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ABSTRACT

Objective: Risk prediction models are widely used to inform evidence-based clinical decision making. However,

few models developed from single cohorts can perform consistently well at population level where diverse prog-

noses exist (such as the SARS-CoV-2 [severe acute respiratory syndrome coronavirus 2] pandemic). This study

aims at tackling this challenge by synergizing prediction models from the literature using ensemble learning.

Materials and Methods: In this study, we selected and reimplemented 7 prediction models for COVID-19 (coro-

navirus disease 2019) that were derived from diverse cohorts and used different implementation techniques. A

novel ensemble learning framework was proposed to synergize them for realizing personalized predictions for

individual patients. Four diverse international cohorts (2 from the United Kingdom and 2 from China; N¼5394)

were used to validate all 8 models on discrimination, calibration, and clinical usefulness.

Results: Results showed that individual prediction models could perform well on some cohorts while poorly on

others. Conversely, the ensemble model achieved the best performances consistently on all metrics quantifying

discrimination, calibration, and clinical usefulness. Performance disparities were observed in cohorts from the 2

countries: all models achieved better performances on the China cohorts.

Discussion: When individual models were learned from complementary cohorts, the synergized model had the

potential to achieve better performances than any individual model. Results indicate that blood parameters and
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physiological measurements might have better predictive powers when collected early, which remains to be

confirmed by further studies.

Conclusions: Combining a diverse set of individual prediction models, the ensemble method can synergize a ro-

bust and well-performing model by choosing the most competent ones for individual patients.

Key words: ensemble learning, model synergy, risk prediction, COVID-19, decision support

INTRODUCTION

Risk prediction models are widely used in clinical practice to inform

decision making.1–3 Good models cannot only improve health service

efficiencies, but also predict deterioration4 in a proactive manner,5

with a great potential to improve outcomes and save lives. Such

evidence-based decision making supports are particularly important

in an epidemic or pandemic outbreak, not only for informing the

treatments or managements of those infected, but also for optimizing

healthcare services to minimize indirect effects to most vulnerable ser-

vice users. For example, the recent severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has caused substantial excess mortal-

ity,6,7 at least partly due to an indirect effect on healthcare systems,

leading to a loss of capacity to provide elective and emergency care

within the “golden window” of opportunity.7–9 To mitigate excess

mortality, more targeted inpatient care in future waves could be in-

formed by (1) better risk prediction and (2) insights from interna-

tional coronavirus disease 2019 (COVID-19) (we use the terms

SARS-CoV-2 and COVID-19 interchangeably) datasets and experi-

ence to validate models and learn from different countries’ responses.

There have been numerous prediction models developed for

COVID-19,10–14 but most were derived in small datasets, had low

methodological quality, and are unvalidated.13 In addition, models

learned from single cohorts (even from several centers) might not

have the predictive power to achieve good performance in situations

in which a disease spreads to the whole population, leading to

greatly diverse prognoses. In this study, we reproduced various pre-

diction models with reasonable quality and synergized them using

ensemble learning15 to assess their collective ability to accurately

discriminate mild and severe patients in a diverse set of 4 patient

cohorts from the United Kingdom and China with varying patterns

of disease severity (Figure 1A). In particular, China and the United

Kingdom had very different approaches to hospital admission for

COVID-19. In Wuhan, admission was routine with patients triaged

to low intensity (Fangcang hospitals)16 or higher dependency (desig-

nated hospitals) settings, whereas in the United Kingdom, admission

of patients with more severe disease or at perceived higher risk of se-

vere disease was prioritized. These differences enabled us to assess

model performance in different settings. For outcomes specifically,

we primarily focused on poor prognosis defined by either death or

intensive care unit stay.

