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Abstract

Background: The Red-headed krait (Bungarus flaviceps, Squamata: Serpentes: Elapidae) is a medically important
venomous snake that inhabits South-East Asia. Although the venoms of most species of the snake genus Bungarus
have been well characterized, a detailed compositional analysis of B. flaviceps is currently lacking.

Results: Here, we have sequenced 845 expressed sequence tags (ESTs) from the venom gland of a B. flaviceps. Of the
transcripts, 74.8% were putative toxins; 20.6% were cellular; and 4.6% were unknown. The main venom protein families
identified were three-finger toxins (3FTxs), Kunitz-type serine protease inhibitors (including chain B of -bungarotoxin),
phospholipase A, (including chain A of B-bungarotoxin), natriuretic peptide (NP), CRISPs, and C-type lectin.

Conclusion: The 3FTxs were found to be the major component of the venom (39%). We found eight groups of unique
3FTxs and most of them were different from the well-characterized 3FTxs. We found three groups of Kunitz-type serine

envenomation.

protease inhibitors (SPIs); one group was comparable to the classical SPIs and the other two groups to chain B of -
bungarotoxins (with or without the extra cysteine) based on sequence identity. The latter group may be functional
equivalents of dendrotoxins in Bungarus venoms. The natriuretic peptide (NP) found is the first NP for any Asian elapid,
and distantly related to Australian elapid NPs. Our study identifies several unique toxins in B. flaviceps venom, which
may help in understanding the evolution of venom toxins and the pathophysiological symptoms induced after

Background

Snake venom is a complex mixture of biologically active
proteins and peptides that exert very powerful and spe-
cific effects. This mixture is interesting from the angle of
molecular evolution, as the genes encoding the venom
ingredients seem to undergo some form of hypermuta-
tion resulting in accelerated evolution and a staggering
diversity of isoforms [1,2], sometimes functionally and
structurally radically different. The basis for this phe-
nomenon seems to be due to gene-duplication and diver-
sification of existing venom genes. This results in a highly
dynamic venom composition both at the interspecific and
intraspecific level [3]. This allows the snake to deal with a
wide array of different prey items. Snake venom is also a
valuable resource for proteins and peptides that may
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serve as lead compounds to treat certain human disor-
ders [4]. Examining the transcriptome of a venom gland
will also reveal venom proteins that are low abundant,
which is crucial to both expanding the resource of phar-
maceutical compounds as well as to understand the evo-
lution of snake venom proteins [5]. Further, cataloguing
of snake venom proteins through transcriptomic analysis
may help to understand the pathophysiological symp-
toms induced after envenomation and correlates with the
venom composition [6-12].

For example, we have recently used transcriptomic
analysis to show the presence of three-finger toxins
(3FTxs) in viperid venom [13,14]. By elucidating the gene
structures of these toxins we could infer their relationship
with the elapid 3FTxs, which helped us to understand the
evolution of this toxin protein family. Hence, snake
venom gland transcriptomes continue to be a valuable
tool in improving our understanding of snake venom
composition and evolution, management of snake bite,
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and the opportunity to identify and study the function of
the low abundant proteins.

Kraits (Bungarus species) belong to the family Elapidae.
They are one of the better studied snakes of the world.
They are widely distributed across South and Southeast
Asia and are highly venomous [15]. Many biologically
important proteins, particularly a- bungarotoxins, K-
bungarotoxins and - bungarotoxins, have been well
characterized from the venom of Bungarus species. The
first two belong to the 3FTx family, whereas the last one
is a covalent heterodimer of phospholipase A, (PLA,) and
a serine protease inhibitor (SPI) -like polypeptide [16-18].
a- bungarotoxin is a highly specific toxin that binds to
peripheral nicotinic acetylcholine receptors (nAChRs)
and it played a key role in the isolation and characteriza-
tion of mammalian nAChRs [19]. Similar to other long-
chain neurotoxins, it also binds to neuronal a7 nAChRs
[20]. k- bungarotoxins specifically bind to neuronal
nAChRs (a3p2, a4$2 and «334) [20]. On the other hand,
B- bungarotoxins - the major lethal factors bind to volt-
age-sensitive potassium channels in the presynaptic site
[21,22].

The B. flaviceps, commonly known as the Red-headed
krait, has phenotypically distinctive coloring of blue and
black body, and the head, neck and tail are bright red in
color. The venom of B. flaviceps is more potent than B.
fasciatus but comparable in potency to B. candidus
venom; the LDy, values of B. flaviceps, B. candidus and B.
fasciatus venoms are 3.5 pg, 3.2 ug and 61.7 g per kg of
experimental mouse respectively [23]. Other than the iso-
lation and characterization of B- bungarotoxin [15,24], k-
flavitoxin [25,26] and PLA, [15], not much information is
available on the venom of B. flaviceps. Therefore, we have
here examined the venom gland of B. flaviceps by using
expressed sequence tags (ESTs) to explore the venom
composition in detail as well as to identify novel and low
abundance toxins.

