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In the present study, the optimization of medical services considering the role of intelligent traffic management is of concern. In
this regard, a two-objective mathematical model of a medical emergency system is assessed in order to determine the location of
emergency stations and determine the required number of ambulances to be allocated to the station. %e objective functions are
the maximization of covering the emergency demands and minimization of total costs. Moreover, the use of an intelligent traffic
management system to speed up the ambulance is addressed. In this regard, the proposed two-objective mathematical model has
been formulated, and a robust counterpart formulation under uncertainty is applied. In the proposed method, the values of the
objective function increase as the problem becomes wider and, with a slight difference in large dimensions, converge in terms of
the solution. %e numerical results indicate that, as the problem’s complexity increases, the robust optimization method is still
effective because, with the increasing complexity of the problem, it can still solve large-scale problems in a reasonable time.
Moreover, the difference between the value of the objective function in the proposed method and the presence of uncertainty
parameters is very small and, in large dimensions, is quite logical and negligible. %e sensitivity analysis shows that, with in-
creasing demand, both the number of ambulances required and the amount of objective function have increased significantly.

1. Introduction

Emergency medical services are an important part of the
health system, an effective system that provides rapid re-
sponse to calls, patient transfer, and timely treatment, ul-
timately, saving human lives, accountable to the prehospital
health system [1]. Medical emergency organizations are
divided into two main categories, affiliated to the United
Kingdom and the United States and affiliated to France and
Germany, including on-site treatment, and the accelerated
response has not been significant [2].

On the other hand, in healthcare management systems,
time is a significant and influential factor. In large cities,

however, there are always significant delays in the arrival of
patients’ positions due to heavy traffic. For this reason, it is
essential to design a traffic management system in order to
provide required routes for health vehicles and minimize the
travel time to the patient’s position [1, 3].

Accordingly, this research is based on the use of uncer-
tainty to respond to healthcare visiting demand as quickly as
possible. In this regard, stochastic models target the inherent
uncertainty and dynamics of the medical emergency system
and are adapted to take into account the randomness of the
initial contact process. %erefore, location-inspired models
also consider demand-constrained costs and try to minimize
the total cost of setting up stations and meeting demand.
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To address demand uncertainty, first a definitive model
and then a probabilistic model are presented, and it is as-
sumed that each vehicle is capable of delivering a maximum
certain number of emergency calls over the planning ho-
rizon. Moreover, like most coverage models, they need a
vehicle that can meet emergency demand [4, 5]. %e initial
formulation is then expanded, and a two-step mathematical
program is proposed to combine the uncertainties so that
this is the first attempt to apply this method to an ambulance
location, where two decision steps are considered. %e first
step is to determine the location of the standby locations and
the second step is to assign the task of entering service
requests to the standby locations. It should be noted that
demand uncertainty manifests itself in the second stage.
Next, an ambulance allocation model was proposed. In that
model, minimizing the costs of operating and transporting
the ambulance, as well as the requests that were not sub-
mitted on time, was addressed. To offer the best possible
solution taking into account the diversity of demand, the
newly introduced model provides a strong example of lo-
cation-allocation formulation that aims to ensure that a
solution to a set of demands can be solved. In a way, the
concept shows the maximum number of simultaneous re-
quests to estimate the number of vehicles to be stationed at
each station.

In previous research, location optimization to meet
emergency needs has been highly regarded. Goli andMalmir
[6] have located and routed in crisis situations. In this re-
search, the covering approach has been used. In this method,
not all places with demand are serviced, and an attempt is
made to cover the demand of the affected people in the
nearest places. Fuzzy uncertainty has been used in this re-
search. Pahlevan et al. [7] have examined the location and
distribution of goods in conditions of uncertainty. In this
research, gray wolf optimizer (GWO) and red deer algo-
rithm (RDA) have been applied to solve the problem.

Zhang and Li [8] have proposed a mathematical model
for locating emergency relief centers. In this research, fuzzy
uncertainty and possibility planning have been used. Nickel
et al. [9] have studied the problem of locating ambulance
stations in the event of random demand. For this purpose, a
sampling method is developed, and then, by optimizing a
mathematical model, the best position of the stations is
determined. Boujemaa et al. [10] have proposed a two-stage
model for medical service in which service centers and
service time are optimized.

