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introduction
The tumour microenvironment is composed of a complex 
set of immune and non-immune components.1,2 Together 
the components of the tumour microenvironment promote 
a pro-tumorigenic milieu by secreting pro-inflamma-
tory molecules as well as growth factors and extracellular 
matrix degrading enzymes.2–4 Complement is an innate 
immune component of the tumour microenvironment 
that has received increasing attention in recent years.5,6 
Complement has typically been regarded as a set of soluble 
and membrane-bound proteins involved in the first line 
of defence against pathogenic organisms.7,8 Almost all 
immune cell types have been found to express complement 
proteins and importantly tumour and stromal cells may 
also produce several complement factors.6 The exact details 
underlying the complex regulation of complement activa-
tion in the tumour microenvironment are not completely 

understood but elegant studies have highlighted that high 
levels of complement activation products as well as regu-
lators in cancer cells often are associated with decreased 
prognostic outcome.6,9

“Non-cellular” factors in the tumour microenvironment 
can also have a negative impact on patient prognosis and 
are involved in regulating the biological behaviour of the 
different components of the tumour microenvironment, 
including complement.10–14 A clear example of a prevalent 
“non-cellular” factor of the tumour microenvironment, 
pervasive amongst almost all solid tumours, is hypoxia. 
Tumour hypoxia refers to the low oxygen tensions that 
arise due to the imbalance between oxygen supply and 
demand in the aberrantly-perfused tumour.15,16 Hypoxia is 
well known to influence several cellular and pro-tumouri-
genic components of the tumour microenvironment.1 In 
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abstract

The complement system is an innate immune pathway typically thought of as part of the first line of defence against 
“non-self” species. In the context of cancer, complement has been described to have an active role in facilitating 
cancer-associated processes such as increased proliferation, angiogenesis and migration. Several cellular members of 
the tumour microenvironment express and/or produce complement proteins locally, including tumour cells. Dysreg-
ulation of the complement system has been reported in numerous tumours and increased expression of complement 
activation fragments in cancer patient specimens correlates with poor patient prognosis. Importantly, genetic or phar-
macological targeting of complement has been shown to reduce tumour growth in several cancer preclinical models, 
suggesting that complement could be an attractive therapeutic target. Hypoxia (low oxygen) is frequently found in 
solid tumours and has a profound biological impact on cellular and non-cellular components of the tumour microen-
vironment. In this review, we focus on hypoxia since this is a prevailing feature of the tumour microenvironment that, 
like increased complement, is typically associated with poor prognosis. Furthermore, interesting links between hypoxia 
and complement have been recently proposed but never collectively reviewed. Here, we explore how hypoxia alters 
regulation of complement proteins in different cellular components of the tumour microenvironment, as well as the 
downstream biological consequences of this regulation.
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this review we describe how the impact of hypoxia on cellular 
members of the tumour microenvironment affects complement 
regulation and how complement dysregulation can contribute to 
tumour progression. A detailed description of cells associated 
with the tumour microenvironment is outside the scope of this 
review and has been described elegantly by Hanahan and Cous-
sens.2 Instead, focus will be placed on those components of the 
tumour microenvironment that are well known to be influenced 
by hypoxia.

The complement system in cancer
The complement system is a network of soluble serum proteins, 
membrane-bound receptors and regulatory proteins that 

interacts with both innate and adaptive immune system effec-
tors. 8 Complement serves as an intermediary between the 
two branches of the immune system to eliminate pathogens or 
“altered-self ” by opsonisation, inflammatory response mounting 
and direct cell lysis.8 Opsonisation refers to the process of tagging 
of altered species leading to engulfment by phagocytes. There are 
three major pathways to complement activation: classical, lectin 
and alternative, each of which is initiated by different signalling 
stimuli but converges at the downstream cleavage of comple-
ment component 3 (C3) to produce C3a and C3b (Figure 1).19 
C3b production facilitates formation of the C5 convertase 
which cleaves C5 into C5a and C5b, the latter of which initi-
ates assembly of the membrane attack complex (MAC) on the 

