8 2.104 0.391 7

Facebook 228 3419 29.991 1.868 0.616 56

Cornell 195 286 2.903 3.2 0.157 1703

Texas 187 298 3.027 3.036 0.196 1703

Washington 230 366 3.373 2.995 0.209 1703

Krate 34 78 4.588 2.408 0.571 /

Jazz 198 2742 27.70 2.235 0.618 /

USAir 332 2126 12.81 2.74 0.749 /

PolitB 1222 16714 27.36 2.74 0.36 /

C. elegans 297 2148 14.47 2.46 0.308 /

Netsci 379 914 4.82 6.04 0.798 /

Metabolic 453 2025 8.940 2.664 0.647 /

Adjnoun 112 425 7.589 2.536 0.173 /

https://doi.org/10.1371/journal.pone.0208185.t001
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value can be taken for L. This value does not affect the final comparison. Therefore, in our

work, for the convenience of comparison, all the algorithms are unified to take the value

of L = 100.

Comparison methods

In this section, we mainly evaluate the performance of our algorithm. According to the way in

multivariate information coupling mode, our methods are represented as SASNMF and �+-

SASNMF. More specifically, there are three types of coupling mode for auxiliary information

using our framework, namely, i) Global network structure information coupling external aux-

iliary information from node attributes (A+S). ii) Global network structure information cou-

pling internal auxiliary information from local structure latent feature (A+Sim). iii) Internal

auxiliary information from local structure latent feature and external auxiliary information

from node attributes are fused (Sim+S).

To analyse performance of algorithm proposed, we adopt two kinds of comparison meth-

ods. One is baseline algorithms, such as CN, AA, etc., which are often used for existing meth-

ods as benchmark to evaluate these approaches. We used seven here. In this work, they are

also used to extract local structural latent features of nodes to act as internal auxiliary

information.

The second is several state-of-the-art methods. These are divided into two categories: both

structural information and node attribute information are adopted and only structural infor-

mation is utilized.

Baseline methods

We list four types of link prediction methods as the baseline methods, including five local algo-

rithms based on the number of common neighbours between pairs of nodes (CN,AA,RA,Sal-

ton and Jaccard), a global random walk method(ACT) and a local path method(Katz) and

NMF method based on matrix factorization with the Frobenius norm. The mathematical

expressions of these methods are shown in Table 2. Their detailed definitions can be found in

ref. 1–3 and 43.

Table 2. Mathematical expressions of baseline methods.

Methods Formula Notes

Common neighbour

(CN)

Sxy = |Γ(x) \ Γ(y)| Where Γ(x) denotes the set of neighbours of node x, |�| is the

cardinality of the set �, and k(x) is the degree of node x.

Salton Sxy ¼
jGðxÞ\GðyÞjffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxÞ�kðyÞ
p

Jaccard Sxy ¼
jGðxÞ\GðyÞj
jGðxÞ[GðyÞj

Resource Allocation

Index(RA)
Sxy ¼

X

Z2GðxÞ\GðyÞ

1

kðZÞ

Adamic-Adar index

(AA)
Sxy ¼

X

Z2GðxÞ\GðyÞ

1

logkðZÞ

Average Commute

Time (ACT)

Sxy ¼
1

lþxxþlþyy � 2lþxy
Where lþxy represents the elements of matrix L+, the pseudo-

inverse of the Laplacian matrix.

Katz Sxy = ((I − θ � A)−1 − I)xy Where θ is a parameter, takes the default value 0.1, and I is the

diagonal matrix.

NMF Non-negative matrix

factorization

MF-based method

https://doi.org/10.1371/journal.pone.0208185.t002
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State-of-the-art methods

In addition, apart from the baseline methods, we also further compare the performance of the

proposed SASNMF method with the other three state-of-art competitive algorithms.

The structure perturbation method (SPM) based on nonnegative matrix factorization [24],

which is based on the perturbation of the adjacency matrix, assumes that the regularity of a

network is reflected in the consistency of structural features before and after a random removal

of a small set of links. In particular it outperforms state-of-the-art link prediction methods

both in accuracy and robustness[22,23]. In the SPM method, we use the method of NMF-D1

with random deletion perturbation. And the perturbation ratio is 0.04, the default value of per-

turbation times is 20.