After careful consideration of the previous research
items, it is revealed that the uncertainty of demand has
attracted the attention of researchers, and, according to their
objectives and the field under study, the allocation of
emergency vehicles has been considered in many different
ways. However, it is challenging to compare their results at a
common point. In addition, the robust formulation is still a
considerable challenge given the computational effort re-
quired to solve them. One of the most useful data analysis
tools is robust optimization suitable for decision-making
under uncertainty. An intelligent traffic management system
has also been used to accelerate the movement of vehicles
and reach the patient as quickly as possible. In other words,

the contribution of this research can be summarized as the
following items:

(i) Integrating the home healthcare planning and in-
telligent traffic management

(ii) considering two-stage programming to manage the
intelligent traffic system and home healthcare
routing

(iii) considering uncertainty in demand parameters for
home healthcare optimization and providing robust
counterpart formulation to deal with such
uncertainty

In this study, a robust formation is presented to for-
mulate the problem with demand uncertainty. %is for-
mulation ensures with a certain probability that the number
of vehicles stationed at a location can meet the maximum
number of simultaneous demands. %e sampling approach
has been implemented to select the ambulance standby
locations as well as the number of ambulances in each of the
selected locations. In this case, it is assumed that demand
follows a certain discrete distribution. Next, the proposed
approach seeks to minimize fixed costs while ensuring the
level of coverage for all scenarios considered. %e results,
based on a set of random cases, confirm the use of a random
approach to deal with the problem under study. In a rela-
tively similar work, a two-stage stochastic location model is
proposed for the design of a robust two-stage medical
emergency system, which simultaneously measures the lo-
cation of ambulance stations, the number, and type of
ambulances that must be deployed and determines the re-
quired areas of each station. Next, the average sample ap-
proximation algorithm is used to solve the problem.

%erefore, in this research, an attempt has been made to
use more up-to-date methods in solving optimization
problems and, in particular, robust optimization, which
solves the problems caused by uncertainties in the input data
and in the model parameters, which are discussed in Section
2. Next, the findings are analyzed in Section 3, and in Section
4, conclusions are provided.

2. Problem Description

When an emergency call is made in a subarea, if there is one,
the ambulance is transported from the station to the scene of
the accident, and then the patient is transported to the
hospital. %erefore, the sooner the patient is taken to the
hospital, the sooner the treatment begins. In general, am-
bulances are located in preinstalled stations. When a call is
made, the ambulance leaves the station at the scene and then
returns to the station. %e allocation of ambulances to the
place of demand is shown in Figure 1.

Moreover, in this research, the intelligent traffic man-
agement system has been considered using a map. It pre-
defines the ambulance route and the traffic light on the route
and the status of the light (green or red) on the map. In this
system, there is a control center that detects the current
location of the ambulance and sends a command to the
traffic light to turn the light green, or the light will continue

2 Computational Intelligence and Neuroscience



to its current state.%e goal is for the ambulance not to get in
its way due to a red light.

%e mechanism of this system is that it calculates the
distance and direction of the ambulance, i.e., the distance
between the ambulance and the next traffic light, and cal-
culates the direction, i.e., determining the ambulance route at
each intersection. Calculating the distance allows the control
center to turn the traffic light green at the right time so that
there is no traffic before the intersection, and calculating the
route allows the control center to identify the traffic light at
the next intersection. When the ambulance starts moving, its
initial position is sent to the control center to determine the
direction of movement and then to identify the nearest traffic
light on the route. If the distance from the ambulance to the
traffic light is less than a fixed value, the traffic light will show
green; otherwise, the light will continue to its current state. It
is the responsibility of radio systems to detect the movement
of an ambulance, and a route is adopted that transports the
ambulance to the scene of the accident or the place of request
or the patient from the place of request to the hospital in the
shortest possible time. After identifying this optimal route, the
lights in the route and the distance of the ambulance to each
intersection or lights are determined by the location and
special radio systems to make arrangements at the desired
time to minimize oncoming traffic.

%e notations used in the research, including the sets,
parameters, and decision variables, are expressed as follows.