Figure 1.Overview of the complement pathways. The classical pathway is initiated by recognition of immune complexes while the 
lectin pathway is initiated by recognition of carbohydrates or glycans on the pathogen’s surface, resulting in the convergence of 
the two pathways with cleavage of C2 and C4 to generate C2a, C2b, C4a and C4b. C2a and C4a remain soluble to act as inflam-
matory mediators while C2b and C4b form the C3 convertase C4b2b. C3 is then cleaved by C4b2b to generate anaphylatoxin C3a 
and C3b. C3b can serve as an opsonin, or, upon binding with the C3 convertase, forms the C5 convertase C4b2b3b. C5 is then 
cleaved producing C5a and C5b. C5a is another potent inflammatory mediator while C5b initiates MAC formation and results in 
cytolytic activity. The alternative pathway can be initiated by (a) spontaneous hydrolysis of soluble C3 producing C3(H2O), or (b) 
non-covalent binding of properdin to the target membrane. C3(H2O) binds with Factor B and Factor D which cleaves Factor B into 
Ba and Bb. C3(H2O) and Bb form one of the alternative pathway C3 convertases. Properdin binds with C3b and Factor B, cleaving 
Factor B to produce the other alternative pathway C3 convertase C3bBb. C3 cleavage is amplified in the alternative pathway and 
accounts for approximately 70% of complement activity. The C3 convertase C3bBb binds with another C3b fragment forming the 
alternative pathway C5 convertase C3bBb3b.6–8,17,18 MAC, membrane attack complex.
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pathogen’s surface, thereby lysing the cell by perforating the cell 
membrane (Figure 1).20 C5a is the most potent anaphylatoxin of 
the complement system, 20-fold more potent than C3a and 2500-
fold more than C4a.17 Anaphylaxis can induce inflammation and 
lead to secretion of IL-6 and TNF-α. Anaphylaxis can also result 
in promotion of phagocytosis, and movement of lymphocytes 
into neighbouring lymph nodes.21,22 The effects of complement 
are tightly regulated by complement regulatory proteins which 
serve to accelerate degradation of complement components and 
convertases as well as inhibit MAC formation (Figure 2).23

Despite the defensive capabilities of the complement system, only 
limited evidence has demonstrated direct complement-mediated 
elimination of nascent tumours.9 However, tumours have been 
found to exhibit complement-avoidance mechanisms, indirectly 
supporting a tumour-suppressive role for complement during 
cancer initiation.24–26 The expression of complement regulators 

is upregulated in a variety of cancer types which suggests a selec-
tive pressure in favour of protection against complement recog-
nition and complement-mediated attack.27–29 Additionally, levels 
of complement activation fragments are upregulated in cancer 
patients suggesting that recognition of tumours by immune 
complexes triggers complement activation.30

Complement also has an immunomodulatory role in potentiating 
the responses of other immune cells involved in immunosurveil-
lance and other tumour defence mechanisms.31,32 Complement 
activation can enhance adaptive immune responses by enhancing 
dendritic cell uptake, antigen presentation and lowering the 
threshold for B cell activation.33,34 Other studies have shown that 
the presence of complement receptors for C3a and C5a (C3aR 
and C5aR1) are involved in CD4+ T-cell survival and differentia-
tion.35,36 In this context, complement activity has been shown to 
contribute to cancer vaccine responses with promising results.37

Figure 2.Schematic representation of complement regulators. Effects of the complement system are controlled by membrane- 
bound and soluble regulators. Complement regulators either inhibit proteases or accelerate the decay of certain complement 
components. C1 inhibitor (C1-INH) inhibits the serine proteases that cleave C4 and C2. C4 binding protein (C4BP) accelerates 
the decay of the classical pathway C3 convertase. Membrane cofactor protein (MCP) and CR1 are cofactors for Factor I, which 
degrades C3b and C4b fragments. Factor H degrades alternative pathway convertases. DAF and CR1 also accelerate decay of C3 
convertases. Protectin and vitronectin prevent assembly of the MAC and the carboxypeptidases N, B and R degrade C3a and C5a 
to their less potent forms.17,23,24 MAC, membrane attack complex.

http://birpublications.org/bjr


4 of 11 birpublications.org/bjr Br J Radiol;92:20180069

BJR  Olcina et al

However, the canonical understanding of complement acting 
solely as a protective system has been challenged by a growing 
body of evidence showing that complement activation may also 
promote tumourigenesis. Notably, in a murine model of coli-
tis-associated colon cancer using azoxymethane and dextran 
sulphate sodium , loss of complement proteins C3, C3aR1 and 
C5aR1 was found to suppress tumourigenesis formation.38 The 
authors proposed that C5a-dependent induction of the IL-1β/
IL-17A signalling axis was responsible for this effect.38 The 
link between inflammation and tumour progression is well 
recognised, and the fact that complement is upregulated in 
patients with cancer may allow nascent tumours to productively 
use anaphylatoxin-induced inflammation.39 Furthermore, C3aR 
and C5aR1 signal through the PI3K-AKT pathway in an auto-
crine manner thereby facilitating tumour cell proliferation.40 
Sublytic doses of MAC deposition on the surface of cancer cells, 
facilitated by the upregulation of complement regulators, have 
also been proposed to promote cell proliferation and resistance 
to apoptosis.18