MATERIALS AND METHODS

Figure 2 depicts the architecture of this work—synergizing individ-

ual models from the literature for preventing excess mortality. For

prediction models (Figure 1B), 7 models—Dong,10 Shi,17 Gong,18

Lu,19 Yan,20 Xie,21 and Levy22—were chosen with different model

types using diverse sets of predictors. Derivation cohorts were di-

verse, originating from 6 regions in 2 countries, with median ages

ranging from 44 to 65 years, and with mortality varying between

7% and 52%. Such diversity provides leverage for synergizing

insights from these derivation cohorts to obtain a collective and

hopefully improved predictive power.

To synergize models derived from multinational datasets, we used

ensemble learning,15,23 a machine learning methodology that is par-

ticularly effective when single models perform well at certain subsets

of the whole data samples but none of them can achieve good overall

performances. The rationale is to partition the data samples into

groups and choose the most suitable model(s) for particular groups

(eg, to give more weights to models derived from older populations

with more severe cases for a 78-year-old patient with lymphocyte

count of 0.7) so that the optimal overall prediction result can be

achieved. Figure 1C shows a synthetic and schematic illustration of

such a situation. In (conventional) ensemble learning scenarios, weak

predictors are usually trained on subsets of the same dataset. The key

difference of this work is that the weak predictors were not trained lo-

cally on one particular dataset, but rather were selected from the liter-

ature (ie, learned from external datasets, which the ensemble model

does not have access to) and reimplemented for aggregation.

The aggregation approaches used in this study do not belong to

the stacking method (also called stacked generalization),24 that is to

learn a new model using inputs from individual classifiers. Instead,

they are inspired by bagging predictors25—aggregating results in a

data-independence manner.

Validation and analytics cohorts
The first Wuhan cohort (Wuhan01) consisted of 2869 adults with

COVID-19 confirmed by reverse transcriptase polymerase chain re-

action admitted to 1 of 2 hospitals in Wuhan, China (Wuhan Sixth

Hospital and Taikang Tongji Hospital), admitted between February

1 and 23, 2020, and who died or were discharged on or before

March 29, 2020. The second Wuhan cohort (Wuhan02) consisted

of 357 adults with COVID-19 from Tongji Hospital, data of which

was collected between January 1 and March 4, 2020. The first UK

cohort (King’s College Hospital [KCH]) consisted of 1475 adults

(�18 years of age) hospitalized with COVID-19 in King’s College

Hospital NHS Foundation Trust (London, United Kingdom) be-

tween March 1 and April 2, 2020, who were followed up until April

8, 2020. The second UK cohort (University Hospitals Birmingham

[UHB]) consisted of 693 adults (�18 years of age) hospitalized with

COVID-19 at the Queen Elizabeth Hospital (part of the University

Hospital Trust, Birmingham, United Kingdom) between March 14

and April 13, 2020, who were followed up to April 19, 2020. Mor-

tality rates of Wuhan01, Wuhan02, KCH, and UHB are 2.4%,

45.7%, 26.9%, and 19.0%, respectively. The large difference in

mortality between 2 Wuhan cohorts was possibly because (1) Wu-

han02 admitted more severe cases under Wuhan city-wide coordina-

tion20 and (2) the 2 were followed up in different periods related to

the surge (Figure 1A.2). Table 1 gives the baseline for comparing

poor prognosis or died and not poor prognosis and did not die sub-

groups of all 4 cohorts. All cohorts were retrospective and extracted

from electronic health records for this study. Demographics and
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(a) 
1. Cohort size and mortality

Wuhan01 and Wuhan02 are two cohorts from Wuhan, 
China. KCH is King’s College Hospital, London, U.K. 
UHB is University Hospital Birmingham, 
Birmingham, U.K.