2.1. Sets and Parameters

I: set of demand points
J: set of potential locations for stations
L: traffic light potential location set
R: set of ambulances that leave the station
fj: cost (daily) of building at station j

pj: cost of maintaining and purchasing each ambulance
at station j

dij: distance between the place of demand i and
station j

C: cost per shipping unit
μi: average demand (daily) at the place of demand i

qi: maximum simultaneous number of demands at the
place of demand i

β: standard distance for applying the intelligent traffic
management system l

Hl : cost (daily) of each unit of the intelligent traffic
management system l

M: a very large number
W: the weight of unmet demand
Nl: the number of ambulances that, according to each
demand, can be covered by the potential location of the
intelligent traffic management system l

2.2. Decision Variables

Xij: percentage of demand at location i covered by
station j

Yj: a binary variable and equal to 1 if the station is
constructed at potential location j; otherwise, it is 0
Nj: number of ambulances available at station j

Wrl: a binary variable and equal to 1 when the distance
from ambulance r to light l is greater than β; otherwise,
it is 0
Zrl: a binary variable and equal to 1 when in light l for
ambulance r turns green; 0 is the state when the light
turns red
Sl: a binary variable and equal to 1 when the traffic light
l is in the potential location; otherwise, it is 0

Incoming calls Call
Centers

Ambulance
Bases

Origins for
emergency calls

Hospitals

Figure 1: Overview of demand and allocation of ambulances to the demand place.
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2.3. Objective Function and Constraints. %e certain model
used to minimize the total cost, based on previous research
[11, 12], is as follows:

P: min􏽘
j∈J

fjYj +􏽘
j∈j

PjNj +􏽘
j∈J

􏽘
i∈J

cdijμiXij +􏽘
l

HlSl, (1)

􏽘

s.t.

j∈ J
Xij � 1,∀i∈ I, (2)

Xij≤Yj,∀i∈ I,∀j∈ J, (3)

Nj≤MYj,∀j∈ J, (4)

Nl≤MSl,∀l∈L, (5)

Wrl +Zrl � 1,∀l∈L,∀r∈R, (6)

􏽘
i∈I

qi Xij≤Nj,∀j∈ J, (7)

0≤Xij≤1,∀i∈ I,∀j∈ J, (8)

Yj ∈ 0, 1{ },Zrl ∈ 0, 1{ },Wrl ∈ 0, 1{ },Sl ∈ 0, 1{ },∀j∈ J,

∀l∈L,∀r∈R,
(9)

Nj ∈Z
+
,Nl ∈Z

+∀j∈ J,∀l∈L. (10)

%e objective function in (1) includes minimizing the
cost of construction of medical emergency system stations,
the cost of emergency transportation equipment, the average
cost of transportation between medical emergency system
stations and the place of demand, and, finally, the cost of
setting up and equipping an intelligent traffic management
system. Constraint (2) guarantees the processing of each
demand. Constraints (3) and (4) indicate the allocation of
demand and transportation equipment only to open sta-
tions. Constraint (5) indicates the allocation of the intelli-
gent traffic management system to the lights. Constraint (6)
states how the intelligent traffic system operates when the
distance from ambulance r to lamp l is less than the defined
value. Constraint (7) states that the number of ambulances at
station j should not be less than the maximum simultaneous
demand. Constraint (8) represents the Xij range, and con-
straints (9) and (10) also represent the binary nonnegative
variables.

In order to estimate the response rate of the medical
emergency system, a maximum coverage model has been
used, which ensures that the requests answered by EMS
stations have a transfer time less than T [13, 14]. %is
concept is equivalent to minimizing the demands that are
not covered at the time [15, 16]. %erefore, the following
model is introduced to minimize fixed costs, equipment
costs and purchases, and the cost of fines for applications
that were not covered in the previous model.

O: min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + W 􏽘
j∈J

􏽘
i∈Ij

μiXij + 􏽘
l

HlSl,

s.t.

Constraint(2) ∼ Constraint(10).

(11)

Here, W indicates the weight of applications that were not
completed within the specified time. Moreover, in this
objective function, Ij is defined as I/ i: dij ≤T × V􏽮 􏽯 where V

is the average ambulance speed. By combining the two-
objective functions (1) and (11), a definite two-objective
model is created to design the problem of the medical
emergency system, which will be used to compare with the
robust model.

2.4. Robust Counterpart Formulation. In most cases of de-
signing a medical emergency system, sufficient research data
is not available to achieve a possible distribution function of
parameters that include uncertainty.%erefore, developing a
robust peer-to-peer approach is the most likely solution. In
this research, the definite model used has become its robust
counterpart by replacing the constraints that include the
definite parameter with the constraints that include the set of
uncertainties. %at is, the uncertainty in the two parameters
of the number of requests and the maximum simultaneous
demand is considered. Moreover, the set of elliptical un-
certainties along with safe parameters has been used to
describe the uncertainties in this research.