Matrix completion (MC) [25] is a global information-based prediction algorithm based

upon the low-rank and sparse property of the adjacency matrix. It employ the robust principal

component analysis method through minimizing the nuclear norm of the matrix which fits

the training data to reconstruct a network that is close to the original network and accordingly

identify the missing links. In the MC method, in addition to the partial values of the parameter

λ provided in the literature, we also perform an optimal analysis of the parameter and finally

select the best one. The parameter values of this method are referred to in the S1 File.

In addition, Chen BL et al. [41] proposed a link prediction method based on NMF

(NMF-LP), which adopted node attributes. Therefore, we compare this method with our

framework.

Experiments results

Parameters setting: In order to achieve good prediction results, before the whole experiment,

we analyzed the sensitivity of the model parameters α and β. We set the proportion of training

set as 0.9, and the range of the two parameters are set from 1 to 100, respectively. And then

take the widely used evaluation index AUC and Precision for link predication as evidence. The

Fig 1. Model parameter sensitivity analysis.

https://doi.org/10.1371/journal.pone.0208185.g001
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values of AUC and precision are calculated on 13 networks, and compared with each other.

Finally, the optimal range of parameters is gradually obtained. Furthermore, we select five net-

works including Lazega, Facebook, Cornell, Texas, four networks with node attributes and

Kate, one non-attributes from the all networks, and analyze the experimental sensitivity of α
and β in the performance of link predication in a smaller range. As represented in Fig1, it is

obvious that the performances on Lazega, Facebook, Cornell, Texas and Kate are gradual sta-

ble. Although the different settings of α and β have significant influence on the predict results,

we also know that our framework has equally better performance than other baseline methods.

Without losing generality, we set α = 4, β = 32 in subsequent experiments.

Using optimized parameter results, in this section, we show the AUC and precision results

of our proposed methods based on NMF with coupling multivariate information and other

comparison methods on the 13 real network data in Tables 3–6.

Tables 3 and 4 show the results calculated on five networks with external auxiliary informa-

tion (namely, node attributes), while Tables 5 and 6 show the eight networks with only internal

information. To facilitate comparison, we add Mode column to the table, and classify it

according to different combination mode and different comparison method to show the differ-

ence. In the four tables, the presented links for every dataset are partitioned into a training set

(90%) and a probe set (10%). From these tables, we can see that the prediction results by

means of various combination formulas under the SASNMF framework are significantly better

than the other comparison methods. In addition, these methods using external auxiliary infor-

mation are generally superior to the baseline methods that use only structure information.

These experimental results are classified according to whether the network has external

auxiliary information, namely, node attributes, and both AUC and precision evaluation crite-

ria were used for performance analysis. In the four tables, the upper right of the numbers

Table 3. The average predicting precision obtained by 100 independent runs on 5 networks with external attributes. The training set contains 90% of the total

connections.

Precision Lazega Facebook Cornell Texas Washington Mean Mode

SASNMF 0.1661(2) 0.3923(1) 0.0655(12) 0.0154(15) 0.0451(7) 7.4 A+S

AA+SASNMF 0.1579(3) 0.2952(10) 0.0917(6) 0.0182(11) 0.0092(14) 8.8 A+Sim

CN+SASNMF 0.1479(6) 0.2913(13) 0.0934(5) 0.0168(14) 0.0114(12) 10

RA+SASNMF 0.1516(4) 0.2931(12) 0.0866(9) 0.0193(10) 0.0108(13) 9.6

Salton+SASNMF 0.1484(5) 0.2963(9) 0.0876(7) 0.0171(13) 0.0146(11) 9

A (= AA)+SASNMF 0.1316(12) 0.2836(16) 0.1069(3) 0.1071(1) 0.1135(1) 6.6 Sim+S

A (= CN)+ SASNMF 0.1474(7) 0.2842(15) 0.0828(10) 0.0536(5) 0.0919(3) 8

A (= RA)+ SASNMF 0.1316(12) 0.2944(11) 0.1103(2) 0.0857(2) 0.1000(2) 5.8

A (= Salton)+ SASNMF 0.0842(18) 0.1646(19) 0.0000(18) 0.0000(18) 0.0000(15) 17.6

AA 0.1321(11) 0.3247(4) 0.0869(8) 0.0739(3) 0.0873(5) 6.2 Baseline methods

CN 0.1371(10) 0.3136(7) 0.0741(11) 0.0432(6) 0.0892(4) 7.6

RA 0.1271(14) 0.3808(2) 0.0866(9) 0.0700(4) 0.0792(6) 7

Salton 0.0953(16) 0.3002(8) 0.0000(18) 0.0004(17) 0.0000(15) 14.8

Jaccard 0.0921(17) 0.3162(6) 0.0010(17) 0.0004(17) 0.0000(15) 14.4

Katz 0.1303(13) 0.0163(20) 0.0359(15) 0.0104(16) 0.0222(8) 14.4

ACT 0.0311(19) 0.2575(17) 0.0255(16) 0.0179(12) 0.0000(15) 15.8

NMF 0.1471(8) 0.2907(14) 0.0969(4) 0.0154(15) 0.0108(13) 10.8

SPM 0.1742(1) 0.3546(3) 0.1276(1) 0.0314(8) 0.0200(10) 4.6 State-of-the-art methods

