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Automated detection and 
classification of early AMD 
biomarkers using deep learning
Sajib Saha1,3, Marco Nassisi   1, Mo Wang1, Sophiana Lindenberg1, Yogi kanagasingam3, 
Srinivas Sadda1,2 & Zhihong Jewel Hu   1

Age-related macular degeneration (AMD) affects millions of people and is a leading cause of blindness 
throughout the world. Ideally, affected individuals would be identified at an early stage before late 
sequelae such as outer retinal atrophy or exudative neovascular membranes develop, which could 
produce irreversible visual loss. Early identification could allow patients to be staged and appropriate 
monitoring intervals to be established. Accurate staging of earlier AMD stages could also facilitate 
the development of new preventative therapeutics. However, accurate and precise staging of AMD, 
particularly using newer optical coherence tomography (OCT)-based biomarkers may be time-intensive 
and requires expert training which may not feasible in many circumstances, particularly in screening 
settings. In this work we develop deep learning method for automated detection and classification 
of early AMD OCT biomarker. Deep convolution neural networks (CNN) were explicitly trained for 
performing automated detection and classification of hyperreflective foci, hyporeflective foci within the 
drusen, and subretinal drusenoid deposits from OCT B-scans. Numerous experiments were conducted 
to evaluate the performance of several state-of-the-art CNNs and different transfer learning protocols 
on an image dataset containing approximately 20000 OCT B-scans from 153 patients. An overall 
accuracy of 87% for identifying the presence of early AMD biomarkers was achieved.

Age-related macular degeneration (AMD) is the leading cause of blindness among elderly individuals in the 
developed world. AMD affects 1 in 7 over the age of 50, with the incidence increasing with age1. It is estimated 
that about 8 million people in the United States who are 55 and above years old have monocular or binocular 
intermediate AMD or monocular advanced AMD2. Advanced AMD is defined by the presence of central atro-
phy or macular neovascularization and is commonly associated with visual loss. The chances of progression to 
advanced AMD in 5 years period is 27% for patients with intermediate AMD3. For patients with already advanced 
AMD in the fellow eye, this chance can be as high as 43%3. Though treatments are now exist for patients with 
neovascular AMD (choroidal neovascularization, CNV), these patients likely to develop atrophy over time and 
appear to lose vision eventually. No proven treatment is currently available in the setting of non-neovascular dis-
ease to prevent the progression of atrophy, termed geographic atrophy (GA). Some agents under study may slow 
the progression of GA4, however, it is desirable to intervene in AMD patients at an earlier stage, prior to develop-
ment of irreversible atrophic changes or destructive exudation from CNV. In conducting such early intervention 
studies, it is critical to identify those patients with high risk for progression to advanced AMD.

Historically, color fundus photograph has been the gold standard for determining early AMD. Relying on 
color fundus photographs, various studies3,5,6 have identified risk factors for progression that include the man-
ifestation of large drusen, an increased total drusen area, hyperpigmentation, and depigmentation. Based on 
these risk factors, the Age-Related Eye Disease Study (AREDS) defined a nine-step detailed scale7, as well as a 
simplified scale8 for assessing the risk of progression of AMD. The simple scale used only two factors namely 
large drusen and pigmentary changes to assess the eye and was designed for easy clinical application. Optical 
coherence tomography (OCT) has largely supplanted color fundus photography in clinical practice in recent days, 
because OCT provides three-dimensional cross-sectional anatomic information of retinal abnormalities, which 
color fundus photography cannot provide. Several novel OCT-based features have been identified by a number 
of studies to signal risk of AMD progression9. Higher central drusen volume10, intraretinal hyperreflective foci11, 
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heterogeneous internal reflectivity within drusenoid lesions (IRDL)12, and reticular pseudodrusen or subreti-
nal drusenoid deposits (SDD)13–15, are some of the promising ones that appear to signal risk for progression to 
advanced AMD9. OCT provides excellent opportunities to better understand AMD and its associated biomarkers, 
however, it generates massive image data volume (up to hundreds of B-scans per examination), which makes 
manual analysis of OCT extensively time-taking and impractical in many circumstances.