In order to implement a robust counterpart model, first
by inspiring the foundation of robust optimization, espe-
cially in the research of Ben-Tal et al. [17] and Goodarzian
et al. [18], a standard formulation is created to convert the
model to a robust counterpart form. %e research is then
applied to the mathematical model. Moreover, in order to
solve the robust model, the parameters related to the robust
counterpart form are quantified, and then the mathematical
model is optimized.

2.5. Robust Formulation of Model P. To formulate a robust
counterpart of the Model P, it is assumed that the number of
emergency calls belongs to a set of elliptical uncertainties,
which is shown in

U � U ∈R|I|
: U � U +Δς,ς≤θ,U ∈R|I|

,Δ∈R|I|×|I|
,θ ∈R􏽮 􏽯,

(12)

where U is the vector of uncertain demand at places of
demand and its numerical values are

U � μ1, μ2, . . . , μn􏼂 􏼃
T
,

n � |I|,

U � μ1, μ2, . . . , μn􏼂 􏼃
T
.

(13)

%e matrix △ � 􏽐
​ 1/2 can be obtained through a sep-

aration method. Σ is actually the covariance matrix of
emergency calls. θ is the safe parameter that is determined by
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derivatives and is also selected by the decision-maker to
show the appropriate reaction to his approach to risk.

Moreover, the following constraints are considered for
introducing the auxiliary variable tj.

tj ≥ 􏽘
i∈I

dij μiXij,∀j ∈ J. (14)

Accordingly, the robust counterpart approach can be
obtained through the following model:

max
μ∈U

􏽘
i∈I

dijμiXij, (15)

max
ς≤θ

(U + Δς)T
Xj ≤ tj, (16)

where Xj � [d1jX1j + d2jX2j + . . . + dnjXnj]
T,n � |I|. %ere-

fore, based on [15], it can be concluded that the robust
counterpart of Constraint (7) can be reformulated as

U
T
Xj + θ

��������

X
T
j 􏽘 Xj

􏽱

≤ tj∀j ∈ J. (17)

%is means hedging against the standard distribution θ,
provided that the coefficients belong to a set of elliptical
uncertainties. %eMNCD-based cone uncertainty set will be

Q� Q ∈R|I|
: Q�Q+Ξξ,ξ≤β,Q ∈Q|I|

,Ξ∈R|I|×|I|
,β ∈R􏽮 􏽯,

(18)

where numerical values are Q � [q1, q2, . . . , qn] and
Q � [q1, q2, . . . , qn]. Moreover, Ψ is the covariance matrix,
and β is the safe parameter.%erefore, the robust counterpart
of Constraint (7) will be as formulated as

Q
T
Xj + β

����������

X
T
j ΨXj ≤N

􏽱

. (19)

As a result, the robust counterpart of the Model P will be
as

P: min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + 􏽘
j∈J

ctj + 􏽘
l

HlSl, (20)

􏽘

s.t.

i ∈ I

dijμiXij + θ
����������
􏽘
i∈I

σid
2

ij X
2

ij

􏽲
≤ tj,∀j ∈ J, (21)

􏽘
i∈I

qi Xij + β
��������
􏽘
i∈I
Ψ 2

ij X
2

ij

􏽲
≤Nj,∀j ∈ J, (22)

Xij ∈ R+∀i ∈ I, j ∈ J. (23)

2.6. Robust Formulation ofModel O. %e robust formulation
of Model O is formulated in a similar way to Model P. %e
third part in the objective function (11) is related to the
uncertainty in the number of emergency calls that belong to
the elliptical set, which is shown in

Vj � V ∈R Ij

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌: V � V +Λς,ς≤c,V ∈R Ij

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,Λ∈RIj×Ij ,c ∈R􏼚 􏼛,

(24)

where V is the uncertain emergency demand vector gen-
erated by the following demand location V, i ∈ Ij, V �

[μi1
, μi2

, . . . , μim
]T, m � |Ij|. Moreover, Λ � ϕ1/2 · ϕ is the

covariance matrix; μ and c are safe parameters. Similar to the
method used in Constraint (14), we formulate a robust
constraint counterpart as

􏽥tj ≥ 􏽘
i∈Ij

μiXij,∀j ∈ J,
(25)

V
T
Xj + c

�������

X
T

j ϕXj

􏽱

≤􏽥tj,∀j ∈ J. (26)