Results and Discussion

Composition of cDNA Library

We randomly selected 845 clones from the cDNA library
and isolated the plasmids. 606 clones having inserts
larger than 200 bp were numbered randomly and desig-
nated with BF (Bungarus flaviceps). Sequences were cate-
gorized based on the similarity shown in the analysis
results and submitted to the database (Additional file 1).
Accordingly, 74.84% of the ESTs were putative toxin tran-
scripts, 4.61% were unknown transcripts and 20.56% of
the ESTs were cellular transcripts (Figure 1A). Using
sequence similarities to known toxins as a guide, all the
putative toxin transcripts were further classified into dif-
ferent toxin families. Accordingly, the B. flaviceps ESTs
contained transcripts encoding for six toxin families.
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Most clones encoded for 3FTxs (39.29, followed by j-
bungarotoxin (Chains A and B) (34.88%), and Kunitz-
type SPI (21.19%). The other toxin families are less well
presented; clones encoding phospholipase A, (PLA,)
(6.26% including A chains of p-bungarotoxin), and two
clones each of natriuretic peptide (NP), cysteine-rich
secretory protein (CRISPs), and C-type lectin (Figure 1B).
3FTx is the major transcript of this venom gland library
constituting 39.29% of the toxin transcripts. Similar
observation was made in Micrurus corallines venom
gland library which belongs to the elapid family where the
3FTx constitutes ~52% of the toxin transcripts [12]. This
indicates that 3FTx is the major toxin of elapid snakes
where as in viperid venoms proteases are the major
venom components (Additional file 2). By comparing the
total number of sequences versus number of new toxin
sequences identified we showed that the number of new
toxin transcripts was reaching an asymptote. Our results
can thus be considered as a representative of the overall
venom composition of B. flaviceps (Figure 1C). Although
this study is not exhaustive, we have identified a number
of low abundance transcripts (see below). We believe
when the library contains high percentage of clones
(~75%) coding for toxin-like proteins, sequencing 600-
1000 clones may be sulfficient to identify a number of low
abundant clones.

Three-Finger Toxin (3FTx) Family
Three-finger toxins are a group of low-molecular weight
(<10 kDa), non-enzymatic polypeptides which have 60 to
74 amino acid residues [27]. They have 8-10 cysteine resi-
dues forming four or five disulphide bridges, of which
four disulphide bridges are conserved [28]. Members of
this family possess similar protein structures: three p-
stranded loops extending from a central core, which is
made up of the four highly conserved disulphide bridges
[20,29], hence the name three-finger toxins. This 3FTxs
family have been recruited in snake venom from a gene
recruitment event within the SLUR/LYNX protein family
[30], and their ancestral function is thought to be inhibi-
tion of the nicotinic acetylcholine receptor (nAChR) [30].
However, despite retaining the common three-finger
motif, members of this family have since evolved a myr-
iad of different functions. These include effects on: plate-
let function [31], different receptors associated with
neurotransmission [32-38]; ion channels [39-41], viability
of cardimyocytes [42] and red bloods cells [43], mitosis
and apoptosis [44]; and effects on the cell membrane
[45,46]. The different 3FTx members also vary consider-
ably in binding affinity for the different receptors [47] and
are important research ligands for studying receptors [48-
50].

Based on sequence similarities, 161 full length tran-
scripts of 3FTxs were divided into 11 clusters and 4 sin-
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Figure 1 Composition of a cDNA library from B. flaviceps venom gland tissue. A) Relative abundance of genes in the cDNA library. B) Relative
abundance of the toxin genes in the cDNA library. C) Graph showing the number of new toxins isolated reached a plateau when compared with the

total number of sequences isolated.
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gletons. These ESTs were segregated into eight distinct
groups of toxins based on BLAST results (Figure 2). The
first group has two clusters, BF601 and BF421 (46 and 2
clones) and a singleton (BF141); they all encode identical
mature protein but have a single amino acid differences in
the signal peptide regions and mature protein. They share
61% identity and 76% similarity to both candiduxin 1 and
buntoxin (Kini RM, unpublished data) (Figure 2A). Simi-
larly, BF9 (13 clones) encodes for a toxin that is also simi-
lar to candiduxin 1 from B. candidus (Orphan 3FTx IX
subfamily; [51]) and buntoxin with 81% and 79% identity
respectively (Figure 2B). Second cluster represented by
clone BF9 show higher identity (81 and 79%) and similar-

A
BF601 (46) MKSLLLTLVVMTIVCLDLGYTVCYT:
BF421 (02) T
BF141(01)

fentity/Similarity (%)

BF601
Candiduxin 1
Buntoxin

61776
6176

B
BF9 (13)

RDKCND
Identity/Similarity (%)
elome

BF9 KL
Candiduxin 1 KicEnBBl
Buntoxin KICENDDLANPKTTELC]

81/85
79/84.

c
BF748 (42)
BF296 (02)

yiSimilarity (%)

BF748
3FTx (W.aegyptia)
Erabutoxin a

0 Tiinc] VKKGIKLHCCTTEKCNE
RICENHOS8QPQTTRECSPGESSCYHKONSDE: VKBGIKLSCCESEVONN 47061

D
BF222 (07)

Identity/Similarity (%)

BF222 RKCLTKYS v c
Bucain RKCLE TCP: 1 76186

E
BF648 (26)
BF402 (06)
BF797 (02)

MKTLLLNLVVVIIVCLDFGYTIKCK
K¢

BF648 IKCKIC
Candoxin Fikexic

F
BF11 (07)
BF661 (04)
BF685 (01)

BFe61
NTX4_BUNCA LTCL
NXW1_BUNCA L1cLIC

[
BF533 (01)

BF533  RMCNMCVRPYPFDSEDRCCPEGQDSC
BM14
Bulongin

H
BF776 (01)