Complement system activation within the tumour microenvi-
ronment therefore has a multitude of roles. While the canonical 
defensive capabilities of complement-mediated attack were orig-
inally hypothesised to facilitate immune detection and clearance 
of tumours, a growing body of evidence suggests that increased 
expression of complement proteins is typically associated with 
poor prognosis and likely serves tumour promoting roles.6 
Significantly, the interest in targeting complement either alone or 
in combination with other therapies warrants a more exhaustive 
study of the complexities underlying complement system regula-
tion in the tumour microenvironment.

Hypoxia in the tumour microenvironment
Hypoxia, an oxygen deficiency in tissues, is a common feature 
of the tumour microenvironment.15,41 Hypoxia usually exists as 
a range of O2 concentrations typically ranging from 2 to <0.1% 
in tumours as opposed to 9–5 to 1% in normal tissues.42 Tumour 
hypoxia is often classified as either acute or chronic, both types 
typically originating as a consequence of the disorganised, inef-
ficient and torturous tumour vasculature. Acute hypoxia, for 
instance, can occur due to temporary blood flow shutdown 
following obstruction of vessels. Chronic hypoxia can occur for 
several reasons, including cell proliferation beyond the oxygen 
diffusion distance from tumour microvessels.43 The low oxygen 
state results in pro-survival gene expression changes that result 
in a plethora of effects including increased tumour angiogenesis, 
invasion and metastasis.44–47 Consequently, hypoxia correlates 
with a negative patient prognosis.10,48 Furthermore, hypoxia 
is associated with reduced effectiveness of several treatments 
including radiotherapy.41,49,50 Many of these changes are driven 
by a family of transcription factors called the hypoxia-induc-
ible factors (HIFs).46,51 Though there are several different HIF 
isoforms, HIF-1 has been the primary target for study in gene 
expression alterations associated with cancer.52–55 HIF-1 is a 
heterodimer that consists of a constitutively expressed HIF-1β 
subunit and a more tightly regulated HIF-1α subunit.56,57 Under 
normoxic conditions, HIF-1α is targeted for degradation via 
oxygen-dependent degradation that involves hydroxylation 

and ubiquitination leading to proteolysis of the subunit.58–63 In 
hypoxic conditions, HIF-1α is not ubiquitinated and is able to 
interact with the beta subunit, forming the heterodimer.56 This 
occurs because of the oxygen sensitivity of prolyl hydroxylase 
domain containing proteins (PHDs) which hydroxylate two resi-
dues on HIF-1α, P402 and P564, which are necessary for von 
Hippel-Lindau disease tumour suppressor binding and ubiq-
uitination.58–60,64,65 PHDs have a relatively high Km value of 
230–250 µM for oxygen, ensuring that given adequate levels of 
other substrates and cofactors, oxygen is the controlling factor 
in PHD activity.66 A functional HIF complex binds to hypox-
ia-responsive elements and induces the expression of a number 
of genes that alter the cell’s ability to adapt to the low oxygen 
environment.46,67,68

Besides cancer cells, the tumour microenvironment is composed 
of stromal cells, including cancer-associated fibroblasts, immune 
cells, endothelial cells and pericytes. Hypoxia affects the biolog-
ical responses of all of these tumour microenvironment cells in 
a manner that usually potentiates tumour progression.1,2 For 
example, hypoxia within the tumour microenvironment stimu-
lates HIF-dependent angiogenesis through recruitment of endo-
thelial cells and pericytes.69 This process also enables recruitment 
of bone marrow derived cells. Growth factor signalling coupled 
with extracellular matrix remodelling by recruited stromal cells 
can further facilitate tumour progression.1,3

Hypoxic regulation of the complement system in 
tumour cells
Regulation of both complement component and regulator 
proteins has been described in tumour cells exposed to hypoxia 
(Figure  3). Early reports indicated that hypoxia-induced 
messenger RNA (mRNA) expression of central complement 
component C3 in liver cancer (HepG2) cells.70