MC 0.1084(15) 0.3184(5) 0.0455(14) 0.0400(7) 0.0200(9) 10

NMF-LP 0.1461(9) 0.1715(18) 0.0621(13) 0.0243(9) 0.0146(11) 12

https://doi.org/10.1371/journal.pone.0208185.t003
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represents the respective Precision-ranking (AUC-ranking) position of each method in each

network. The smaller the number is, the better the prediction performance of the algorithm

(see S1 File). To reflect the overall performance of all algorithms on different networks, the

column labelled as Mean in the table is the mean ranking value of each method across all the

networks. It is an indicator of average performance. To facilitate analysis, the column labelled

as Mode represents different information combinations. Through the results shown in these

four tables, we can see that although the methods proposed: A+S, A + Sim, Sim + S were not

always the best, it can be found from the average of performance ranking levels on each net-

work that the prediction performance of these three forms based on the SASNMF framework

are in the leading position as a whole. This finding indicates that this auxiliary information,

including the internal structure latent features and the external node attributes, is salutary to

enhance the accuracy of link prediction.

To further test the overall prediction effect of the three combination methods proposed, we

give only the results of precision and AUC based on four baseline methods, AA, CN, RA and

Salton on real networks in Fig 2. Here, we use a baseline method and its two combinations,

namely, A+Sim and Sim+S, to compare with SASNMF.

Similarly, to compare the overall performance of the combined mode A+Sim with the base-

line method and the state-of-the-art methods on 13 real networks, we consider four baseline

methods (AA, CN, RA and Salton) and their combined modes. The AUC and precision results

are shown in Figs 3 and 4.

From Fig 4, we can see that the proposed combination method based on our framework is

also better overall than the MC and NMF methods besides the SPM. Of course, the SPM

method is not as good as our method on some of the datasets in the experiment.

Table 4. The average predicting AUC obtained by 100 independent runs on 5 real networks with external attributes. The training set contains 90% of the total

connections.

AUC Lazega Facebook Cornell Texas Washington Mean Mode

SASNMF 0.8003(4) 0.9354(3) 0.7000(9) 0.6398(15) 0.6886(10) 8.2 A+S

AA+SASNMF 0.7717(9) 0.9075(11) 0.7830(4) 0.6734(8) 0.7368(5) 7.4 A+Sim

CN+SASNMF 0.7668(13) 0.9088(9) 0.7875(3) 0.6686(10) 0.7358(6) 8.2

RA+SASNMF 0.7704(11) 0.9137(8) 0.7876(2) 0.6730(9) 0.7410(3) 6.6

Salton+SASNMF 0.7707(10) 0.9138(7) 0.7817(5) 0.6746(7) 0.7378(4) 6.6

A (= AA)+SASNMF 0.7960(5) 0.8810(14) 0.7000(9) 0.7060(3) 0.7330(7) 7.6 Sim+S

A (= CN)+ SASNMF 0.8030(2) 0.8580(15) 0.6600(15) 0.6490(12) 0.6650(13) 11.4

A (= RA)+ SASNMF 0.8120(1) 0.8950(13) 0.7270(8) 0.7170(2) 0.7700(1) 5

A (= Salton)+ SASNMF 0.7350(17) 0.8210(18) 0.6500(16) 0.5590(18) 0.6310(16) 17

AA 0.7864(7) 0.9355(2) 0.6973(11) 0.6807(5) 0.6919(9) 6.8 Baseline methods

CN 0.7768(8) 0.9243(6) 0.6673(14) 0.6489(13) 0.6609(14) 11

RA 0.7896(6) 0.9514(1) 0.6956(12) 0.6748(6) 0.6925(8) 6.6

Salton 0.7587(14) 0.9260(5) 0.6179(18) 0.5765(17) 0.6081(17) 14.2

Jaccard 0.7559(15) 0.9067(12) 0.6188(17) 0.5794(16) 0.6063(18) 15.6

Katz 0.5876(20) 0.3394(20) 0.6792(13) 0.3392(20) 0.3898(20) 18.6

ACT 0.6485(18) 0.8468(16) 0.7341(7) 0.7002(4) 0.6513(15) 12

NMF 0.7673(12) 0.9086(10) 0.7639(6) 0.6650(11) 0.6868(11) 10

SPM 0.8014(3) 0.9294(4) 0.8063(1) 0.7274(1) 0.7615(2) 2.2 State-of-the-art methods