A number of approaches have already been proposed using retinal OCT images for automated and semiau-
tomated analysis of AMD biomarkers, namely drusen16–22, GA23–26, pigment epithelial detachment (PED)27–30, 
and intra-/sub-retinal fluid31–33. Algorithms for drusen detection and segmentation23–26, primarily depend on on 
the difference between the actual retinal pigment epithelial (RPE) surface and a calculated ideal RPE or Brunch’s 
membrane for automated recognition of drusen. In contrast to other methods, de Sisternes et al.19 utilized 11 
drusen specific features for determining the likelihood of progression from early and intermediate AMD to exu-
dative AMD. Information about drusen texture, its geometry, reflectivity, number, area as well as volume were 
used for computing the likelihood. GA detection algorithms27–30 on OCT mainly used a partial summed voxel 
projection (SVP) of the choroid relying on the increase in reflectance intensity beneath Bruch’s membrane in the 
GA. Chen et al.23 proposed a classic method in this category. The method first segmented the RPE. A partial SVP 
underneath the RPE was subsequently generated and the en face image was computed using the average axial 
intensity within the slab. Finally, GA was identified GA with the help of an active contour model and using the 
en face projection. Chiu et al.34 used abnormal thinning and thickening of the RPE-drusen complex (RPEDC), 
defined by the inner aspect of the RPE plus drusen material and the outer aspect of Bruch’s membrane, to iden-
tify GA and drusen, respectively. In order to quantify PED volume in OCT, Ahlers et al.27 and Penha et al.28 
relied on a similar principle as for drusen detection based on comparing the actual RPE position with the ideal 
or normal RPE position. To quantify PED on OCT, graph-based surface segmentation was used by Sun et al.29 
and Shi et al.30. Algorithms for intra- and subretinal fluid detection in OCT relied on a number of image analysis 
techniques such as gray level31, gradient-based segmentation32, active contours33, and convolutional neural net-
works35. Schmidt-Erfurth et al.36 proposed a method for predicting individual disease progression in AMD rely-
ing onmachine learning and other advanced image processing techniques. Imaging data that include segmented 
outer neurosensory layers and RPE, drusen and hyperreflective foci, together with demographic and genetic 
input features were used for the prediction. The method predicted the risk of conversion to advanced AMD, with 
area under curve (AUC) of 0.68 and 0.80, respectively for CNV and GA. An overview and summary regarding 
various methods for automated analysis of AMD biomarkers on optical coherence tomography has recently been 
published by Wintergerst 201735.

In our study, we report on the performance of an automated method for detection and classification of mul-
tiple early AMD biomarkers: namely, reticular pseudodrusen, intraretinal hyperreflective and hypoflective foci 
(Fig. 1). Worth mentioning, the proposed study has been inspired by the results of our group9 that found a great 
association of reticular pseudodrusen, intraretinal hyperreflective and hypoflective foci, and drusen volume with 
overall AMD progression. Drusen volume was the least predictive among these four biomarkers. In addition to 
that todays machines are already capable to perform drusen volume measurements. That is why, this paper mainly 
focuses on developing artificial intelligent methods for the assessment of SSD, HRF and hRF.

In clinical practice, this tool could be employed as a screening method to rapidly identify B-scans which 
require further attention and critical analysis by the practitioner, thus increasing the accuracy and efficiency of 
diagnosis.

Methods
Dataset.  Spectral domain (SD)-OCT images of 153 patients who were diagnosed with early or intermediate 
AMD in at least one eye at the Doheny Eye Centers between 2010 and 2014, were collected and analyzed for 
this study. All eyes were captured using a Cirrus HD-OCT camera (Carl Zeiss Meditec, Dublin, CA) with 1024 
(depth) 512 × 128 cube (2 × 6 × 6 mm) centered on the fovea. All images were de-identified according to Health 
and Insurance Portability and Accountability Act Safe Harbor prior to analysis. Ethics review and institutional 
review board approval from the University of California – Los Angeles were obtained. The research was per-
formed in accordance with relevant guidelines/regulations, and informed consent was obtained from all partici-
pants. A total of 19584 OCT B-scans were available for this study and about 90% of these B-scans did not contain 
features of disease (i.e. were normal). In order to balance the number of disease and normal B-scans, only a 
portion of the normal images were used for our experiment, and concurrently data augmentation was performed 
for the disease cohort.