%erefore, the robust counterpart of Model O can be
formulated as

O: min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + W 􏽘
j∈J

􏽥tj + 􏽘
l

HlSl, (27)

􏽘

s.t,

j ∈ J

Xij � 1,∀i ∈ I, (28)

Xij ≤Yj,∀i ∈ I,∀j ∈ J, (29)

Nl ≤MSl,∀l ∈ L, (30)

Wrl + Zrl � 1,∀l ∈ L,∀r ∈ R, (31)

􏽘
i∈I

qiXij + β
��������
􏽘
i∈I
ΨiX

2
ij

􏽲
≤Nj,∀j ∈ J, (32)

􏽘
i∈I

μiXij + c

��������

􏽘
i∈Ij

σiX
2

ij

􏽳

≤􏽥tj,∀j ∈ J, (33)

0≤Xij ≤ 1,∀i ∈ I,∀j ∈ J, (34)

Yj ∈ 0, 1{ }, Zrl ∈ 0, 1{ }, Wrl ∈ 0, 1{ }, Sl ∈ 0, 1{ }, s

∀j ∈ J, ∀l ∈ L,∀r ∈ R.
(35)

Finally, a summary of the medical emergency system
problem formulas is provided by considering the intelligent
traffic management system as a robust two-objective opti-
mization problem and is presented in

min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + 􏽘
j∈J

ctj + 􏽘
l

HlSl, (36)

min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + W 􏽘
j∈J

􏽥tj + 􏽘
l

HlSl, (37)

􏽘

s.t.

j ∈ J

Xij � 1,∀i ∈ I, (38)

Xij ≤Yj,∀i ∈ I,∀j ∈ J, (39)

Nl ≤MSl,∀l ∈ L, (40)
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Wrl + Zrl � 1,∀l ∈ L,∀r ∈ R, (41)

􏽘
i∈I

dij μiXij + θ
����������
􏽘
i∈I

σid
2

ij X
2

ij

􏽲
≤ tj,∀j ∈ J, (42)

􏽘
i∈I

qiXij + β
��������
􏽘
i∈I
ΨiX

2
ij

􏽲
≤Nj,∀j ∈ J, (43)

􏽘
i∈I

μiXij + c

��������

􏽘
i∈Ij

σiX
2
ij

􏽳

≤􏽥tj,∀j ∈ J, (44)

0≤Xij ≤ 1,∀i ∈ I,∀j ∈ J, (45)

0≤Xij ≤ 1,∀i ∈ I,∀j ∈ J, (46)

Nj ∈ Z+,∀j ∈ J, (47)

tj,􏽥tj ∈ R+,∀j ∈ Js, (48)

3. Numerical Results

In this section, in line with the previous sections and the
process of achieving the research results, numerical tests are
used to model the medical emergency system by considering
the intelligent traffic management system. In this series of
tests, the location of the emergency service stations and the
facilities that are actually located in them are determined
from the candidate stations for medical emergency services.
%en, the required number of ambulances is determined
based on the share of demand and its amount in each station.
%e data used in this section is based on the study of Ndiaye
and Alfares [19], in which the location of the stations is
proportional to the demand, which is dependent on the
conditions in summer and winter. In order to better un-
derstand, the data used for solving the models are described
in the following subsection.

3.1. Test Problem Design. %e proposed model is an integer
quadratic problem that can be solved through the bifurca-
tion and delimitation algorithm to obtain the optimal so-
lution [20–23]. Both certain and robust models have been
solved using GAMS software andWindows 10 using a laptop
that is equipped with an Intel Core i7 processor 8GB of
RAM. First, the performance of the proposed model is
examined by comparing the two-objective functions that
have been stated, namely, cost and effect functions.

A small case study has been conducted considering three
emergency stations and five places of demand.%e operating
cost of allocating vehicles at stations j� 1, 2, 3 is 11,000,000,
56,000, and 130,000 units, respectively. %e cost of each
shipping unit is 50.%emaximum simultaneous demand for
the places of demand i� 1, 2, 3, 4, 5 is considered: 90, 19, 39,
183, and 103, respectively. %e cost of the uncovered ap-
plication is 50. %e cost of station equipment for stations
j� 1, 2, 3 is 115,700, 125,000, and 270,000 units, respectively.

In the elliptical case, the values of μ and q are presented in
Tables 1 and 2.