MC 0.6072(19) 0.8326(17) 0.5068(19) 0.4354(19) 0.4770(19) 18.6

NMF-LP 0.7551(16) 0.7795(19) 0.6975(10) 0.6401(14) 0.6705(12) 14.2

https://doi.org/10.1371/journal.pone.0208185.t004
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In addition, to test the performance of our methods, the relative precision and AUC results

of our proposed methods and other baseline methods under different fractions of training sets

in the different network are shown in Fig 5.

For the NMF-LP method, because it is a link prediction method based on node attribute

information, we only make a comparative analysis with it on these networks with node attri-

butes. In the whole comparative experiment, we find that the time complexity of NMF-LP

method is much higher than our algorithm, and from the final experimental results, the perfor-

mance of our algorithm is more competitive than it.

Discussion

In summary, real networks are sparse and contain noise. To overcome prediction difficulties

by means of internal and external auxiliary information, we proposed a unified prediction

Table 5. The average predicting precision obtained by 100 independent runs on 8 real networks with only internal attributes. The training set contains 90% of the

total connections.

Precision Karate Jazz USAir PolitB C.elegans NetSci Metabolic Adjnoun Mean Mode

AA+SASNMF 0.1575(4) 0.5519(7) 0.3387(6) 0.1829(2) 0.1432(5) 0.3595(7) 0.2630(3) 0.0684(4) 4.75 A+Sim

CN+SASNMF 0.1600(3) 0.5563(5) 0.2087(10) 0.1142(10) 0.1417(6) 0.3247(10) 0.1758(9) 0.0279(8) 7.625

RA+SASNMF 0.1525(5) 0.5570(4) 0.2051(11) 0.1185(9) 0.1459(4) 0.3555(8) 0.1797(7) 0.0272(9) 7.125

Salton+SASNMF 0.1725(2) 0.5588(3) 0.3096(8) 0.1455(7) 0.1466(3) 0.3306(9) 0.2308(4) 0.0329(7) 5.375

AA 0.1267(9) 0.5234(10) 0.3991(3) 0.1735(4) 0.1057(8) 0.7192(2) 0.1969(6) 0.0767(2) 5.5 Baseline methods

CN 0.1150(11) 0.5031(12) 0.3786(4) 0.1748(3) 0.0913(10) 0.5062(5) 0.1410(10) 0.0726(3) 7.25

RA 0.1371(7) 0.5413(8) 0.4683(1) 0.1504(6) 0.1029(9) 0.7312(1) 0.2726(2) 0.0649(5) 4.875

Salton 0.0008(14) 0.5314(9) 0.0521(14) 0.0102(14) 0.0182(14) 0.5496(3) 0.0510(12) 0.0014(12) 11.5

Jaccard 0.0013(13) 0.5176(11) 0.0677(12) 0.0167(13) 0.0207(13) 0.5489(4) 0.0495(13) 0.0016(11) 11.25

Katz 0.1358(8) 0.0202(14) 0.0527(13) 0.0265(12) 0.0222(12) 0.0995(13) 0.0192(14) 0.0009(13) 12.375

ACT 0.1088(12) 0.1679(13) 0.3304(7) 0.0740(11) 0.0533(11) 0.0000(14) 0.0934(11) 0.0967(1) 10

NMF 0.1488(6) 0.5548(6) 0.2111(9) 0.1213(8) 0.1493(2) 0.3189(11) 0.1796(8) 0.0235(10) 7.5

SPM 0.2250(1) 0.6092(2) 0.3677(5) 0.1711(5) 0.1702(1) 0.4801(6) 0.2888(1) 0.0386(6) 3.375 State-of-the-art methods

MC 0.1163(10) 0.6143(1) 0.4205(2) 0.1872(1) 0.1256(7) 0.3068(12) 0.2179(5) 0.0279(8) 5.75

https://doi.org/10.1371/journal.pone.0208185.t005

Table 6. The average predicting AUC obtained by 100 independent runs on 8 real networks with only internal attributes. The training set contains 90% of the total

connections.