All B-scans were graded by certified expert Doheny Image Reading Center (DIRC) OCT graders. B-scans 
were classified as having a disease feature present only if the grader was >90% confident that the feature was 
present. A total of 1050 OCT B-scans were graded as having definite subretinal drusenoid deposit, 326 B-scans 
had definite intraretinal hyper-reflective foci, and 206 B-scans had definite hyporeflective drusen. In addition, 
subretinal drusenoid deposits, intraretinal hyperreflective foci, and hyporeflective drusen were graded to be ques-
tionably present (i.e. grading confidence of 50–90%) in 308, 85, and 45 B-scans, respectively. As these question-
able B-scans had some level of ambiguity, they were excluded from the experiment. In order to avoid any bias 
in training the deep CNN, we decided to use about same number of images both for the disease and no-disease 
category. We performed data augmentation specifically by rotation (in the range of −5 to 5 degrees), shearing (in 
the range 0.2), scaling (in the range 0.2) and flipping, to increase the number of diseased images by 10~15 times. 
Table 1 summarizes the number of B-scans used for this experiment. 90% of these B-scans were used for training 
and 10% were used for testing. Training and test images were selected randomly. Further to that, training set and 
test set were divided prior to doing any data augmentation, to avoid data impurity.
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Grading protocol for OCT B-scans.  Each of the B-scans of the 512 × 128 macular cube was individually 
assessed to determine the presence of intraretinal hyperreflective foci (IHRF), hyporeflective foci (hRF) within 
druseniod lesion (DL) and subretinal drusenoid deposit (SDD)9. Drusenoid lesions typically appear homogene-
ous internally with a ground-glass medium reflectivity9. Graders explicitly looked for the occurrence of hypore-
flective foci within the drusen (Fig. 1). Knowing the requirement of the presence of enough number of pixels 
inside a drusen to reliably determine hRF, drusenoid lesions with a height of at least 40 μm was only taken into 
account while assessing the internal reflectivity37. IHRFs were defined as discrete, well-circumscribed hyperre-
flective lesions within the neurosensory retina, and a reflectivity at least as bright as the RPE band (Fig. 1)38. A 
minimum size of 3 pixels was set for IHRFs, to differentiate from noise and retinal capillaries. SDDs were defined 
as medium-reflective hyper-reflective mounds or cones, either at the level of the ellipsoid zone or between the 
ellipsoid zone and the RPE surface (Fig. 1)9. A lesion was considered present if the grader had greater than 90% 
confidence that it was present in at least one B-scan, which is the conventional practice of the reading-center9.

Identifying early AMD biomarkers using deep learning.  We used deep learning39 for automated iden-
tification of these OCT-based AMD biomarkers. Deep learning, also known as deep structured learning or deep 
machine learning, is the process of training a neural network to perform a given task40. In comparison to tradi-
tional machine learning approaches that still depend on hand-crafted features to extract valuable information 
from data, deep learning employs machine to learn the features by itself41. Thus, deep learning approach is more 
objective and robust. In addition to that, traditional machine learning approaches require manual outlining of 
pathology/features, which is expensive and time consuming to produce;42 whereas, deep learning requires only 

Figure 1.  Example of hyperreflective foci, hyporeflective foci within drusen and subretinal drusenoid deposit.

Early AMD 
pathologies

No of B-scans initially 
available

No of B-scans used for the 
experiment

Disease No-disease Disease† No-diseaseΓ

SDD 1050 18222 10500 10800

HRF 326 19173 4890 5300

hRF 206 19933 3090 3100

Table 1.  Summary of the number of B-scans used for the experiment. †Following augmentation. ΓSelected 
randomly.
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the label of the data, which can be produced quickly. Importantly enough, in recent years, deep learning tech-
niques are found to beat traditional machine learning approaches with significant margins and have become 
state-of-the-art in image classification, segmentation, and object detection in medical and ophthalmic images42. 
A problem of deep learning though, was the requirement of huge labelled data; however, through ‘transfer learn-
ing’43, now it is possible to overcome this requirement. Hence, deep learning coined with transfer learning is an 
ideal fit in the context.