Identity/Similarity (%)
BF776 o
xeflavitoxin

100/100

Figure 2 Three-finger toxins (3FTxs) of B. flaviceps venom gland
cDNA library. Similar sequences were clustered together and a repre-
sentative of the each cluster is presented. B. flaviceps 3FTxs can be clas-
sified into eight major groups A through H. The deduced amino acid
sequences of 3FTX isoforms of each group are shown. The amino resi-
dues which are different from the representative major isoform are
shaded. The predicted signal peptide of the transcripts is shown bold.
The major isoforms from each group is aligned with closely related
3FTx found in the database and the % identity and similarly are also
shown. (A and B) Groups A and B are similar to candiduxin1
(Q8AY53.1) and buntoxin. Group B toxins are closer to candiduxin
compared to group A toxins. C) Putative short-chain 3FTxs of B. flavi-
ceps that are similar to 3FTx (ABX82864.1) from W.aegyptia and erabu-
toxin a (P60775.1). The residues of erabutoxin a that are involved in
binding to nAChR receptor are shown in *. Critical functional residues
in BF748 are replaced with Met, Phe and Asn (27th, 29th and 47th res-
idues respectively). D) Group D toxins are similar to bucain (Q9YGI8.1).
E) Group E non-conventional 3FTx and its alignment with candoxin
(P81783.2). F) Group F non-conventional 3FTx and alignment with
NTX4_BUNCA (Q61295.1) and NXW1_BUNCA (Q8AY51.1). G) Group G
non-conventional 3FTx and its alignment with BM14 (Q8JFX7.1) and
bulongin. H) Group H 3FTx and its alignment with NXL2_BUNFL (k-favi-
toxin) (P15815.1) (for details, see text).
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ity (85 and 84%) to the candiduxinl and buntoxin than
the above group of toxins. However the biological func-
tions of candiduxin 1 and buntoxin are yet to be eluci-
dated. The third group with two clusters, BF748 and
BF296 (42 and 2 clones) show 51% identity to 3FTx III
from Walterinnesia aegyptia [52] and 47% identity to
erabutoxin a from Laticauda semifasciata (Figure 2C). In
erabutoxin a Lys27, Trp29, Asp31, Arg33 and Lys47 are
important in the binding to Torpedo nAChR [53,54].
Interestingly, the toxin encoded by BF748 has 27th, 29th
and 47th residues replaced with Met, Phe and Asn
respectively but the 31st and 33rd residues are conserved.
Lower structural similarity combined with replacement
of critical residues in the functional site may confer dis-
tinct pharmacological properties or specificities to these
3FTxs. One of the clusters, BF222 (7 clones) displays
sequence similarity (76% identity; 86% similarity) (Figure
2D) to bucain from B. candidus venom [55]; [56] and a
neurotoxin homolog NTL4 [57]. Similar to bucain, this
toxin may exhibit not-so-potent neurotoxicity.

The ESTs included 56 clones of non-conventional
3FTxs (fifth disulfide bridge in loop 1; [58]) (Figure 2E-
G). Three clusters represented by BF648, BF402 and
BF797 with 26, 4 and 2 clones respectively, which have
few minor amino acid residue changes in the mature pro-
teins. These transcripts encode proteins similar to can-
doxin with 80% identity (Figure 2E). Candoxin from B.
candidus venom is known to bind reversibly to peripheral
nAChRs and irreversibly to a7 nAChRs [59]. Function-
ally, these B. flaviceps proteins may exhibit similar, if not
identical, properties. Second cluster BF11 (7 clones),
BF661 (4 clones) and BF685 (single clone) shows 87% and
70% identity to two non-conventional toxins from B. can-
didus venom (Figure 2F). The other two isoforms are
much closer (90% and 74% identity respectively). Simi-
larly, BF533 (Singleton) showed 64% identity to both
BM14 [60] and bulongin (R. M. Kini, unpublished data)
from B. multicinctus and B. candidus venoms respectively
(Figure 2G). BM14 binds to muscarinic M2 receptor sub-
types with much lower affinities compared to typical
muscarinic toxins from Dendroaspis venoms [60,61]. In
BM 14, trinitrophenylation of the Lys residues (37th and
38th) abolished its binding to muscarinic acetylcholine
receptor (mAChR). However, based on the lower struc-
tural similarity and the lack of the critical Lys residues
(replaced by Ile and Pro), we speculate that the protein
coded by BF533 may have distinct biological properties
compared to BM14 and bulongin.

Interestingly, only one singleton, BF776, shows 100%
match (except for three missing amino acid residues at
the N-terminal) to k-flavitoxin (long-chain neurotoxin 2)
from the venom of B. flaviceps flaviceps [25,26] (Figure
2H). The observed truncation at the 5'end is likely to be
due to its degradation of mRNA during total RNA extrac-
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tion. k- flavitoxin is a competitive neuronal acetylcholine
receptor (nAChR) antagonist [25,26]. In general, k- neu-
rotoxins are highly specific antagonists of a3p2 and a4{2
receptors [62]. Interestingly, we did not find a transcript
encoding a- bungarotoxin.

Due to the dominating role of a-, f- and k- bungarotox-
ins in Bungarus species, the functional roles of other tox-
ins have not been systematically explored. Of the eight
major groups of 3FTxs in our B. flaviceps venom gland
ESTs data, only k- neurotoxins are fairly well character-
ized. Therefore, it will be interesting to study these toxins
and identify the molecular targets.