AUC Karate Jazz USAir PolitB C.elegans NetSci Metabolic Adjnoun Mean Mode

AA+SASNMF 0.7721(2) 0.9598(6) 0.9502(5) 0.9420(1) 0.8723(2) 0.9350(8) 0.8652(4) 0.7143(2) 3.75 A+Sim

CN+SASNMF 0.7361(6) 0.9534(11) 0.8987(10) 0.7980(12) 0.8332(7) 0.9401(6) 0.7979(9) 0.6213(10) 8.875

RA+SASNMF 0.7217(9) 0.9570(8) 0.8941(11) 0.8253(11) 0.8256(8) 0.9338(9) 0.7923(10) 0.6171(12) 9.75

Salton+SASNMF 0.7688(3) 0.9538(10) 0.9472(6) 0.8940(7) 0.8588(5) 0.9359(7) 0.8329(6) 0.6800(7) 6.375

AA 0.7282(8) 0.9664(3) 0.9684(2) 0.9270(2) 0.8654(4) 0.9916(2) 0.9561(2) 0.6866(5) 3.5 Baseline methods

CN 0.6984(10) 0.9591(7) 0.9550(3) 0.9213(4) 0.8423(6) 0.9904(5) 0.9236(3) 0.6898(4) 5.25

RA 0.7338(7) 0.9721(1) 0.9734(1) 0.9265(3) 0.8695(3) 0.9908(4) 0.9607(1) 0.6819(6) 3.25

Salton 0.6321(12) 0.9667(2) 0.9254(7) 0.8782(8) 0.7874(11) 0.9931(1) 0.8119(7) 0.6202(11) 7.375

Jaccard 0.6068(13) 0.9619(5) 0.9178(8) 0.8752(9) 0.7924(10) 0.9915(3) 0.7808(11) 0.6257(9) 8.5

Katz 0.7475(4) 0.4076(14) 0.3843(14) 0.4766(14) 0.4722(14) 0.9206(10) 0.4535(14) 0.2607(14) 12.25

ACT 0.6603(11) 0.7973(13) 0.8990(9) 0.9006(6) 0.7548(12) 0.5758(14) 0.7654(12) 0.7462(1) 9.75

NMF 0.7387(5) 0.9556(9) 0.8761(12) 0.8395(10) 0.8250(9) 0.9039(12) 0.8008(8) 0.6352(8) 9.125

SPM 0.7978(1) 0.9624(4) 0.9504(4) 0.9132(5) 0.8766(1) 0.9110(11) 0.8482(5) 0.7082(3) 4.25 State-of-the-art methods

MC 0.5704(14) 0.8709(12) 0.8142(13) 0.6767(13) 0.5874(13) 0.6721(13) 0.6026(13) 0.4670(13) 13

https://doi.org/10.1371/journal.pone.0208185.t006
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framework based on non-negative matrix factorization with coupling multivariate informa-

tion, which can model the internal latent feature information and external node attribute

information of the network. Based on this framework, we also proposed three combination

methods that are represented as A+S, A+Sim, and Sim+S. According to the proposed combi-

nation patterns, we design a large number of experiments for networks with node attributes

Fig 2. The AUC and precision score on 5 real networks with external attribute information.

https://doi.org/10.1371/journal.pone.0208185.g002
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and networks without node attributes under our framework. We compared the proposed

methods with 8 benchmark methods and 3 state-of-the-art methods on 13 real network

datasets.

In addition, the selection of the rank after the matrix decomposition was also important

because of its effect on the prediction result and the number of latent features k in the

SASNMF framework is different for each dataset. Here, to illustrate the problem, the results of

different k for the Lazega-lawyer dataset are shown as follows in Fig 6.

In the figure, the training sets are from 90% to 20% and only a network dataset—Lazega-

lawyer.

As seen in Figs 2 and 3, the methods in which the mode is A+S, A+Sim and Sim+S are bet-

ter than the corresponding benchmark methods. Especially, through our framework, the

Fig 3. The AUC and precision results compared with baseline methods on 13 real networks.

https://doi.org/10.1371/journal.pone.0208185.g003

Fig 4. The AUC results compared with the state-of-the-art methods on 13 real networks.

https://doi.org/10.1371/journal.pone.0208185.g004
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prediction effect of using node attributes as auxiliary information is competitive compared to

those baseline methods.