Deep convolution neural networks (CNNs) that were specially designed to process images were trained from 
the intensities of the OCT B-scans. During the training process we initialized the parameters of the CNN using 
transfer learning, as shown in Fig. 2. More specifically, we used pre-trained models that were already trained using 
a very large image dataset named ImageNet44 to initialize the network parameters, which were then fine-tuned 
using the provided image dataset. Transfer learning enables fast network training with less epochs, thus further 
avoids over fitting and ensures robust performance. It is a promising alternative to full training and is already 
applied in many areas of biomedical imaging including retinal imaging41,43.

While fine tuning the CNN, we considered 11 different setups - fine-tuning the last 0%, 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, 90% and 100% layers. For a CNN with L layers, if αl denote the learning rate of the l-th layer 
in the network, 0% fine-tuning or fine-tuning only the last layer of the network was defined as setting αl = 0 for 
l ≠ L. Likewise for P% fine-tuning we train up-until P + 1 layers.

Worth mentioning, typically, the initial layers of CNN learn low-level image features. In general, these 
low-level features do not vary significantly from application to application. The top layers of CNN learn high-level 
features, which are specific to the application at hand. Therefore, fine-tuning only the top few layers is usually suf-
ficient while training CNN43. However, when source and target applications differ substantially, fine-tuning only 
the last few layers may not be sufficient. Therefore, an efficient fine-tuning strategy is to start from the last layer 
and then incrementally add more layers in the update process until the desired performance is reached.

For each of the pathology types we trained three different nets namely Inception-v345, ResNet5046, and 
InceptionresNet5047. For each net, we conducted the experiment on 11 different setups (e.g. fine-tuning strategy) 
as explained in ‘Identifying early AMD biomarkers using deep learning’. We compared the performance of dif-
ferent setups for all three CNNs. Experiments were conducted likewise for each of the three AMD biomarkers.

Automated segmentation of retinal layer using ReLayNet.  Prior to feeding the image into CNN for 
pathology detection and classification, we performed a pre-segmentation of the retinal layers using ReLayNet48, as 
our early AMD biomarkers tend to be localized to specific retinal layers. SDD usually appear above the inner RPE 
surface, hyporeflective drusen are usually located above the Bruch’s membrane/inner choroid surface, and hyper-
reflective foci may appear in several different outer retinal layers. ReLayNet produced an 8-layer segmentation 
mask, which were then used to compute a binary mask that only contains the retinal region spanning from the 
outer nuclear layer (ONL) to Bruch’s membrane/inner choroid. It is worth noting that ReLayNet itself is a deep 
learning framework which is specially designed to perform segmentation of retinal layers in OCT B-scans. The 
framework is validated on a publicly available benchmark dataset with comparisons against five state-of-the-art 
segmentation methods including two deep learning based approaches to substantiate its effectiveness. The com-
puted binary mask is finally imposed on the input image to define the region of interest.

The pixel level segmentation purely based on ReLayNet contained some outliers that includes small holes 
within the region of interest, and scattered group of pixels/small regions. We performed morphological opera-
tions including region filling and length based object removal to avoid those outliers. Figure 3 shows an example 
OCT B-scan, and corresponding region of interest mask generated purely based on ReLayNet and ReLayNet with 
other pre-processing.

Performance metrics.  The performance metrics which we used included accuracy, sensitivity, specificity 
and area under the curve (AUC). Accuracy was defined as the ratio of the number of correct identifications 
made over the total number of images available on the validation set. Sensitivity was defined as the proportion of 

Figure 2.  Deep learning for identifying the presence of early AMD biomarkers. Neuron connections shown 
here are for illustration only. Inspired by the schematic representation of Kermany et al.51.
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actual positives that are correctly identified, whereas specificity was defined as the proportion of actual negatives 
that are correctly identified. To compare different setups and nets, and receiver operating characteristic (ROC) 
curves were mainly used. ROC curves plot the detection probability (i.e. sensitivity) versus false alarm rate (i.e. 
1-specificity).