During our sequencing studies, we observed a number
of clones with part of their sequences missing. In trans-
lated sequence of BF229 and BF249 (both singletons),
loop I and part of loop II was found to be missing. When
BF229 was compared to the gene of the black-and-white
spitting cobra (Naja sputatrix) encoding weak neurotoxin
10 (accession number AY081762) [63], we found that
exon II was missing in this clone (data not shown). Thus
these clones were probably generated by an error in splic-
ing. Premature truncation was also observed in BF846
and BF600 (both singletons). In BF846, truncation is due
to a dinucleotide deletion, whereas in BF600 the insertion
of adenosine nucleotide has lead to a frame shift. It is not
clear whether these aberrations are artefacts of cloning
and sequencing or products of independent genes, this
requires further investigation. In any case, these trun-
cated transcripts constitute about 3% of 3FTxs and may
not have any influence on the overall toxicity of the
venom.

Recently, by the analysis of gene structures of viperid
3FTxs, we showed that some of these toxins evolve
through the phenomenon of segment switch [13]. The
analysis of cDNA sequences of B. flaviceps reveals that
these toxins also appear to be evolving through acceler-
ated segment switch in exons (Additional file 1). This
phenomenon, named as ASSET, may be an alternative
mechanism of accelerated evolution of snake venom tox-
ins [13,64].

B- bungarotoxin

B-bungarotoxin is one of the major lethal components
found in the venom of Bungarus species. It targets the
pre-synaptic terminal, where it causes the massive release
of acetylcholine resulting in subsequent exhaustion of
acetylcholine and inability to conduct an impulse and
finally, paralysis. It is a heterodimeric covalent protein
complex [16,17,65] (for a review see, [64]) composed of
chain A similar to PLA, and chain B similar to Kunitz-
type SPI. It is a potent presynaptic neurotoxin [16,18]. We
found three isoforms of chain A and four isoforms of
chain B (for details, see below). Chain A transcripts rep-
resented 2.87% of all ESTs (13 ESTs, full length 11) and
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chain B transcripts 32.01% (145 ESTs, full length 96) (Fig-
ure 1B). This drastic difference in expression level is
interesting, considering the fact that these two chains
combine to an equimolar complex (B- bungarotoxin).
This difference in expression levels requires further
investigation. As the two chains belong to two different
families, they will be discussed separately below.

Kunitz-type Serine Protease Inhibitor (SPI) Family
Kunitz-type SPIs are one of the major groups of snake
venom proteins mainly reported from the venoms of
Elapidae and Viperidae snakes and they inhibit either
trypsin or chymotrypsin [66-71]. Structurally they belong
to the bovine pancreatic trypsin inhibitor (BPTI) family
[72,73]. They have approximately 60 amino acid residues
with six cysteine residues [74] arranged in a conserved
sequence motif of C-8X-C-15X-C-4X-YGGC-12X-C-3X-
C[75].

As mentioned above, the B chain of B- bungarotoxins is
structurally similar to Kunitz-type SPI proteins. We
found four clusters that exhibit high similarity to the B
chain of - bungarotoxins. Most common chain B iso-
form, BF677 (90 clones) is 100% identical to IBV_BUNFL,
a chain B precursor isolated from B. flaviceps [15]. The
other three isoforms (with two clones each), differ in
amino acid residue from the major isoform in one or two
positions (Figure 3A).

The second group of Kunitz-type SPI clones are similar
to the B chain of - bungarotoxins but lack the extra
cysteine at the C-terminal end (Figure 3B). This extra
cysteine residue is involved in interchain disulfide and is
important for the complex formation of f-bungarotoxin
(discussed above). The principal isoform BF548 with 48
clones shows similarity to chain B (B5) precursor of p-
bungarotoxin from B. multicinctus [76]. Similarly BF130
and BF345 (both singletons) are also similar to chain B
(B5) of B-bungarotoxin. Due to the absence of the extra
cysteine, we believe that this polypeptide remains as
monomer, similar to dendrotoxins [77] in the venom.
Based on the high sequence identity and similarity to the
chain B of B- bungarotoxins and dendrotoxins (Figure
3B), it is tempting to speculate that they might block volt-
age sensitive potassium channels [78,79]. This needs to
be further investigated.

We found two clusters, BF294 and BF539 (25 and 12
clones) as the third group of Kunitz-type SPI clones. The
major isoform is structurally similar to Kunitz inhibitor
IV from W. aegyptia (Figure 3C). Interestingly, the minor
isoform (represented by BF539) was found to be prema-
turely truncated. Comparison of mRNA sequence BF539
and a Kunitz-type SPI from the King Cobra (Ophiopha-
gus hannah) (EU246693), and to the sequence of PILP-1
from B. multicinctus [74], reveals that 87 nucleotides
from exon II is lost in these clones (Additional file 4).
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Figure 3 Kunitz-type SPIs of B. flaviceps venom gland cDNA li-
brary. Similar sequences were clustered together and a representative
of the each cluster is presented. B. flaviceps Kunitz-type SPIs can be di-
vided into three distinct groups (A, B and C). The deduced amino acid
sequences of isoforms of each group are shown. The amino residues
which are different from the representative of major isoform are shad-
ed. The predicted signal peptide of the transcripts is shown in bold.
The major isoforms from each group is aligned with closely related
protein found in the database and the % identity and similarly are also
shown in the figure. A) Putative clusters of 3-bungarotoxin B chains of
B. flaviceps and alignment with IVB_BUNFL (Q7T2Q6.1). The extra
cysteine residue that is involved in the disulphide bridge with chain A
is underlined. B) Putative Kunitz-type SPIs of B. flaviceps and alignment
with IVBI5_BUNMU (Q1RPS9.1) chain B5 precursor of Bungarus mul-
ticinctus, IVB_BUNFL (Q772Q6.1) B. flaviceps, Dendrotoxin-K (P00981.2)
and Dendrotoxin-I (P00979) from Dendroaspis polylepis polylepis. C) Pu-
tative Kunitz-type SPI and its truncated form. Alignment of the major
isoform with Kunitz inhibitor IV (ABX82870.1) from W. aegyptia is also
shown.

