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Arm Venous Segmentation plays a crucial role in smart venipuncture. &e difficulties faced in locating veins for intravenous
procedures can be diminished using computer vision for vein imaging. To facilitate this, a high-resolution dataset consisting of
arm images was curated and has been presented in this study. Leveraging the ability of Near Infrared Imaging to easily detect veins,
ambient lighting conditions were created inside a small enclosure to capture the images. &e acquired images were annotated to
create the corresponding masks for the dataset. To extend the scope and assert the usability of the dataset, the images, and
corresponding masks were used to train an image segmentation model. In addition to using basic preprocessing and image
augmentation based techniques, a U-Net based algorithmic architecture has been used to facilitate the task of segmentation.
Subsequently, the results of performing image segmentation after applying the preprocessing methods have been compared using
various evaluation metrics and have been visualised in the study. Furthermore, the possible applications of the presented dataset
have been investigated in the study.

1. Introduction

Venipuncture, the process of puncturing the vein either to
extract blood or to perform intravenous therapy, is one of
the most routinely performed procedures in healthcare. &is
procedure is most commonly performed on the antecubital
fossa region which houses 3 important veins: median cubital
vein, cephalic vein, and the basilic vein. &e challenges faced
by medical personnel to visualise and locate veins in the arm
lead to the development of computer aided systems to assist
in locating veins with ease. However, the scope of leveraging
computer vision techniques for vein imaging in the arm
region is restricted by the limited availability of relevant
image datasets. &erefore in this study, a new technique for
arm vein imaging is proposed and a primary dataset hence
produced is presented to minimize the difficulties of vein
imaging. In this way, it is aimed to find the veins more easily
by the healthcare personnel by contributing to the vein

imaging studies. &e article is structured as follows: Section
1.1 provides a review of the existing work carried out on
human vein imaging (hand and finger veins), Section 2
describes the vein image acquisition system; Section 3 dis-
cusses image preprocessing techniques; Section 4 describes
the experimental validation procedures; the results are
discussed in Section 5, followed by Section 6 which con-
cludes the article.

1.1. Existing Work. Many imaging techniques have been
proposed to aid in locating the veins [1]. One of these
techniques is infrared vein imaging. Infrared rays with
wavelengths of 740 nm and 1100 nm are used effectively in
vein imaging systems. Subcutaneous vein patterns become
visible with infrared illumination [2]. Rays with near in-
frared wavelengths in the range of 700 nm–850 nm can
penetrate the skin up to a depth of 5mm [3]. Veins carrying
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oxygen-free blood absorb near infrared rays, while other
skin and peripheral tissues reflect these rays. Because of these
properties, blood vessels appear darker when captured with
an infrared Camera [4]. For these reasons, the near infrared
imaging technique has been used in this study.

Although near infrared illumination is a low cost and
useful solution, the low resolution of the images is one of its
negative aspects. &ere are many digital filters available to
overcome this problem. Various preprocessing techniques
such as Adaptive histogram equalization (AHE) [5] and
Contrast limited adaptive histogram equalization (CLAHE)
[6] are known to improve the image quality. In this study,
both these methods were tested on arm vein images and
performance analysis have been made.

Yıldız and Boyraz [7] designed a raspberry pi based low-
cost vein imaging device in their study. &e overall cost of
the system is around $ 75. &e images captured from the
infrared camera were subjected to grey level transformation,
CLAHE, median filter, adaptive thresholding, and various
morphological processes, respectively. All image processing
techniques are implemented using open source OpenCV
and Python language. In this way, it is aimed to segment the
vascular patterns clearly. As a result, the segmented images
were checked by the specialist and their success rates were
analysed.

Mela et al. Combined visible spectrum (VIS) and near-
infrared (NIR) methods in order to make vascular imaging
more prominent and to increase diagnostic capacity. In
studies performed on the images of the vessels collected over
25 subjects, it was observed that the vascular visibility in-
creased 2 times compared to the naked eye. &e accuracy,
functionality, and ease of use of the developed device have
made it useful for vascular imaging and biometric analysis
[8].