Use of human participants.  Ethics review and institutional review board approval from the University 
of California – Los Angeles were obtained. The research was performed in accordance with relevant guidelines/
regulations, and informed consent was obtained from all participants.

Results
Figure 4 shows the fitted curve representing the validation accuracy over epochs by the three different nets for 
identifying the presence early AMD pathologies. The validation accuracy (against epochs) of the best setups are 
only shown.

From Fig. 4 it can be inferred that accuracy improvement gets saturated by 10~50 epochs for SDD, about 
20~40 epochs for IHRF, and about 20~40 epochs for hRF. The performance between different nets are not to an 
extent that would be relevant in practice. However, from the receiver operating characteristic (ROC) curves as 
shown in Fig. 5, InceptionResNet is better suited for detecting the presence of SDD and IHRF; and Inception is 
better suited for identifying the presence of hRF. Table 2 summarizes the sensitivity, specificity, AUC and accuracy 
obtained by different models.

In aggregate, experiments on all the three CNNs show promising results on identifying the presence of 
early AMD pathologies. Accuracy ranged from 86~89%. SDD can be identified with an accuracy of 80%~86%. 
Accuracy for identifying the presence of IHRF and hRF were 89% and 88%, respectively. SDD can be best detected 
by InceptionResNet, having sensitivity, specificity and accuracy of 79%, 92% and 86%, respectively. HRF was also 
best detected by InceptionResNet with sensitivity and specificity of 78%, and 100%, respectively. hRF was best 
detected by Inception with sensitivity and specificity of 79% and 95%, respectively.

Discussion
We propose an automated system for identifying the presence of early AMD biomarkers from OCT B-scans. 
By employing transfer learning algorithm, the proposed system showed good performance for this application 
without the need for a highly specialized deep learning machine or a database of millions of images. The system 
provides numerous benefits, including consistency in prediction (because a machine will make same prediction 
for same image each time) and instantaneous reporting of results. In addition to that since the algorithm can have 
multiple operating points, its sensitivity and specificity can be adjusted to meet specific clinical requirements, for 
example high sensitivity for a screening application.

One fundamental limitation of deep learning were the requirement of huge number of training images. 
However, with the development of transfer learning paradigm, this is not a limitation any more. Relying on trans-
fer learning state-of-the-art classification performance is achieved using only couple of hundreds to thousands of 
images49,50. A very relevant example is the recent study made by Christopher et al.50. Christopher et al. have used 
a fundus dataset of 14,822 images and relying on transfer learning, they have achieved state-of-the-art accuracy 
of 91% in distinguishing glaucomatous optic neuropathy eyes from healthy eyes. Our study that involved about 
20,0000 OCT scans and used transfer learning is fully sufficient and the results are representative.

Although we are able to train a highly accurate deep learning model here, with a relatively small training data-
set, unsurprising, it’s performance would be inferior to that of a model which is trained using ‘full training’, or in 
other words from a random initialization on an extremely large dataset of OCT images. All the network weights 

Figure 3.  Top-left: an example OCT B scan, top-right: region of interest mask generated based on ReLayNet, 
bottom-left: region of interest mask generated using ReLayNet and other image pre-processing technique, 
bottom-right: mask (shown in purple) superimposed on the image.
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of the model are directly optimized when full training is performed. However, OCT images in such a volume to 
train a blank CNN are difficult to ascertain.

Similar to other transfer learning based models, the performance of our system depends highly on the 
weights of the pre-trained model. Therefore, the performance of the system would likely be enhances when 
more advanced pre-trained models that are trained with even larger dataset are used. In this work we used the 
pre-trained models that were trained on the ImageNet dataset which is biggest dataset to our knowledge for such 
classification.