Non-small cell lung cancer cells exposed to hypoxia (1% O2) 
have more recently been described to express reduced levels of 
complement regulators CD46, CD55 and CD59.28 Decreased 
secretion of factor I and factor H was also reported in non-small 
cell lung cancer cells exposed to hypoxia.28 The authors of this 
study hypothesised that altered levels of complement regula-
tors under hypoxic conditions could lead to changes in comple-
ment-mediated lysis since increased C3b and C9 deposition 
coincided with altered expression of complement regulators. 
However, no significant changes in complement-mediated attack 
were reported.28

Interestingly, the use of antigens used/produced during immu-
nodetection of tumour hypoxia when 2-nitroimidazoles (e.g. 
pimonidazole) bind to hypoxic cells has been proposed as a 
means of stimulating complement-mediated lysis of tumour 
cells.71 This hypothesis was tested using rabbit complement 
as a means of lysing pimonidazole-labelled V79-4 cells in the 
presence of monoclonal antibody recognising reductively acti-
vated pimonidazole protein adducts. In this system the authors 
reported complement-mediated lysis of tumour cells at pimoni-
dazole concentrations below those known to affect cell viability.71 
It would be interesting to test this concept in vivo to assess the 
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possibility of targeting “hypoxia-specific” antigens for induced 
complement-mediated lysis.

Interplay between complement and cellular 
components of the tumour microenvironment
T-cells
Increasing interest in the study of hypoxic regulation of T-cell 
function has highlighted the complexity of the effects of hypoxia 
and hypoxic signalling on this cell population.72,73 While low 
oxygen concentrations have been reported to increase CD8+ 
T-cell cytotoxicity, hypoxia can also decrease the production 
of effector and proliferative cytokines in T-cells.74–76 Inter-
estingly, a major impact of hypoxia on T-cell function stems 
from the metabolic changes associated with hypoxic environ-
ments resulting in an acidic pH. For instance, T-cell prolifera-
tion induced by IL-2 is arrested at pH 6.7. This is a problem in 
hypoxic tumours which can typically have an extracellular pH 
range of 5.8–6.5.73,77 Overall, the effects of hypoxia on T-cell 
function and survival can therefore probably be considered to 
contribute to the development of an immunosuppressive micro-
environment.76,78 With respect to complement, a number of 
recent elegant studies have highlighted how complement acti-
vation in the tumour microenvironment further contributes to 
the immunosuppressive phenotype.6,79 C3 was recently found 
to have an inhibitory effect on CD8+T-cells through IL-10 inhi-
bition. Increased IL-10 expression in C3-deficient mice renders 
mice resistant to tumour development in a IL-10- and T-cell-de-
pendent manner.80 C5a further leads to a decrease in cytotoxic 

CD8+ T-cell responses through recruitment of myeloid-derived 
suppressor cells (MDSCs).79 Increased T-cell suppressive capa-
bilities are associated with C5a-mediated regulation of reactive 
oxygen and nitrogen species in MDSCs.79 Hypoxia also regulates 
reactive nitrogen species through hypoxic induction of induc-
ible nitric oxide synthase which increases reactive nitrogen 
species, especially peroxynitrite.81 Increased reactive nitrogen 
species have a number of consequences, including nitration of 
CCL2 which diminishes effector lymphocyte recruitment func-
tion while retaining suppressive myeloid cell chemo-attractant 
capabilities.82

Macrophages
Macrophages recognise “molecular patterns” on the surfaces 
of pathogens in a process involving multiple ligand-receptor 
interactions.83 Opsonins such as complement component 
cleavage products play an important role in this process 
by orchestrating pathogen internalisation during phagocy-
tosis.84,85 Links between complement activation and tumour 
promoting macrophage recruitment have been established in 
the context of PTX3 deficiency, which leads to complement 
activation and increased CCL2 production. Importantly these 
phenotypes are associated with increased susceptibility to 
certain mesenchymal and epithelial tumours.39 The PTX3 gene 
is silenced by methylation in certain cancers further increasing 
the clinical relevance of the association between complement 
regulation and macrophage recruitment.39