However the stop codon and 3'UTR encoded by Exon III
is conserved in this clone. This splicing error could occur
due to the presence of GT (splice start site) in exon IL
The truncated mature protein has 28 amino acid residues
with the first pair of cysteine residues. It would be inter-
esting to study its biological properties.

To wunderstand the evolutionary relationships of
Kunitz-type SPIs and B chains among the Bungarus spe-
cies we constructed a phylogenetic tree using BPTI as an
out group (Figure 4). The B. flaviceps precursors (BF677,
BF664, BF842 and BF836) of B chains of 3- bungarotoxins
cluster separately from other two groups. The second
group of transcripts (BF548, BF130 and BF345) clusters
together with Kunitz-type SPI (BF294 and BF539) despite
their similarities to chain B of - bungarotoxins (Addi-
tional file 5). Thus most likely they are not the intermedi-
ates in the evolution of chain B. In the case of B. candidus
and B. fasciatus, B chain cluster separately from the
Kunitz-type SPIs. In B. multicinctus B chains, B1, B2, B3
and B4 cluster together and are closer to PILP-1, a SPI,
whereas B chains B5 and B6 are closer to SPIs, PILP2 and
PILP3.

Phospholipase A2 (PLA,) Family
PLA, enzymes are esterolytic enzymes which hydrolyze
glycerophospholipids at the sn-2 position of the glycerol

1 Bungarus multicinctus Bungarus candidus

' mpu®
KSPIb
KSPla @
@ 821 ()
—L5%
b2 @

p O
B D
'®
Bungarus flaviceps
Brsss Q)
—[L S
— BEMS Q
BE294 @)
[mw )
B30
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Figure 4 Phylogenetic relationship of Kunitz-type SPI and B-bun-
garotoxin chain B of different Bungarus species. The phylogenetic

trees are constructed using BPTI as the out-group.

backbone, resulting in the release of lysophospholipids
and free fatty acids. They are 116 to 124 amino acid resi-
dues long with an approximate molecular mass of 13-14
kDa. This family of enzymes have 12-14 conserved
cysteine residues which form six or seven disulphide
bridges [80]. Structurally, they share a similar protein
folding pattern of a a-helical core, a backbone loop and a
B- wing [81]. Functionally, they have a broad array of
pharmacological effects which encompass neurotoxic,
myotoxic, cardiotoxic, haemolytic, convulsive, anticoagu-
lant, antiplatelet, oedema-inducing and tissue-damaging
effects (For a review see [80,82]).

Within the ESTs, 3.30% of the transcripts belong to
PLA, family (Figure 1B). Clones encoding PLA, were
grouped into two clusters (5 and 3 clones) and two single-
tons (Figure 5). Prediction of signal peptide using SignalP
program indicates that these sequences have the eight
amino acid propeptide sequences (underlined in the Fig-
ure 6) [83]. This propeptide sequence in BF647 is repre-
sented by "SNVPPQPL" whereas in BF365 and BF161 it is
"AIVPPQPL" and there are two substitutions (SN is
replaced with AI). Although similar propeptides are
found in other elapid PLA, enzymes, most mature pro-
teins do not have them. Only a small number (group IB)
retain them. The PLA, isoforms are highly similar to each
other except for few amino acid substitutions in the
mature protein (Figure 5A). Clone BF95 has a deletion of
32 amino acid residues (9 residues from the signal pep-
tide and 23 residues from the N-terminal end including
the propeptide) as compared to the other PLA, isoforms.
Comparison of the BF95 sequence with the sea snake (L.
semfasciata) PLA, sequence reveals that there is a dele-
tion of 99 bp from exon II (Additional file 6). Conse-
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A

BF647 (05)
BFY5 (01)  MNPAHLLVLS
BF365 (03)
BF161 (01

QPLNLIQFSSLIQCANC

IVBRQPLNL,TOF
QPLINLTOF.

BF95 (01)
BF365 (03

)
BF647 (05)
)
BF161 (01)

BF647 NLIQFSSLI
PA22_BUNFL NLIQFSSLT!