Ayoub et al. used a high-resolution infrared camera, vein
warmer, and image contrast enhancer (CLAHE) system to
improve the visual appearance of vein imaging. It was
concluded that the temperature increases positively affected
the vein imaging [9]. &e methodology and the effectiveness
of this enhancement effect in vein detection have been
thoroughly discussed in Sections 3 and 5, respectively.

Kim et al. have developed a new low cost vein imaging
device. In the study, they investigated from which angle the
infrared illumination penetrates the skin better. It has been
aimed to visualise even the vascular areas in the arm areas
with excess fatty tissue [10].

Ton and Veldhuis have curated a vascular pattern image
dataset of fingers using a customized image capturing device
which uses eight 850 nm LEDs for illumination. Further-
more, the camera is fitted with an infrared filter to eliminate
interfering visible light beyond the wavelength of 930mm.
&us, enabling them to capture vascular patterns of fingers
which are mostly invisible to the naked eye [11]. However,
the design of this device allows for only one entry point,
making it impractical for use on the human arm.

Dhakshayani and Yacin have developed a portable, cost-
effective and reliable vein imaging device to overcome the
difficulties in finding veins regardless of age and tissue
thickness. LEDs with wavelengths of 740, 765, 770, and
780 nmwere used in the infrared illumination system. In this
way, it is aimed to better visualise the vascular areas that are
difficult to see [12].

Ronneberger et al. introduced the U-Net, which used
skip connections to achieve a higher localisation accuracy
than a pre-existing sliding window based Convolutional
Neural Network. &ey showed that the U-Net architecture
produced precise segmentations even with a low amount of
training samples, especially for biomedical image applica-
tions [13]. Du et al. have presented a detailed review dis-
cussing the importance of U-Net architecture in medical
image segmentation. It was shown that U-Net based
methods have been successful in producing accurate masks
for the segmentation of various tumors, sections of the heart,
liver, etc., even with a small amount of available training data
[14]. &erefore in this study, a U-Net based architecture has
been used to carry out image segmentation on the collected
vein images for demonstrating the usability of the intro-
duced dataset.

2. Data Acquisition

2.1. Description of the Dataset. &e presented dataset con-
tains 1850 forearm vein images having a resolution of
2592×1944 pixels (5MP), stored in JPG format.

&e entire data collection process was carried out over a
span of 2 weeks in the Northern Railway Health Unit,
Ludhiana, India. 450 individuals aged 25–75 participated in
the procedure. &e representation of age groups in the
dataset is roughly normally distributed, however the ratio
of male to female representation in the dataset is 4 : 1. All
participants were informed about the noninvasive and
nonharmful nature of the data collection procedure and
gave written consent agreeing to volunteer for the same.
Figure 1 shows 12 sample images from the collected dataset.

2.2. Collection Procedure. Imaging with light wavelengths in
the near-infrared region (NIR) aids in the detection of veins
with high contrast. &is is because the haemoglobin protein
in the blood absorbs NIR light, whereas the skin and sub-
cutaneous tissue above veins easily pass it through [15].

To take advantage of this property, the imaging proce-
dure was carried out by simulating ambient lighting con-
ditions inside a closed cuboidal cardboard box measuring
210mm× 210mm× 400mm. 2 circular holes with a diam-
eter of 110mm were cut out at opposite ends at a depth of
220mm from the top. &e cut-out areas were then covered
with dark coloured paper, thus ensuring minimal external
light to enter the box. In order to capture images, a setup
consisting of two 850 nm and 1W power near-infrared Light
Emitting Diodes (LEDs) mounted on either side of a 5-
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megapixel OV5647 (OmniVision) camera [16] was used.
&is setup was then mounted on the plastic encasing of the
Raspberry Pi, a low cost microcomputer which was used to
power and operate the camera, by means of double tape. &e
entire apparatus (Figure 2(b)) was held by hand allowing the
LEDs and camera to peek into the box through a small

rectangular window of size 8mm× 6mm cut on the top, as
shown in Figure 2(a).

&e participants were asked to tightly clench their fist
and pass their arm through the circular cavities till the elbow
joint, allowing the anterior forearm to face the boxes’ ceiling,
allowing the camera to capture an image from above. &ey

Figure 1: Image samples from the collected dataset.