In order to solve the model, both cases of the box and
robust elliptical counterparts are optimized separately.
Moreover, for the binary variables of integer, the bifurcation
and delimitation method is applied. %e model shows that
the main station is constructed at the potential location j� 2
and the difference between the models is in the number of
ambulances allocated. In the robust counterpart formula-
tion, the model also operates based on quadratic cone op-
timization. In the box and elliptic cases, the model of the
main problem goes out of the semi-infinite state, and the
robust state must ensure the existence of an optimal global
solution in the quadratic linear and conical states [17]. In
addition, because the research problem involves a constraint
that all applications must be covered, all requests are covered
by station j � 2.%e total number of vehicles required at the
station j� 2 in all three definite, box, and elliptical cases are
434, 478, and 367, respectively. Moreover, the percentage of
demand that is covered in location i by station j in all three
definite, box, and elliptic modes is X1,2 � X2,2 � X3,2 �

X4,2 � X5,2 � 1. In the following subsection, the effect of
each parameter on the objective functions is examined
separately.

3.2. Comparing theObjective Functions. Pareto solutions can
be obtained by using the weighting method [20] and by
assigning a weight commensurate with the objective func-
tions. By combining the two-objective functions (1) and (11),
it can be stated that

min􏽘
j∈J

fjYj + 􏽘
j∈j

PjNj + 􏽘
j∈J

ctj + W 􏽘
j∈J

􏽥tj + 􏽘
l

HlSl. (49)

%e performance evaluation of the proposed model is
done by assigning different weights as well as the different
number of candidate stations. %e number of candidate
stations for the medical emergency system is 30, 50, and 70,
respectively. As mentioned earlier, all data used in this study
are taken previously. Moreover, in cases where explicit data
were not available, ten experiments were performed in

Table 1: %e values of μ.

i μl
i μu

i μi

1 336 510 470
2 337 337 337
3 336 530 470
4 337 510 480
5 337 530 490

Table 2: %e values of q.

i ql
i qu

i qi

1 19 90 54.5
2 19 19 19
3 19 29 39
4 19 183 101
5 19 103 61
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which the parameters were obtained by multiplying the
numbers obtained from the previous data in an interval
(1 + ε) where ε was obtained from a uniform distribution
[−0.1, 0.1]. For more information, see [3, 5, 21–23]. %e
average speed of a car is 30 km/h. %e average for each
emergency job is one hour.%e weight of uncovered demand
is estimated at 50. %e daily cost of the building at station j,
i.e., fj, is 50 units, and the cost of purchasing and main-
taining each ambulance unit at station j, i.e., pj, is two units.
T also takes 15 minutes. %e cost of each transport unit is
estimated at 50.%emaximum number of applications in the
demand places is 10 units. %e standard distance for ap-
plying the intelligent traffic management system is 200 units,
and the cost of each unit of the traffic management system is
1 unit. According to the same demand that is considered for
all three cases j� 30, 50, and 70, it is observed that the total
number of ambulances required in different stations and in
all three cases is 500 units and also increasing the number of
stations from 30 up to 70 leads to an increase in costs, which
can be fully seen in Table 3 and Figure 2.

Moreover, if an increasing trend can be found in the
demand parameter, both the number of required ambulances
and the value of objective function have increased signifi-
cantly. By increasing the number of traffic light locations to
apply the intelligent trafficmanagement system, the objective
function is first increased and then decreased. %is may be
due to the fact that as the number of intersections increases

and, as a result, the traffic lights increase, the time for the
ambulance to arrive from the station to the scene of the
accident or from the place of demand to the hospital also
increases and naturally leads to reduced response quality.
Due to the lack of sufficient capacity in urban and intercity
routes, costs increase. It is possible to increase the number of
lights until there is a suitable platform for the application of
an intelligent traffic management system, and therefore, in
the absence of this, the system is not able to respond to all
requests in a timely manner.

Finally, the overall cost of the system is reduced.
Moreover, as the number of simultaneous demands in-
creases, in theory, system costs and the number of ambu-
lances required increase dramatically to meet overall
demand. It should be noted that the impact of other pa-
rameters on the objective function, such as the daily cost of
the emergency station, the daily cost of emergency vehicles,
and the daily cost of an intelligent traffic management
system, as well as vehicle speed, will increase the objective
function, which, due to this increase, leads to no significant
changes made to the objective function; this is not used in
the following analysis. %e set of changes mentioned is il-
lustrated in Table 4 and Figure 3.