Identity/Similarity (%)
KPYYKTY -
BevvryKYDC

IDKNFMINFKTNCQ -
DKNFMINFETNCO 93/94

BF1 (05)  MNPAHLLVLSAVCVSELGASNIPPQSLNLLOFXDMIRCTIPCERT
BF284 (03) MNPAHLLVLSAVCVSFLGASIIPPQSLNLICF)
BF555 (02)  MNPAHLLVLAAVCVSFLGASTIPPQSLNLICF)

BF1 (08)
BF284 (03)
BF555 (02)

YIGRHKNIDTKRYCQ
Y IGRHKNIDTKRECO

BF1 YGDAEKRNC

PA2A2_BUNFL "YGDAEKRNC
Identity/Similarity (%)

NIDTKRYCO /A

NIDTKRYCQ 100/100

Figure 5 Phospholipase A, of B. flaviceps venom gland cDNA li-
brary. Similar sequences were clustered together and a representative
of the each cluster is presented. B. flaviceps PLA,s can be divided into
two distinct groups (A and B). The deduced amino acid sequences of
isoforms of each group are shown. The amino residues which are dif-
ferent from the representative major isoform are shaded. The predict-
ed signal peptide of the transcripts is shown in bold and the
propeptide is underlined. The major isoforms from each group is
aligned with closely related protein found in the database and the %
identity and similarly are also shown in the figure. A) Putative PLA, pre-
cursors of B. flaviceps and alignment with PA22_BUNFL (Q7T2Q4.1)
from B. flaviceps. B) Putative 3-bungarotoxin chain A of B. flaviceps and
alignment with PA2A2_BUNFL (Q7T1R1.1) from B. flaviceps. The extra
cysteine residue involved in formation of disulphide bridge with chain
A of B-bungarotoxin is underlined.

quence of this deletion in exon II in its activity is not
known and needs further investigation. In one of the
clones (data not shown) the 5' end of the transcript was
missing, this might be due to degradation of the mRNA

BF131 (01) QAL
RRIDRISHTSDMGCRHRKDI AVTHLT

ASARERIMRALLPDSKSSRPATDRMVHPEHQAGGGDTRRLQEPKKGLLISCFD

Accession  Name Organism

Sequence

Figure 6 Natriuretic peptide in B. flaviceps venom gland cDNA li-
brary. A) The deduced amino acid sequence of the full length precur-
sor is shown. The predicted signal peptide of the transcripts is shown
in bold. The putative mature NP is boxed. B) Alignment of B. flaviceps
NP with other snake venom NPs including human NP. The amino acid
sequences were obtained from the database. The accession number,
name of the protein and the organism are shown in the figure. The se-
quences were aligned manually and the gaps are filled with dashes,
those amino acids which are not shown in the alignment are repre-
sented by "". The cysteine residues involved in forming the 17 residue
ring structure are highlighted in the figure.
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during preparation. When compared to B. flaviceps PLA,
I (BAC77655) and PLA, II (BAC77656) sequence [15],
BF647, BF365 and BF161 show 93% identity (Figure 5A).

As mentioned above, the chain A of - bungarotoxins is
structurally similar to PLA, enzymes. We found three
clusters that exhibit high identity to chain A of - bunga-
rotoxins (Figure 5B). BF1 (6 clones) which has few amino
acid residue changes both in the mature protein as well as
in the signal peptide as compared to BF284 (3 clones) and
BF555 (2 clones). But BF284 and BF555 have two residue
differences; one amino acid substitution in the signal
peptide and two others in the mature protein. Cluster
BF1 is 100% identical to Chain A2 of B-bungarotoxin
from B. flaviceps reported earlier whereas BF284 and
BF555 show 97% identity to Chain Al in the mature pro-
tein [15]. Multiple isoforms of Chain A of 3- bungaro-
toxin has been reported from Bungarus species. Five
isoforms (A1-A5) have been reported from a single spe-
cies of B. multicinctus snake [84], but we have observed
only three isoforms in B. flaviceps transcriptome.

Natriuretic Peptide Family

Natriuretic peptides (NPs) are endogenous hormones ini-
tially found in mammals. Three mammalian NPs have
been identified and characterized so far, which includes
atrial NP (ANP), B-type NP (BNP) and C-type NP (CNP)
[85-90]. In NPs a 17-residue ring structure, formed by an
intra-molecular disulphide bond, is a highly conserved
feature. Functionally, NPs are involved in various physio-
logical processes such as regulation of water and electro-
lyte balance, cardiovascular system and cell growth [91-
93]. Physiologically, in mammals NPs exhibit potent
hypotensive and vasorelaxant properties and contribut-
ing to sodium and water retention [90,94-96]. The first
NP of snake venom was isolated from Dendroaspis
angusticeps venom and is known as Dendroaspis natri-
uretic peptide (DNP) [97]. It lowers the blood pressure
through vasodilation [98]. Interestingly two clones
(0.44%) encoding natriuretic peptides were identified in
B. flaviceps library; one of them was partial while the
other (BF131) was a full length transcript (Figure 6A).
This is the first full length mRNA sequence of an elapid
NP precursor. When compared to CNP precursors of
crotalid snakes, B. flaviceps NP precursor lacks the BPP
domain and part of the linker sequence (data not shown)
similar to colubrid NP precursor reported from the
Duvernoy's (venom) gland transcriptome of Philodryas
olfersii [99]. However, P. olfersii encodes for CNP type
molecule, whereas B. flaviceps NP belongs to the ANP/
BNP family due to the C-terminal extension (Figure 6B).
This is the first report of NPs in any Asian elapid. We
constructed a phylogenetic tree to understand the evolu-
tionary relationships of ANP/BNP found in different
snakes. B. flavipceps ANP/BNP was found to be closely
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related to African mamba (Dendroaspis) and coral snake
(Micrurus) NPs, but distantly related to the Australian
elapid counterparts (Figure 7). However the presence of
these transcripts in the protein level need to confirmed
through proteomic approaches.