(a) (b)

Figure 2: Data acquisition setup showing (a) Cardboard box with holes for arm and camera and (b) Camera setup mounted on raspberry Pi
case.
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were then asked to further insert their arm into the column,
in order to capture the veins of the antecubital fossa region.
&is process was repeated for the other arm, hence a total of
4 images were captured per participant. No tourniquet or
any other sort of pressure was applied on the upper arm
while capturing the images.

3. Image Processing

Computer Vision image processing techniques may be
utilised in a variety of medical imaging systems for aug-
mentation, analysis, and noise reduction. Furthermore, the
approaches listed below have been shown to be effective in
extracting information from pictures:

(1) Noise removal
(2) Edge/boundary enhancement
(3) Contrast/transformations

&e collected images were subjected to both local and
global image processes, which are explained in Section 3.1.

3.1. Image resholding. Image thresholding as a technique
is used in scenarios where a distinction between the brighter
and comparatively darker pixels in an image is required.
Based on a given threshold value, the pixels of an image are
either set high or low. It is useful in localizing image seg-
ments in linearly separable images, but can also be used to
make a distinction between the lighter and darker regions of
an image. (1) explains the mathematical implication of the
same.

g(x, y) � 1, f(x, y)>T0, f(x, y)≤T, (1)

where T is the threshold value, and x is the current pixel
value ranging between 0 and 255 in an 8 bit grayscale image.

3.2.AdaptiveHistogramEqualization (AHE). &is method is
frequently used to enhance image contrast amplification. A
pixel is modified using the histogram of nearby pixels in
Adaptive Histogram Equalization. &is technique is useful
for increasing the global contrast of an image when its pixel
values lie within a close range. Hence, it is a good choice for
boosting local contrast and sharpening edge definition in
each image region. Figure 3 illustrates the histogram of a
black and white image denoting the count of pixel values as
the ordinate and the relative brightness (0–255) on the
abscissa. Figure 4(b) shows the resulting image after ap-
plying AHE filter on the original image (Figure 4(a)).

3.3. Contrast Limited Adaptive Histogram Equalization
(CLAHE). &e CLAHE method is comparable to picture
transformations based on Adaptive Histogram Equalization.
Because of the comparable nature of neighbour pixels,
Adaptive Histogram Equalization frequently contributes to
noise in the constant contrast based regions of the image. To
further amplify the noise reduction, the slope of the
transformation function is used to transform a pixel value.

Contrast reduction of an image through CLAHE follows
a sequential flow of control involving the following
processes:

(1) Tiling
(2) Applying Equalization through histograms
(3) Bi-linear Interpolation

&e image is initially split into tiles, which are discrete
fixed-area sections. To perform Histogram Equalization, a
clip limit is determined to inhibit the noise amplification.
Following this, for each tile a histogram is computed and
values greater than the clip limit are readjusted into the
neighbour tiles. For contrast adjustment, the individual
images are nested together with the help of Bilinear Inter-
polation. &is procedure ensures that the regions with
darker sections are not over amplified and can cause er-
roneous predictions, especially when working with bio-
medical data. &e overall sequential flow of control is
illustrated in Figure 5. &e effect of applying CLAHE on an
image (Figure 4(a)) can be seen in Figure 4(c).

4. Experiments

To determine the usability of the presented dataset, image
segmentation was carried out using an architecture based on
the state-of-the-art deep learning technique, U-Net [13] on
50% of the dataset. &e images were annotated so to have 2
classes for each pixel, either “vein” or “background.”

&is section discusses the architecture of the U-Net
model, the training procedure followed and the evaluation
metrics used to produce the results presented in Section 5.

4.1. Proposed U-Net Model

4.1.1. Model Architecture. &e encoder has been used as a
contraction path that decreases the size of the image con-
tinuously from 384× 384× 3 to 24× 24×1024 whilst the
depth gradually increases. It entails applying 3× 3 convo-
lution operations (unpadded) many times, each followed by
a rectified linear unit (ReLU) layer and a 2× 2 max pooling
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Figure 3: Sample image histogram.
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operation with stride 2 for down sampling which helps in
extracting the information from images. For localizing the
gain in information, an expansion path based decoder has
been utilised which increases the image size from
24× 24×1024 to 384× 384×1 and decreases the depth. An
up sampling of the feature map is done by a 2× 2 convo-
lution (“up-convolution”) at each step along the expanded
route. &is is followed by two 3× 3 convolutions and a
rectified linear unit (ReLU) operation across the depth. &e
contraction and expansion paths have been visualised in
Figure 6.