Moreover, the graph of the effect of the parameters on
the number of ambulances required in both objective
functions is as follows, in which the number of ambulances
required changes with the change of the desired parameters,

Table 3: %e results of Model P.

I J L Q
0 11200 10050 10050 10050
5% 12500 10121 10190 10326
10% 13700 10163 10240 10562
15% 15200 10187 10412 11027
20% 17900 10239 10559 11276
25% 19600 10282 10612 11829
30% 19900 10355 10758 12414
35% 20050 10361 10908 12875
40% 20170 10396 10974 13141
45% 20200 10480 11023 13730
50% 20250 10546 11101 14107

0

5000

10000

15000

20000

25000

M
od

el
 P

 o
bj

ec
tiv

e 
va

lu
e

0.1 0.2 0.3 0.4 0.5 0.60
Percentage of changing the scale

I
J

L
Q

Figure 2: %e effect of increasing the scale of the problem on the
objective function of Model P.

Table 4: %e results of Model O.

I J L Q
0 310200 475900 310300 295000
5% 327155 496635 310608 305520
10% 372825 840904 314181 312284
15% 395995 1271308 316860 316612
20% 475070 1309447 320803 321355
25% 507881 1348731 322527 330476
30% 558436 1389192 328203 333022
35% 585908 1430868 329706 335099
40% 667941 1473794 335171 335858
45% 681792 1518008 336705 345647
50% 782767 1563548 339967 357569
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Figure 3: %e effect of increasing the scale of the problem on the
objective function of Model O.
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but, in the case of increasing the number of demand places,
this change is more intense. And, in a way, it can be said that
more ambulances are needed, which is possible by increasing
the cost or increasing the objective function. Figure 4 shows
the changes in the number of ambulances and their effect on
both objective functions.

4. Conclusion and Future Works

In designing a two-objective medical emergency system,
considering the intelligent traffic management system, the
parameters that include the demand are uncertain. To guide
this important matter, an approach called robust optimi-
zation has been used. Despite the overly conservative so-
lution in the box uncertainty mode, both this mode and the
elliptical uncertainty have been used.%e robust counterpart
and its function were introduced, and the robust counterpart
approach was converted to linear programming and qua-
dratic programming.%is means that the robust counterpart
provides an optimal global solution.

Nowadays, home care programs have increased in re-
sponse to the needs of patients at the community level; one
of the reasons for this rapid growth is the proof of the ef-
ficiency of home care for patients in the face of different
needs of patients, which has been proven by increasing the
efficiency and effectiveness of this method. A study of 600
patients showed that 81% of patients referred for hospital-
ization could be successfully treated at home. In addition,
hospital stays were reduced from approximately 12 days to 7
days, and only 12% of patients in home care needed to be
hospitalized again. %e widespread use of research tools in
the field of healthcare in today’s world indicates the effec-
tiveness of these tools. %ere are several benefits to serving
patients at home today. According to the given definition of
patient visit activities, it is possible to provide medical
services and patient care and health care at home.

By optimizing the provision of home health services,
patients can benefit from suchmanufacturing services.%ese
services can include a wide range of activities, such as a
doctor’s patient visit, delivery of medicine and medical
equipment to the patient, and receiving laboratory samples
and medicines. Moreover, equipment has not been used to

provide maintenance services for medical equipment and
devices at home. In countries where we see more resistance
to infectious diseases due to the high consumption of an-
tibiotics, the patient can develop more resistance to infec-
tious diseases by going to the hospital. On the other hand,
the cost of providing medical services at home is much lower
than the high costs of hospitalization and the country’s
healthcare system.

It shows that the best way to provide home care is not to
prevent nosocomial infections. Other benefits include a
significant reduction in healthcare costs, a reduction in the
number of intermediaries and timely and efficient service,
and the avoidance of wasting time. Reducing the traffic load
of the city and more patient comfort in such activities should
not be underestimated.

In order to indicate the future outlooks, it is suggested to
apply a multifactor robust optimization approach to deal
with the uncertainty. Moreover, it can also include studies
that consider risk management in medical emergency sys-
tems. Furthermore, some novel solution methods like gray
wolf optimizer and red dear algorithm can be used. On the
other hand, in the case of the intelligent traffic management
system, some new technologies like the Internet of %ings
(IoT) can be considered in the proposed mathematical
model.
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%e data used are included in the article. Codes are also
available upon request.
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