Figure 3.Table summarising main complement protein expression changes reported in cells exposed to hypoxia in vitro. mRNA and 
protein expression changes in the reported cell lines are shown. References are given in the last column. HUVEC, human umbilical 
vein endothelial cell; mRNA, messenger RNA.
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C3a and C5a receptors are expressed on the cell surface of 
macrophages and the binding of ligands for these receptors has 
also been suggested to modulate angiogenesis.7,86 The associa-
tion between complement components, macrophages and angio-
genesis suggests crosstalk between cell types and processes in the 
tumour microenvironment intimately linked to hypoxic signal-
ling (Figure 4). Hypoxia and HIF-signalling are indeed critical 
for macrophage polarisation and deletion of either HIF-1α or 2α 
in macrophages reduces tumour growth.74,87

Neutrophils
Recruitment of immune cells such as neutrophils and mono-
cytes can result in induction of hypoxia at sites of inflamma-
tion.91 Hypoxia has indeed been associated with inflammatory 
conditions, some of which have been proposed to predispose 
to certain cancers. This is the case for colitis and inflammatory 
bowel disease.92–94 In these inflammatory conditions, tran-
sepithelial migration of neutrophils is a marker of mucosal 
inflammation.95 Several proteins are implicated in the inter-
action between neutrophils and epithelial cells including 
complement regulator CD55. CD55 functions in the later 
stages of transepithelial migration by facilitating the release of 
neutrophils from the epithelial surface.96 CD55 is expressed on 
the apical membrane of mucosal epithelial cells. Importantly, 
HIF-binding sites are found in CD55 and CD55 expression was 
found to be hypoxia inducible (Figures 3 and 4).97 Therefore, 
hypoxia, through CD55 induction, may enhance neutrophil 

transepithelial migration and promote neutrophil clearance 
from the epithelial surface in conditions predisposing to 
cancer.97

A further role for complement in neutrophil function has been 
described in melanoma where C3a/C3aR1 signalling has been 
implicated in tumour progression by inhibiting CD4+ T-cell 
and neutrophil responses.88 C3aR1 was also found to be upreg-
ulated in intestinal neutrophils in a murine model of intestinal 
tumourigenesis (using APCmin/+ mice), where C3aR1 signalling 
promoted tumourigenesis through triggering neutrophil extra-
cellular traps.98

Endothelial cells
Endothelial cells are critical for angiogenesis, the process of new 
capillary growth from established blood vessels. Angiogenesis is 
important for nutrient and oxygen supply and is a process induced 
following periods of hypoxia.44,45 Whether or not complement 
activation promotes or inhibits angiogenesis is controversial and 
seems to depend on the model and disease being studied.9 Some 
of the controversy may stem from the dual role described for 
some complement proteins expressed on endothelial cells. CR1 
for example has been found to be expressed in primary human 
umbilical vein endothelial cells (HUVECs) and hypoxia (1% O2) 
induces CR1 protein expression.89 CR1 is both a receptor for 
C1q and a regulator of the complement system suggesting that 
hypoxic induction of CR1 could have positive or negative effects 

Figure 4.Interplay between hypoxia and complement in the tumour microenvironment. As tumour cells grow away from func-
tional blood vessels, oxygen concentrations decrease and hypoxia develops. Hypoxia creates an immunosuppressive environment 
including decreased functional CD8+ T-cells and M2 polarised macrophages. Hypoxia also alters the expression of complement 
proteins and regulators on both tumour and endothelial cells in the tumour microenvironment. Dysregulation of complement pro-
teins contributes to immunosuppression and can promote tumourigenesis.1,28,39,45,70,74–76,78,79,87–89 Figure adapted from.90
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on complement activation on these cells.89 Interestingly, CR1 
in HUVECs was found to be present intracellularly and could 
act as a cofactor for factor I-mediated cleavage of iC3b to C3c 
and C3dg. soluble CR1 on the other hand was found to inhibit 
binding of C3b and immune complexes to hypoxic HUVECs and 
it was suggested that a portion of CR1 is expressed on the extra-
cellular membrane.89 A recent study reported C1q expression 
in the stroma and vascular endothelium of tumours correlating 
with increased vascular density and lung metastasis. Importantly, 
B16 melanoma tumours display decreased tumour growth in 
C1q-deficientmice and these effects were not attributed to differ-
ences in immune cell infiltration.99