4.1.2. Model Training. For training the model, an 8 :1 :1 split
was used for training, validation and test set, respectively,
using an image size of 384× 384 and a batch size of 16. &e
model was trained for 100 epochs keeping the learning rate
constant at 0.0001. Table 1 summarises the hyper-parameters
and architecture of the model. Basic image transformations
such as shearing, flipping, and custom cropping were used to
extract more input samples from the given set of images.&e
following augmentation procedures were applied to com-
pare the performance of the filtering methods discussed in
Section 3:

(1) No augmentations
(2) Only AHE
(3) Only CLAHE
(4) Both AHE & CLAHE

&e entire process from data collection to model in-
ference is shown in Figure 7 in the form of a flowchart.

4.2. Evaluation Metrics

4.2.1. Peak Signal-to-Noise Ratio (PSNR). &e PSNR is a
signal processing measurement that compares a given re-
ceived or processed signal to its original source signal. It has
been shown that it is a quality evaluation method for image
segmentation [17]. &e PSNR between the ground truth (I)
and predicted mask (K) is described by equations (2) & (3) as
follows:

PSNR � 20
MAX2

����
MSE

√ , (2)

MSE �
1

mn


m−1

i�0


n−1

j�0
[I(i, j) − K(i, j)]

2
, (3)
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Input Image

Figure 5: Sequence of steps followed for applying contrast limited adaptive histogram equalization.

(a) (b) (c)

Figure 4: Resulting images after applying (b) AHE and (c) CLAHE techniques on the original image (a).

Table 1: Default parameters of the mode.

Parameters Value
Image size 384∗384
Learning rate 1e–4
Epochs 100
Image colour mode RGB
Mask colour mode Greyscale
No. of convolutional blocks 4
No. of de-convolutional blocks 4

128 128 128128128128

64 64 64646464I I

I/2 I/2
I/4 I/4

I/8 I/8
I/1

6

256 256 256 256 256256

512 512 512 512 512 512

1024 1024
Bottleneck Conv

Sigmoid

384 × 384
Input Image

384 × 384
Output Mask

Figure 6: Architecture of the U-Net model.
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where MAX is the maximum possible value of the signal,
being 255 for an 8 bit grayscale image.

4.2.2. Intersection over Union (IoU). &e Intersection over
Union (IoU) metric traditionally referred to as the Jaccard
Score, is a method to calculate the percent overlap between 2
images. &e IoU score between the ground truth (X) and
predicted mask (Y), is defined by equation (4) as follows:

IOU(X, Y) �
X∩Y

X∪Y
. (4)

4.2.3. Dice Coefficient. Dice coefficient is a measure of
similarity between two images. It is a standardized metric for
evaluating segmentation models. &e Dice score is given by
(5) as follows:

Dice(X, Y) �
X∩Y

|X| +|Y|
. (5)

5. Results

To evaluate the performance of the 4 models trained with/
without AHE and CLAHE augmentations, an unseen set of
93 images not used in the training or validation was used as a
test set. It can be inferred from Table 2 that the inclusion of
augmented images in the training procedure shows an
improvement in the PSNR, IoU, and Dice scores. Fur-
thermore, keeping other hyper-parameters constant, the
training procedure was repeated to experiment with dif-
ferent values of epochs, learning rate, and different activa-
tion functions. Table 3 summarises the performance of the
model for different values of these hyper-parameters.

Figure 8 shows a set of 3 raw images from the dataset,
their annotated true mask, and the predicted output mask
from the model. It can be observed that the predictions
obtained have a high resemblance to the vascular patterns
visible in the input image. &e 3 raw images were subjected
to CLAHE and AHE filtering and passed to the U-Net model
for processing. It can be seen that the application of test-time
augmentations shows a drastic improvement in the Dice
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Figure 7: A schematic diagram illustrating the entire workflow.