To better test the extensibility and robustness, Fig 5 shows the results of precision and AUC

under different proportions of training sets Etrain and test sets Etest. Fig 5 shows a prediction

trend for five attribute networks, where the partition ratio, Etrain and Etest, is from 0.9 to 0.2.

We find that the performance of all methods declines obviously as the Etrain ratio decreases in

Fig 5. However, there is a gentle trend decline under the SASNMF method. Moreover, from

the whole process of dataset partitioning to analyse the results synthetically, its prediction

effect is obviously superior to other baseline methods. This finding indicates that these meth-

ods that rely only on structural information can make the prediction worse as the number of

connected sets in the training set decreases. Our framework can alleviate the problem of data

sparsity by coupling multivariate auxiliary information. Especially, on the Lazega-lawyer and

Facebook datasets, the impact of using SASNMF on the results is obviously better than that of

other comparison methods. Although the precision test of the Cornell, Texas and Washington

datasets is inferior to that of AA and RA, our model is far better than that of these two methods

Fig 5. The precision and AUC results in different proportion training sets.

https://doi.org/10.1371/journal.pone.0208185.g005

Fig 6. The accuracy of different k values is calculated and compared by two metrics.

https://doi.org/10.1371/journal.pone.0208185.g006
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under the corresponding AUC evaluation. It can be said that the overall effect of our method is

good under the AUC index.

Therefore, why does our method not work well on these three datasets? Through in-depth

analysis, we think that the main reason for this phenomenon lies in the attribute information.

In fact, the attribute values used in these three datasets are simply quantized whether the

words in the article appear or not, compared with the first two data sets. However, the attribute

values of the first two datasets are true social attributes. Therefore, the attribute of these three

networks cannot be said to better reflect the true similarity between nodes.

In addition, the number of latent features k in the SASNMF framework is different for each

dataset. Moreover, the determination of the latent features k is a very important and difficult

problem in matrix factorization. Fig 6 shows only the results under different k for the Lazega-

lawyer dataset. In this paper, because it is not our primary focus, we take an easy and effective

method for automatic determination of k, by Colibri [62], which seeks a nonorthogonal basis

by sampling the columns of the input matrix. However, to observe the influence of different k

in the process of matrix factorization for the prediction effect, we take some of k’s value by

means of the limitative form of k(m + n)�mn provisionally. Due to the adjacent matrix A

being symmetrical here, the k is far less than n/2. Fig 6 shows that the influence of the selection

of k on the prediction results is obvious.

Conclusion

In recent years, link prediction based on network topology has been one of the research hot-

spots in the field of data mining. However, in many instances, algorithms that use only net-

work structure do not provide the precision needed for link prediction. At present, with the

development of mobile Internet, the more descriptive information owned by the entities in the

network is becoming an asset to be used. Inspired by this, based on the advantages of NMF

such as interpretability, nonnegativity and information fusion, a unified framework of link

prediction is proposed in this paper. By this framework, the adjacency matrix A, which repre-

sents the macroscopic information of a network topology, and the auxiliary information

matrix S, which represents the microscopic information of the network, are mapped to the

same low-rank latent feature space to realize the multivariate information coupling. Then, the

link prediction task can be realized by merging into a prediction matrix that can infer the miss-

ing relationship of the network. At the same time, to further analyse the usability of the net-

work auxiliary information, we not only use the external attributes of the nodes but also

explore the latent features of the nodes that are extracted as internal auxiliary information by

some traditional structural similarity indices from local and global perspectives. On the basis

of multivariate information, we further propose three different combinations. We used three

class combination forms as the simulation cases of the proposed framework and experiments

to show the feasibility, effectiveness, and competitiveness of the framework. Moreover, a large

number of experiments on five networks with node sociological attributes and eight networks

without node attributes show that the prediction performance under this unified framework is

competitive compared with seven baseline methods and three state-of-art methods on the

whole according to the different combination patterns proposed by us. This finding demon-

strates that the proposed framework has advantages in combining the structure and attribute

information for link prediction. Furthermore, the framework is easy to extend to directed and

weighted networks by letting the matrix V be directed and weighted because it is based on

NMF.

In the future, there are some limitations and improved studies for our proposed framework.

One of which is how to set parameters α and β to be adaptive on different networks.
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Furthermore, we will extend our methods to more generalized situations such as extending the

model to edge attributes and combination attributes of edges and nodes and dynamic network

link prediction. Designing efficient methods to solve these issues will be interesting.
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