2. Timeline of cohort follow-ups and UK/China Wave 1 periods 3. Age 4. Lymphocyte count

< 1.5 109/L: viral infections 

5. Lactate dehydrogenase 

>280 IU/L: organ/tissue damage 

6. C-reactive protein 

>10mg/L: significant inflammation 

7. Albumin 

<34 g/L: liver/kidney disease

8. Oxygen saturation 

< 95%: lung problem 

(b) (c) 
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Figure 1. Validation cohorts, prognosis models, and ensemble learning. (A) The 4 validation cohorts. A.1 shows cohort size and mortalities; A.2 shows follow-ups

aligned with wave 1 periods of China and the United Kingdom (red indicates high new daily cases); A.3 shows age distributions; A.4-A.7 show distributions of

bloods and vitals. (B) Timeline of follow-up periods of derivation cohorts of all individual prediction models. (C) Illustrative diagram of ensemble learning by com-

bining 3 linear models for binary classification. KCH: King’s College Hospital; UHB: University Hospitals Birmingham.
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Figure 2. Architecture of the proposed ensemble learning framework. At the center is the ensemble method taking 7 individual models as input (top left) and syn-

ergizing them based on their competence on target cohorts. Four international COVID-19 cohorts (top right) were included in this study for evaluation of ensem-

ble learning (bottom). KCH: King’s College Hospital; UHB: University Hospitals Birmingham.
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baselines of all 4 validation cohorts are described in detail in Supple-

mentary Tables S2-S5.

Prediction model selection and reimplementation
In May 2020, we conducted a literature search for COVID-19 poor

prognosis models. The search and selection process are described

with details in Supplementary Figure S1. Briefly, for prediction mod-

els (Figure 1B), we selected COVID-19 prognosis (either death or se-

verity) models that were (1) reproducible (implementable models

with all parameters reported); (2) using predictors that are readily

available at community triage at large scale (ie, demographics, un-

derlying conditions, blood tests, and vital signs); and (3) with suffi-

cient information describing the derivation cohort including cohort

size, interquartile range of age, country/region, follow-up period,

and mortality and poor prognosis ratios. Table 2 describes informa-

tion of the 7 models including the outcomes, computational meth-

ods, information of derivation cohorts (eg, size, region or country,

mortality rate, follow-up period).

We reimplemented these 7 prediction models by extracting all

parameters from their published or preprint manuscripts or public-

facing websites. Five different models are implemented including de-

cision tree, logistic regression, nomogram, scoring, and NOCOS (a

customized transparent model). We also extracted derivation cohort

size, follow-up periods, and distributions of numeric predictors

(bloods and vitals). Supplementary Table S1 shows predictors used

by each prediction model and also gives the numeric variable distri-

butions of their derivation cohorts. Figure 1B illustrates the timeline

of the follow-up periods of all models’ derivation cohorts.

Competence assessment framework for model

selection
The key to obtaining an effective ensemble model is a good aggrega-

tion mechanism that can choose the best-performing model(s) for indi-

vidual patients so that an overall optimal classification could be

achieved. Stacking methods (learning a model from individual classi-

fiers) usually produce better ensembles than bagging (majority vote or

weighted majority vote).23 However, the former requires labeled data

to further learn a model, which is not possible in our scenario (ie, using

the ensemble model in clinical decision making for managing COVID-

19). Therefore, a data-independent approach (like bagging) is required.

For risk prediction models, their predictive capacities are underpinned

by the patient characteristics of their derivation cohorts. For example,

given a new patient, models that were trained on (enough number of)

similar patients likely perform better than those that were not. The

conventional bagging methods (majority vote or their variations) are

unlikely to work very well, as they are not capable of capturing such a

similarity and its associations with model competence.

We propose a novel bagging mechanism using a competence as-

sessment framework for assisting model selections in the aggregation

step. The framework is designed to quantify the competence of each

model for a given patient data sample. Three factors are considered.

The first factor is called familiarity competence, which quantifies the

previously mentioned similarity (ie, how familiar is a model with the

new patient sample to be predicted). The second factor is the general

competence, which can be reflected by the derivation cohort size, as

we know prediction models derived from large cohorts are usually su-

perior to those from smaller ones. The final factor is to consider data

completeness of a patient sample relative to a prediction model.