Other families

CRISPs (2 clones), and C-type lectins (2 clones) tran-
scripts were found, in a level of 0.44% of the total ESTs
(Additional file 7). The CRISPs transcripts showed high
similarity to latisemin reported from Laticauda semifas-
ciata, oharin precursor from Ophiophagus hannah,
pseudechetoxin-like protein precursor from Oxyuranus
scutellatus and to kaouthin-2 precursor from Naja
kaouthia [100-102]. Latisemin, ophanin and tigrin block
potassium-stimulated smooth muscle contraction [102].
In CRISPs N-terminal pathogenesis-related protein-1
(PR-1) domain and the C-terminal cysteine-rich domain
are conserved. PR-1 is known to be important for recog-
nition of the target molecule and this domain. C-type lec-
tins are non-enzymatic proteins which interact with
carbohydrate moieties in the presence of Ca?* ions and

ANP Human

B.flaviceps

L[ DNP D.angusticeps
DNP DENAN D.angusticeps

M. f.fulvius

M.corallinus

PtNP-a P.textilis

PaNP-b P.australis

OmNP-e O.microlepidotus
TNP-c O.microlepidotus
PaNP-a P.australis

OsNP-d O.scutellatus

——— PaNP-d P.australis

NsNP-b N.scutatus
‘E CnNP-a T.carinatus
NsNP-a N.scutatus

PNP-b P.porphyriacus

PpNP-a P.porphyriacus
E PaNP-c P.australis
HsNP-b H.stephensii

AsNP-a A.superbus

HsNP-a H.stephensii
‘E CnNP-a R.nigrescens

CnNP-b R.nigrescens
Figure 7 Phylogenetic relationship of B. flaviceps NP with other
snake venom NPs. The phylogenetic tree was constructed using Hu-
man ANP as the out-group. The B. flaviceps NP cluster with Dendroaspis

and Micururus species and remains separated from other Austalian
elapids NPs.
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usually possess the highly conserved carbohydrate recog-
nition domain (CRD) [103,104]. One full length and other
partial C-type lectins were obtained in this library. The
full length transcripts have seven cysteine residues hence
they are likely to exist as covalent homodimers in the
venom [105]. Analysis of the translated sequence reveals
a Ca2+* binding site [105,106], suggesting that it is a Ca2*-
dependent C-type lectin.

Cellular transcripts

The cellular transcripts (125 EST) constitute about
20.56% of the total transcripts. Some of the important
house-keeping ESTs include: ribosomal protein (24
clones), protein Sec61 beta subunit (4 clones) involved in
protein transport, eukaryotic translation initiation factor
(3 clones) and eukaryotic translation elongation factor 1
beta 2 (3 clones), which are involved in protein transcrip-
tion and translation. The proteins encoded by these tran-
scripts are involved in protein synthesis and secretion.
Other house-keeping transcripts involved in cellular
functions were: NADH dehydrogenase (3 clones); ubiq-
uitin C (2 clones); ADP-ribosylation factor-like (2 clones);
Cytoplasmic actin type 5; ubiquinol-cytochrome ¢
reductase; sodium-dependent dicarboxylate transporter;
Succinate-CoA ligase; Type 1 glutamine amidotrans-
ferase; L-lactate dehydrogenase; and a DNA bindng pro-
tein (zinc finger) (1 clone each).

Conclusion

Analysis of 845 ESTs of the venom gland of the Red-
headed krait (B. flaviceps) shows that 3FTxs and B chains
of B-bungarotoxins are the main components of the
venom. Most of the 3FTxs transcripts described here are
structurally different from the previously characterized
3FTxs and hence they are likely to show distinct biologi-
cal activities. We found a group of Kunitz-type SPIs
highly similar to B chain of the B-bungarotoxin, but with-
out the extra cysteine involved in interchain disulfide.
Identification of ANP/BNP underscores the importance
of transcriptome analysis in identifying low abundant
proteins. Thus our study provides a platform to initiate
the characterization of several novel proteins found in B.
flaviceps venom gland.

Methods

Collection of venom glands and liver

A juvenile specimen of Bungarus flaviceps (Malaysia) was
collected in Malaysia and imported to Europe. Venom
was first obtained manually by sliding pipette tips over
each fang, a technique standard for milking smaller elapid
snakes. Venom was lyophilized and stored at -80°C. Four
days later, when mRNA production is assumed to be
maximal [107], the snake was anesthetized with Zoletil
(Zolazepam and Tiletamine) and sacrificed by decapita-
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tion. The venom glands and liver were carefully but
quickly dissected, cut into small pieces of 2-3 mm, and
stored in RNAlater solution (Ambion, City, Country) in a
ten-fold ratio to the volume of the glands, and stored at -
80°C up until use.