Table 2: Comparison of different augmentation methods on the basis of their PSNR, IoU, and dice scores.

PSNR IoU Dice
Training with: Mean Std Min Max Mean Std Min Max Mean Std Min Max
No augmentations 0.435 0.146 0.068 0.678 0.682 0.01 0.552 0.961 0.397 0.11 0.067 0.517
AHE 0.582 0.165 0.045 0.827 0.788 0.007 0.659 0.973 0.48 0.141 0.045 0.708
CLAHE 0.624 0.165 0.097 0.886 0.79 0.005 0.718 0.98 0.545 0.146 0.097 0.799
Both AHE & CLAHE 0.751 0.155 0.117 0.93 0.893 0.004 0.821 0.996 0.685 0.149 0.117 0.871

Table 3: Performance of the U-Net model with varying hyper-parameters.

Epochs Learning rate Activation function
Metric 50 100 200 0.0001 0.0005 0.001 Tanh Sigmoid ReLU
Dice coefficient 0.52 0.685 0.678 0.685 0.572 0.542 0.532 0.468 0.685
IoU 0.818 0.893 0.895 0.893 0.853 0.847 0.826 0.784 0.893
PSNR ratio 0.619 0.751 0.741 0.751 0.596 0.583 0.581 0.505 0.751
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Original Image Ground Truth Mask Predicted Mask

Figure 8: Input image, annotated ground truth, and predicted output from U-Net model for 3 sample images.
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Figure 9: Comparing the effect of test-time augmentations on 3 images based on their (a) Dice coefficient and (b) IoU.
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Figure 10: Image wise performance analysis using a confusion matrix.
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(Figure 9(a)) and IoU (Figure 9(b)) scores. Confusion
matrices corresponding to the 3 images have been drawn
below in Figure 10 to provide better insights. It could be
observed that the predictability of a pixel as a vein wherein a
vein exists, is high. Correspondingly, the probability of a
nonvenous region being predicted as a vein is as low as
∼0.002.

While comparing the results of the models trained with
AHE and CLAHE, it can be noticed that CLAHE performs
evidently better than AHE on the same set of images. For
images with AHE, the over amplification of vein patterns the
corresponding vein predictions come out to be relatively
thicker than their corresponding masks which limits the
values for IoU and Dice Coefficient. CLAHE on the other
hand performs better because it inhibits the excessive en-
hancement of relatively darker pixel values.

6. Conclusions and Future Work

Even though the forearm region is one of the most common
sites for intravenous (IV) procedures, the availability of
forearm vein image datasets is scarce. Hence, a high quality
primary dataset of the forearm has been presented in this
paper. &e methods used for data collection have been
discussed emphasizing how NIR imaging combined with
certain image processing techniques make it possible to
visualise veins with clarity and distinction. Further, image
segmentation was carried out to identify the location of veins
in the image, and the discussed filtering methods were
compared against each other.

6.1. FutureWork. &e comparison done in Table 3 has been
done using the conventional classification metrics and loss
functions. Training parameters and evaluation could further
be extended using more recent metrics and loss functions
such as the Lovasz-Softmax Loss [18] for optimization.

&e performance of the algorithm presented could
further be improved upon in the future with better quality
annotations and larger architectures to facilitate the un-
derstudy. &e presented dataset can be used for vein de-
tection and segmentation. In addition, this technique could
be used as a base architecture to extend the usability of an
algorithm that can be used for standalone intravenous
imaging.

&e detected veins can be prioritized on the basis of in-
trinsic physical parameters such as thickness, infrared tem-
perature measurement, or depth to detect a venipuncture point
which can be used to assist in IV procedures such as can-
nulation and blood extraction. Moreover, the said detected
venipuncture site can contribute to the research and devel-
opment of devices which aim to automate IV procedures with
the aid of computer vision, in which the closed contraption of
the device would provide the functionality similar to the
cardboard box used in the imaging technique proposed in this
study. Furthermore, the presented dataset can be used to train
segmentation models which would expedite the development
of the said devices.
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