“Absolute” data completeness of our validation cohorts is observed

to be relatively good, meaning if a clinical feature is collected at a hos-

pital most patients tend to have it. However, “relative” completeness

(ie, given a prediction model, the percentage of its risk predictors

available in the dataset) varies significantly. Model predictive powers

are likely to be compromised by such relative incompleteness, which

therefore needs to be considered in the framework.

We first specify the calculation of the familiarity competence. Let P

¼ p1; . . . ; pkf g be the set of all numeric predictors, dist m; pð Þ ¼ ðmp;

q1p; q3pÞ be the distribution (median, first quartile, and third quartile,

respectively) of p in the model m’s derivation cohort. Given a patient

data sample: s ¼ p; vp

� �
jp 2 P

� �
; where vp is the numeric value of

predictor p, the familiarity competence of m on p is defined as follows.

Cf ðs;mÞ ¼
X
p2P

�
1�d

�
vp; distðm;pÞ

��
;where is a distance

function defined as

d
�

v; ðm; q1; q3Þ
�
¼

0; q1 � v � q3;

min
jv�mj
q3� q1

; 1

� 	
otherwise

8>><
>>:

Table 2. Seven prognosis prediction models.

Shi Xie Dong Levy Yan Gong Lu

Outcome Poor prognosis Death Poor prognosis Death Death Poor prognosis Death

Model type Scoring Logistic regres-

sion

Nomogram NOCOSa Decision tree Nomogram Scoring

Region Zhejiang Wuhan Anhui, Beijing New York Wuhan Wuhan, Guang-

zhou

Wuhan

Derivation co-

hort size

487 299 208 11,095 375 189 577

Age, y 46 (27-65) 65 (54-73) 44 (28-60) 65 (54-77) 59 (42-75) 49 (35-63) 55 (39-66)

Follow-up pe-

riod (in 2020)

Unknown to

February 17

January 1 to

Feb01

January 20 to

March 18

March 01 to

May 05

January 10 to

February 18

January 20 to

March 02

January 21 to

February 05

Mortality rate – 51.84% – 23.40% 41.33% – 6.76%

Poor prognosis

rate

10.06% – 19.23% – – 14.81% 17.33%

Values are median (interquartile range) or n (%). For outcomes, poor prognosis is defined as severities including length of stay, intensive care unit stay, or cate-

gories of treatments. For model type, scoring refers to models that calculate a sum from scores predefined to individual predictor values; logistic regression and de-

cision tree refers to models in which these computational models are used; nomogram refers to models represented as a 2-dimensional graphical calculating

diagram. aCustomized model.
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The final competence calculation is defined as the following for-

mula. The first component divides the familiarity competence by the

total number of numeric predictors of the model, incorporating the

relative data completeness of s to m. The second component is gen-

eral competence based on the size of a model’s derivation cohort.

Assuming that the 2 components are equally important, we calculate

the overall competence as a product of the 2

C ¼
Cf ðs;mÞ
jPmj

� hðmÞ
maxm2M hðmÞ ;

where PM is the set of all numeric predictors of m; h(m) is the deriva-

tion cohort size and M is the set of all models.

Prediction fusion in ensemble model
Different methods have been proposed in multiple classifier sys-

tems26 to combine individual classifiers for achieving more accurate

classifications. Depending on whether further training is used or not,

the combination methods can be categorized as trainable combiners

vs nontrainable combiners. The former (eg, AdaBoost)27 requires la-

beled data in the application domain (ie, where the ensemble model is

going to be used). The latter (eg, majority vote combiner) can be used

in a data-independent manner (ie, applicable in new domains without

the need of further training). The motivation of this work is to use the

ensemble or combined model to inform decision making in care path-

ways or policy making, where labeled data are not available. There-

fore, nontrainable combiners were used.