The system performs a pre-segmentation of the region of interest prior to sending the images to CNN, in an 
aim to eliminate pathologic features that are present outside of the region spanning from the ONL to Bruch’s 
membrane/inner choroid. Theoretically, it should increase the performance of the system. However, we did not 
observe any significant improvement that would be relevant in practice. In a post-hoc review of images in our 
dataset, we found that the B-scans, which had AMD-related pathologic features outside of the ONL to Bruch’s 
membrane/inner choroid region, also had AMD features present within the region of interest. This likely explains 
why we did not observe any significant improvement.

Since, the number of diseased images in our dataset were significantly less than the number of normal images, 
to ensure fair learning of the CNNs we considered two different arrangements during training. In the first 
arrangement all the diseased images were considered, whereas normal images are chosen randomly to match 
the number of images in the diseased category. Data augmentation was performed for each of the categories. In 
the second arrangement we performed data augmentation of the diseased images, and randomly chose similar 
number (after augmentation) of normal images as explained in section the Dataset section. Unsurprising, the 
accuracy for classification of arrangement −1 (summarized in Table 3) was less than the classification accuracy of 
arrangement −2, which meant data augmentation is not fully able to generate all the different scenarios that we 
observe naturally. That explains why arrangement −2 was considered in implementing the system.

There are limitations to our system. One important limitation ascends by the nature of deep neural networks, 
in which the network was provided with only the image and associated label, without explicit definitions of fea-
tures (e.g. SDD, IHRF or hRF). Because the network “learned” the features that were most critical for correct clas-
sification, there is a chance that the algorithm is using features previously not recognized or ignored by humans. 
Another limitation is that the study used images collected from a single clinical site.

Figure 4.  Fitted curve representing the validation accuracy over epochs by the three different nets for 
identifying the presence of (a), IHRF (b) hRF, and (c) SDD.
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Figure 5.  Receiver operating characteristic (ROC) curve of the three different nets for identifying the presence 
of (a) IHRF, (b) hRF, and (c) SDD.

Sensitivity Specificity AUC Accuracy

IHRF (%)

Inception-v3 81 97 95 89

ResNet50 87 91 95 89

InceptionResNet50 78 100 99 89

hRF (%)

Inception-v3 79 95 98 88

ResNet50 74 100 91 88

InceptionResNet50 84 90 94 88

SDD (%)

Inception-v3 83 85 92 84

ResNet50 96 65 91 80

InceptionResNet50 79 92 94 86

Table 2.  Sensitivity, specificity, AUC and accuracy obtained by different models.

CNNs

Accuracy (%)

IHRF hRF SDD

Inception-v3 89 88 84

ResNet50 88 87 81

InceptionResNet50 89 87 85

Table 3.  Accuracy obtained by different models.
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Conclusions
In this study, we sought to develop an effective deep learning method to identify the presence of early AMD 
biomarkers from OCT images of the retina. We compared the performance of several deep learning networks 
in an aim to identify the best net in this context. We also incorporated several image pre-processing techniques 
to improve the classification accuracy. We obtained an accuracy of 86% to identify the presence of subretinal 
drusenoid deposit. Intraretinal hyperreflective foci and hyporeflective foci within drusen were detected with an 
accuracy of 89% and 88%, respectively. Worth mentioning, the rate of disagreement between different graders are 
above 20%9,50. An automated system that achieves an accuracy of 86~89% with the gold standard, and produces 
classification with a fraction of time required by an expert grader, is a promising choice to move forward.

We used 90% of the data for training to ensure the robustness of the algorithm. The results from the 10% test-
ing data has indicated a good performance. Our clinic is continuously collecting data with new patients and we 
will further test our algorithm with future new data.

Given the increasing burden of AMD on the healthcare system, the proposed automated system is highly 
likely to perform a vital role in decision support systems for patient management and in population and primary 
care-based screening approaches for AMD. With the growing and critical role of OCT in the understanding 
and monitoring of AMD progression, the proposed automated system should be of clinical value, not only for 
increasing diagnostic accuracy and efficiency in clinical practice, but also in the design and execution of future 
early intervention therapeutic trials.

Code Availability
The code generated during the study is accessible from the corresponding author based on reasonable request and 
subject to the rule/regulatory of the institute.
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