Classical complement activation has also been proposed to 
occur on endothelial cells following hypoxia/reoxygenation 
in vitro.100–102 Most of these studies have used HUVECs exposed 
to hypoxia (1% O2) or hypoxia followed by reoxygenation at 
21% O2 as a model of hypoxia/reoxygenation of endothelium 
exposed to ischaemia reperfusion injury.100–102 During initial 
studies, complement activation was found to occur in the pres-
ence of serum-activated complement.101 Interestingly, reoxygen-
ation-induced complement activation was subsequently shown 
to be inhibited by membrane permeable free radical scaven-
gers.102 Intriguingly, surface expression of complement regu-
lators CD55 and CD46 was also found to be increased in early 
studies101 (Figure 3). Furthermore, a subsequent study reported 
that C3d deposition in this model was thought to occur on reoxy-
genated apoptotic cells and this appeared to occur in the absence 
of antibodies or serum factors.100 In support of these findings C3 
activation was abolished after treatment with caspase inhibitor 
treatment.100 It would be interesting to investigate if complement 
is also activated on other cells in the tumour microenvironment 
following the induction of apoptosis (either during reoxygen-
ation or following treatment with apoptosis inducing agents such 
as chemo- or radiotherapy).

the comPlement system in the context of 
cancer theraPy
The success of various cancer therapies has been linked, in part, 
to the effects of complement activation. The efficacy of mono-
clonal antibody (mAb)-based cancer therapy, for instance, is 
due in part to the ability of the antibody to induce complement- 
dependent cytotoxicity which results in tumour cell killing.103,104 
The potency of mAbs in therapeutic regimens stems from the 
dual ability of antibodies to decrease tumour proliferation by 
blocking oncogenic signalling and to promote cytotoxicity.104–106 
Antibody binding to tumour antigen can result in activation of 
the complement cascade via the classical pathway which results 
in MAC assembly, antibody-dependent cell-mediated cytotox-
icity and complement-dependent phagocytosis.103 Anaphyla-
toxic inflammatory mediators released as a result of complement 
activation enhance the response by facilitating recruitment of 
phagocytic cells.107

Importantly, targeting complement has recently been proposed 
as means of improving tumour immune responses.73,80,108 Treat-
ment with a C5aR antagonist alone reduced tumour growth to 
levels comparable to those achieved following treatment with 

chemotherapy agent paclitaxel.79 With the increasing interest 
in immune checkpoint inhibitors, the potential for targeting 
complement, particularly at the level of C5a/C5aR axis, together 
with current immunotherapy approaches, such as programmed 
death 1/programmed death ligand 1 (PD-1/PD-L1) antibodies, 
has been explored.80,108 Interestingly, increased complement 
activation, including, C5a was found to be produced in tumours 
following treatment with anti-PD-1 antibodies.80 Remarkably, 
however, increased anti-tumour immunity following comple-
ment inhibition (such as with C5aR1 antagonists) was found 
to be independent of the PD-1/PD-L1 immune checkpoint 
pathway. These findings have led to the suggestion that comple-
ment receptors such as C5aR1 and C3aR1 could be a new class of 
immune checkpoints to be targeted.80

Furthermore, it has been found that radiotherapy elicits C3a and 
C5a upregulation within the tumour microenvironment, poten-
tially aiding in the anti-tumour response.109 However, seemingly 
contradictory results have been published as it was shown that 
complement inhibition enhances anti-tumour response after 
fractionated radiation therapy.110

conclusion
Complement activation and hypoxia have both been shown to 
facilitate tumour progression by altering the function of tumour 
microenvironment components.4,6,99,111–113 Complement- 
effector functions alter cellular components  known to be modu-
lated by hypoxia such as tumour cells, endothelial cells, T-cells, 
macrophages and neutrophils.1,6 Interestingly, complement 
imbalances in these cells have also been associated with hypox-
ia-associated processes such as increased migration, angiogen-
esis and immunomodulation.1,6,72 Hypoxia has been directly 
shown to alter regulation of complement proteins not only in 
cancer cells but also in endothelial cells.28,89,97,100 It is tempting 
to speculate that hypoxia-mediated regulation of complement 
in other cellular components such as T-cells, macrophages and 
MDSCs might be described in the future given the already 
established links between these cell types and complement. 
T-cells, macrophages and MDSCs have emerged as critical 
immune components of the tumour microenvironment so 
any potential interplay between hypoxia and complement in 
these cells could have important biological consequences for 
tumour progression.39,79 Importantly, targeting both hypoxia 
(and hypoxia-associated processes) as well as complement has 
been proposed as a means of improving tumour responses 
both from an immune and non-immune standpoint.80,108,114 
It would be interesting to explore whether targeting both 
complement and hypoxia might yield improved clinical  
responses.
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