A set of fusion methods were implemented. For competence-

independent ones, we implemented voting (majority, 1 positive, and 1

negative) and scoring (maximum and average), which are common fu-

sion strategies used in ensemble learning.26 When all models are

assessed against the data of a given patient, the competence values can

then be used to fuse predictions (probabilities of poor prognosis) from

all models. We implemented the following: trust-the-most-competent

mode (use the prediction of the one with highest competence value);

wisdom-of-the-crowd mode (use the weighted average of all predic-

tions); highest-in-top-competent-ones mode (use the maxim probability

in top k competent models [k¼3, 5]). Supplementary Figure S2 gives

an illustrative example of the 3 fusion strategies. Wisdom of the crowd

performed the best in our experiments and was used in this work.

The original model design is another factor that needs to be consid-

ered in the prediction fusion. Individual models were designed for pre-

dicting different severities: mortality or different definitions of

severities. We manually defined a severity score for each model (death

models: 1.0; poor prognosis ones: 0.3) and combined those scores in

the final fusion formula as follows. The formula considers predictions

from all individual models and combines them as weighted average.

Fðs;MÞ ¼

P
m2MProbðm; sÞ � C� Sm

jMj 9m 2M; C > 0

P
m2MProbðm; sÞ � Sm

jMj otherwise

8>>>><
>>>>:

where Sm is the predefined severity score of m.

RESULTS

The performances of prediction models were evaluated on 3 aspects:

discrimination (C-Index), model calibration and a number of param-

eters defining likely clinical utility. For discrimination (Figure 3A) of

individual models, we observed that Xie achieved the best result (C-

index, 0.899; 95% confidence interval [CI], 0.874-0.926) on Wu-

han01, Dong performed the best (C-index, 0.881; 95% CI, 0.841-

0.913) on Wuhan02, and Levy was the best on KCH (C-index,

0.658; 95% CI, 0.629-0.685), and UHB (C-index, 0.660; 95% CI,

0.617-0.713). None of the 7 models examined consistently per-

formed the best across all cohorts, whereas the ensemble model con-

sistently had the best discrimination in all cases: 0.914 (95% CI,

0.891-0.937), 0.890 (95% CI, 0.856-0.921), 0.665 (95% CI, 0.640-

0.692), and 0.683 (95% CI, 0.643-0.723) on Wuhan01, Wuhan02,

KCH, and UHB respectively. However, the top models (ensemble,

Xie, Levy, and Dong) all performed much better on Wuhan cohorts

compared with the UK ones. This difference might be explained by

the different admission strategies of the 2 countries, indicating that

chosen predictors (Figure 1A.3-1A.8) might be less predictive at

later stages of clinical presentation and disease progression.

For clinical usefulness, we focus on decision-making support for

admission strategies (ie, who to admit and to where). It is not appro-

priate to use a fixed threshold of probability to validate model per-

formances, as (1) individual models are derived from cohorts with

diverse severities and on slightly different definitions of poor prog-

nosis and (2) severity in the validation cohorts also varies signifi-

cantly. Instead, for each validation cohort we compute an event rate

(number of poor prognosis or deceased patients divided by total

number of patients) and for models we compute a prediction rate

(predicted events divided by total number of patients). We then vali-

date the sensitivity and specificity of a model when its prediction

rate is closest to 1.5 times of the event rate or a minimal ratio of

0.15, whichever is larger. Figure 3B shows the performances of all

models on 4 cohorts using cohort-specific prediction rate. We ob-

served the ensemble model consistently outperforms individual mod-

els across all cohorts on positive predictive value, sensitivity, and

specificity. We observed prediction rate–based cutoffs led to quite

different performances on the metrics of positive predictive value,

sensitivity, and specificity. These were what we expected. For exam-

ple, for Wuhan01, the mortality rate is 2.4%, which is close to the

population level. Therefore, we would expect a good model to have

high specificity (ensemble model achieved 0.88) to correctly reject

less severe patients so that hospital capacity can be mostly reserved

for patients likely to deteriorate (without admitting too many mild

patients). On the contrary, when the cohort is very severe (eg, Wu-

han02), high sensitivity is preferred (ensemble model: 0.96) as we do

not want to discharge those who would likely need intensive care.