Construction of cDNA library and DNA sequencing

Total RNA was extracted from both the venom glands
using the RNeasy” Mini kit from Qiagen (Valencia, CA,
USA). The quality of the RNA was tested using gel elec-
trophoresis. Using Creator™ SMART™ cDNA library con-
struction kit from Clontech Laboratories (Palo Alto, CA,
USA), the following was achieved: (i) synthesis of first
strand cDNAs from the total RNAs; (ii) synthesis of dou-
ble-stranded cDNAs from the first strand cDNAs; and
(iii) purification of double-stranded cDNAs using the
CHROMA SPIN-400 column. Purified double-stranded
cDNAs were cloned into the pCR"2.1-TOPO’ vector from
Invitrogen (Carlsbad, CA, USA). Recombinant TOPO
vector was transformed into DH5a competent cells. After
plating onto ampicillin/IPTG/X-gal Luria Broth (LB) agar
plates, the transformed DH5a cells were subjected to
blue/white screening. Individual white colonies were ran-
domly selected and grown in LB added with ampicillin.
Plasmids were then purified using the GeneAll' Exprep™
Plasmid Quick kit from GeneAll Biotechnology Co., Ltd
(Songpa-gu, Seoul, Korea). The presence and size of
inserts in the plasmids were confirmed using EcoRI
digestion. Plasmids containing inserts larger than 200 bp
were selected for DNA sequencing. The plasmids were
sequenced using the chain termination method [108]
using the ABI PRISM’ BigDye Terminator v3.1 Cycle
Sequencing kit and ABI PRISM" 3100 automated DNA
sequencer from Applied Biosystem (Foster City, CA,
USA). Representative full length cDNA sequences from
each cluster or singleton were submitted to NCBI data-
base. The accession numbers for 3FTx families were from
GU190789 to GU190804, Kunitz-type SPI GU190805 to
GU190810 p-bungarotoxin B Chain GU1908011 to
GU190814, PLA, GU190815 to GU190817, B-bungaro-
toxin B Chain GU190818 to GU190820, Natriuretic pep-
tide GU190821 and C-type lectin GU190822.

Bioinformatics analyses

Vector and adaptor sequences were removed from the
DNA sequences before translating them in all three
frames for identification of the open reading frame
(ORF). The trimmed DNA sequences and their correct
OREF protein sequences were queried against nucleotide
and protein databases using NCBI BLASTn and BLASTp
http://blast.ncbi.nlm.nih.gov/Blast.cgi respectively to
predict their putative functions. SignalP 3.0 server http://

www.cbs.dtu.dk/services/SignalP/ was used for the pre-
diction of signal peptide of the translated sequences. The
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similarity of transcripts to known toxin sequences avail-
able in the database was used as the first criterion for cat-
aloguing transcripts of putative toxins. If the transcripts
are novel with an ORF and do not show any similarity
with any sequences of the database then we have used
two criteria to identify potential novel toxins. The protein
product should have a signal peptide (as venom proteins
are secretory proteins) and rich in Cys residues (most
venom toxins are rich in Cys residues). Multiple sequence
alignments (MSA) were carried out using either Clustalx
or DNAMAN version 4.15 (Lynnon Corporation, Pointe-
Claire, Quebec, Canada; http://www.ebi.ac.uk/Tools/
clustalw2/) or manually. Protein sequences were obtained
from the NCBI database and sequence alignments were
done using Clustalx. Phylogenetic trees were generated
using Clustalx which employs Bootstrap N-]J tree method
and the tree was viewed using tree viewer.

Additional material

Additional file 1 Transcripts submitted to database showing similar-
ity to snake venom protein family. Numbers of transcripts, accession
number, search programme and E values are shown in the table.
Additional file 2 % of venom proteins families observed in venom
gland transcriptome. Comparison of different toxin families observed in
transcriptome of elapid and viperid venom gland.

Additional file 3 ASSET in 3FTxs of B. flaviceps. Alignment of 3FTx of B.
flaviceps showing Accelerated Segment Switch in Exon to alter Targeting
(ASSET). The segments which are similar are shown in same color where as
segments which are dissimilar are shown in different color. The clone name
and the number of clones are also shown in the figure.

Additional file 4 Premature truncated kunitz type SPI from B. flavi-
ceps. Comparison of protein and nucleotide of truncated kunitz type SPI
from B. flaviceps with EU246693 from Ophiophagus hannah. Exons are high-
lighted with different colors, Exon lis highlighted with red color, Exon Il with
Blue and Exon lllis in grey color. 87 Nucleotides are deleted from the exon Il
of BF539 as shown with dashes in the figure. Comparison of the mRNA
sequence of BF539 with BF294 reveals that a dinucleotide "GT" (underlined
and highlighted in red letter) is present at the end of the exon Il of BF539.
The splicing error could be due to change in this base substitution. How-
ever the exon lllis intact as stop codon and one of the amino acid residue is
encoded by the exon lIl.

Additional file 5 Phylogenetic relationship of B chain and Kunitz SPI
of different Bungarus species. Kunitz type SPl and B chain of B-bungaro-
toxin of Bungarus sp was obtained from the database and phylogenetic
tree was constructed to understand the relationship between kunitz SPI
and B chain of B-bungarotoxin.

Additional file 6 Comparison of BF95 from B. flaviceps with Laticauda
semifasciata PLA,(AB062439). Exons are highlighted with different colors,
Exon Iis highlighted in green color; Exon Il in magenta; Exon Il in dark blue
and Exon IV in grey. In BF95, part of the exon Il (99 bp) is missing as shown
in the figure with dashes.

Additional file 7 CRISPs and C-type lectins. A) Transcripts encoding
CRISPs (BF53), found in this venom gland cDNA library. B) C-type lectins
(BF53) found in this venom gland cDNA library. One of the C-type lectin
found in this venom gland cDNA library was truncated in the 5' end
(BF764). The amino acid residues of C-type lectin involved in binding to the
Ca?*are highlighted with green color and the cysteine residues are high-
lighted.
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