To quantify how well the ensemble model reclassifies patients,

we also calculated the net reclassification improvements28 by com-

paring them with the best individual model on each validation co-

hort. Table 3 gives the details, in which the ensemble model

achieved net improvements in all cases with the biggest on Wuhan02

and the smallest on KCH.

We also evaluated the model calibrations of all models on all 4

cohorts: Figure 3C shows the calibration slope and calibration in

large, and Supplementary Figure S3 depicts the calibration plots. For

individual models, similar to C-index performances, they did not

perform consistently well across cohorts. For example, Xie had very

good calibration on Wuhan01, while it performed poorly on UHB.

Again, the ensemble model has shown robust performances on all

cohorts—calibrations were good to very good generally.

DISCUSSION

This work has shown that single models for prediction did not consis-

tently perform well. For example, Dong’s C-index on Wuhan02 is the

best in individual models, but it only achieved the fourth-highest C-in-
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Wuhan01 Wuhan02* 

KCH UHB
* Yan/Shi were not evaluated on Wuhan02 as they were derived from the same hospital data

(b)

Performance at prediction rate: 0.15 Performance at prediction rate: 0.69

0.241

0.78

0.881

0
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0.2

0.3
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(a)

Figure 3. Validation results of discrimination, clinical usefulness, and calibration. (A) Discrimination performances: median (95% confidence interval [CI]). (B) Pos-

itive predictive value (PPV), sensitivity, and specificity of all models validated on cohort-specific prediction rate. Models that could not achieve expected predic-

tion rates were excluded. (C) Calibration results on 4 validation cohorts: median (95% CI) where empty cells are for those models that were not validated because

they were derived from the same hospital data. KCH: King’s College Hospital; UHB: University Hospitals Birmingham.
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Performance at prediction rate: 0.54 Performance at prediction rate: 0.47

(c)

Calibration results on four validation cohorts

Levy Xie Yan Lu Gong Dong Shi Ensemble model

Wuhan01 (Poor prognosis)

sslope 0.952 
(0.952-0.952)

1.124 
(1.124-1.000)

0.482 
(0.482-0.482)

0.807 
(0.807-0.807)

0.000
(0.000-0.000)

0.405 
(0.405-0.405)

0.235 
(0.235-0.235)

1.462 
(1.462-1.000)

ccalibration--iin--llarge 0.127 
(0.127-0.127)

-0.050 
(0.000--0.050)

-0.026 
(0.000--0.026)

0.002 
(0.002-0.002)

0.046 
(0.046-0.046)

-0.047 
(0.000--0.047)

-0.015 
(0.000--0.015)

-0.022 
(0.000--0.022)

Wuhan02 (Death)

sslope 0.843 
(0.843-0.843)

1.939 
(1.939-1.000)

0.000 
(0.000-0.000)

1.232 
(1.232-1.000)

1.759
(1.759-1.000)

1.214 
(1.214-1.000)

ccalibration--iin--llarge 0.572 
(0.572-0.572)

0.159 
(0.159-0.159)

0.457 
(0.457-0.457)

0.047 
(0.047-0.047)

0.004 
(0.004-0.004)

0.477 
(0.477-0.477)

KCH (Poor prognosis)

sslope 0.958 
(0.958-0.958)

0.987 
(0.987-0.987)

0.232 
(0.232-0.232)

0.401 
(0.401-0.401)

0.000 
(0.000-0.000)

0.276 
(0.276-0.276)

0.625 
(0.625-0.625)

1.061 
(1.061-1.000)

ccalibration--iin--llarge 0.221 
(0.221-0.221)

0.161 
(0.161-0.161)

0.304 
(0.304-0.304)

0.306 
(0.306-0.306)

0.357 
(0.357-0.357)

0.276 
(0.276-0.276)

0.144 
(0.144-0.144)

0.196
(0.196-0.196)

UHB (Poor prognosis)

sslope 0.587 
(0.587-0.587)

0.668 
(0.668-0.668)

0.415 
(0.415-0.415)

0.010 
(0.010-0.010)

0.000 
(0.000-0.000)

0.266 
(0.266-0.266)

0.497
(0.497-0.497)

0.933 
(0.933-0.933)

ccalibration--iin--llarge 0.197 
(0.197-0.197)

0.124 
(0.124-0.124)

0.123 
(0.123-0.123)

0.310 
(0.310-0.310)

0.312 (0.312-
0.312)

0.255 
(0.255-0.255)

0.148 
(0.148-0.148)

0.067 
(0.067-0.067)

0.451

0.675

0.545

0

0.1

0.2

0.3
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0.8

0.9

1
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Figure 3. continued

Table 3. Net reclassification improvements of Ensemble model compared with the best individual model on each validation cohort

Wuhan01 (Ensemble vs Xie) Wuhan02 (Ensemble vs Dong) KCH (Ensemble vs Levy) UHB (Ensemble vs Levy)

Event No Event Event No Event Event No Event Event No Event

Higher 13 132 26 10 51 77 15 42

Lower 7 124 16 17 48 74 11 37

Total 432 2,438 127 230 642 833 325 368

Net reclassification improvements 1.72% 4.83% 0.83% 2.59%

KCH: King’s College Hospital; UHB: University Hospitals Birmingham.
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dex on KCH. Similar situations were observed on other top single

models, including Xie and Levy. On the one hand, the challenge of

getting consistent performances in diverse cohorts resides in the fact

that COVID-19 prognosis will vary depending on variables underly-

ing demography (age and comorbidity of the populations) and severi-

ties of disease in different settings (because of different admission

strategies). For models derived from single cohorts, their prediction

capacities were limited by the characteristics of data samples they

have seen. Therefore, they are unlikely to achieve a high performance

in external cohorts when there are many patients with novel charac-

teristics. On the other hand, ensemble learning methods have the po-

tential to make the best use of all available models. If these models

were learned from complementary cohorts, the synergized model will

have the potential to achieve better performances than any single

model by using most competent ones for individual patients.

Comparing results in the United Kingdom (patients being admit-

ted with more severe disease) and Chinese cohorts (more patients be-

ing admitted with mild disease), all models consistently performed

worse on UK cohorts. Considering the fact that individual models

used quite diverse predictors, adopted different computational algo-

rithms, and were derived from different regions and countries, it

seems the observed poorer performances are likely associated with

the United Kingdom’s response to the first wave of COVID-19

surge. The United Kingdom mainly admitted severe patients aiming

to reserve health service capacities. Therefore, one possible explana-

tion is that blood parameters and physiological measurements are

better collected as early as possible to contribute to improved predic-

tive utility.

One limitation of this work was that we were unable to include

prediction models that were learned from European cohorts, partic-

ularly from the United Kingdom. Including more local models

would probably facilitate the ensemble framework to identify those

predictors that are more predictive in the European cohorts, which

would in turn improve the overall performance in the UK cohorts.

In our future work, we will create a web platform to allow the com-

munity to share models so that a wide range of diverse and comple-

mentary models can be synergized.

CONCLUSION

In this study we selected and reimplemented 7 prediction models for

COVID-19 with diverse derivation cohorts and different implemen-

tation techniques. A novel ensemble learning framework was pro-

posed to synergize them for realizing personalized predictions for

individual patients. Four international COVID-19 cohorts were

used in validating both individual and ensemble models. Validation

results showed that ensemble methods could synergize a robust and

good-performing model by choosing the most competent model for

individual patients.
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