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Metacaspase-binding peptide inhibits heat
shock-induced death in Leishmania (L.) amazonensis

Mauricio S Pefia', Guilherme C Cabral', Wesley L Fotoran', Katia R Perez? and Beatriz S Stolf*

Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in
some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of
metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association
between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species.
Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant
L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were
selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like
ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat
shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and

parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.
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Leishmania (Leishmania) amazonensis is the second most
frequent agent of cutaneous leishmaniasis in Brazil, a country
with high incidence of this disease (WHO 2016).

The promastigote forms of Leishmania are transmitted to
man and other mammals by the bite of an infected female
sand fly. Once inside vertebrate phagocytes, promastigotes
convert into the amastigote forms, responsible for disease
progression.z’3 Macrophages are the parasite’s main host
cells that nevertheless possess several mechanisms to
restrain the infection such as by nitric oxide (NO) and reactive
oxygen species (ROS) production.*®

After transmission to the vertebrate host, promastigotes
face a heat shock and an oxidative attack of the innate immune
system. The exposure of promastigotes to NO, ROS,
hydrogen peroxide,® heat shock”® and drugs®™'' induces
phenotypical changes characteristic of programmed cell death
(PCD) such as cell shrinkage, DNA fragmentation, activation
of peptidases'® and exposition of a ‘PS-like’ (annexin V
binding) phospholipid.314

PCD by apoptosis is considered to be dependent on the
activation of caspases, cysteine-dependent peptidases.'®
Plants, fungi and protozoa do not code for caspases but
express metacaspases (MCAs).'® MCAs are cysteine pepti-
dases from clan CD, family C14, that share the histidine-
cysteine catalytic dyad with caspases, but differently from
caspases, which are specific to aspartic acid at P1, are specific
to arginine/lysine, that is, have trypsin-like activity."®"'® MCAs
have been shown to have caspase-like auto-processing,?® and
for some Leishmania species,?*?' as well as yeast * and
Arabidopsis,?®** processing of the enzyme is essential for
activity.

Leishmania MCA was first described in Leishmania (L.)
major’® and in Leishmania (L.) donovani®® and was later
identified in Leishmania (L.) mexicana®® and Leishmania (L.)
infantum.® Most Leishmania species have a single MCA gene,
while L. (L.) infantum and L. (L.) donovanihave two genes that
code for proteins with 96% identity.?” MCA has important roles
not only in cell death but also in the control of amastigote
intracellular proliferation®® and autophagy.2®

The association between MCA and cell death has first
demonstrated in yeast®® and Trypanosoma brucei,?® and later
in Arabidopsis®® and different Leishmania species. Oxidative
stress caused MCA-dependent cell death in Saccharomyces
cerevisiae, and the yeast knock out strain was efficiently
complemented by Leishmania (L.) major MCA.2° Accordingly,
oxidative stress induced higher ‘PS-like’ exposure in a
Leishmania (L.) major lineage that over expressed MCA
catalytic region.?' Drugs such as miltefosine induced death
in Leishmania (L.) infantum associated with MCA
overexpression,® and a Leishmania (L.) major MCA-deficient
lineage was resistant to miltefosine and curcumin.2®

Regulators and natural substrates of MCA were not
frequently studied. It was recently shown by two-hybrid system
that Leishmania (L.) major mitogen-activated protein kinase
MPK7 and calpain interact with the C-terminal domain of MCA,
probably participating on the induction of parasite death.?® No
similar study was ever performed on Leishmania (L.)
amazonensis MCA or other Leishmania species.

Phage display is an effective tool for searching for protein
ligands, allowing the identification of natural protein interac-
tions and of potential synthetic modulators.®'-32 In this work we
have employed a commercial phage display library over
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recombinant L. (L.) amazonensis MCA to identify peptides that
could interact with the enzyme, modulating its activity and
eventually affecting parasite survival. We identified peptides
that specifically bind to MCA. One of them decreases trypsin-
like activity in promastigotes under heat shock and reduces
parasite heat shock-induced death. This peptide is similar to
the L. (L.) major ecotin-like ISP3,% a potent inhibitor of several
serine proteases.®*

Our study is the first to show that MCA can be inhibited by a
peptide similar to a parasite-coded serine protease inhibitor.
Besides, we show that phage display can be effectively used
to identify modulators of specific Leishmania targets, suggest-
ing that this technique can be employed to decipher poorly
known processes and to search for potential parasite-
specific drugs.

Results

Heat shock induces L. (L.) amazonensis promastigote
death and increases trypsin-like activity. Leishmania
faces heat shock during transmission to the vertebrate host,
and this event induces death of a part of the parasite’s
population.® We analyzed the effect of heat shock at 37 °C
(compared with 22 °C, the sand fly temperature) for different
periods in promastigote death employing MTT assay and
annexin V and Pl labeling. The results shown in Figures 1
(a—c) indicate that viability is significantly diminished after 2
(based on MTT, c) and 3 h (based on annexin V and PI, a, b)
of heat shock.

MCA has already been suggested to be involved in
Leishmania heat shock-induced cell death.?’ We thus
quantified trypsin-like activity in parasite extracts after
incubation at 37 °C. Figure 1c demonstrates that heat shock
for 1, 2, 3 and 4 h significantly increased activity, reinforcing
the possible role for the enzyme in this process.

Production of active recombinant L. (L.) amazonensis
MCA. Little is known about MCA substrates and regulators.
Aiming to find natural or artificial ligands that could modulate
enzyme activity and eventually parasite death, we employed
the phage display technique on the recombinant enzyme.
Bacteria were transformed with pET-28a vector containing
L. (L.) amazonensis MCA gene and trypsin-like activity was
assayed in extracts (Figure 2a). Activity was higher in
bacteria transformed with MCA containing plasmid, as
already described for plant MCA in the same system.?* This
result indicated that bacteria could produce a functional
(active) recombinant protein. His-tagged protein with approxi-
mately 50 kDa was identified in bacterial extracts after
induction with IPTG (Figure 2b), and was purified along with
a processed form of ~25kDa (Figure 2c), already
described.?®

Identification of MCA-binding peptides able to modulate
enzyme activity. Panning using the commercial Ph.D.-7
Phage Library (phages containing seven random amino acids
in plll protein) was performed over the immobilized MCA
protein. Three cycles were performed, and a small enrich-
ment in the number of bound phages was observed after
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each cycle (Supplementary Table ). After three cycles, 50
bound phages were randomly picked and sequenced. The
sequences of the corresponding peptides and their frequen-
cies are shown in Table 1.

Phage display selection usually leads to a large number of
different bound phages, and selection of the ones to be
validated is usually based on their frequencies.®*=" Thirty-
three different peptides were encoded by the 50 phages
sequenced. Most of them were observed in only one phage,
seven were present in two phages, one in four phages and two
in five phages (see Table 1). We thus selected 13 peptides
(named 1-13, shown in Table 1) using as criteria the
identification of the peptide in more than one phage or the
presence of a three amino acid repeat shared with another
peptide. These peptides were synthesized and the effect of
each of them on trypsin-like activity in promastigote extracts
and in extracts of bacteria transformed with control vector or
MCA plasmid is shown in Figure 3.

Figure 3a shows that peptides 1, 2, 10, 11 and 12
significantly increased and peptide 3 significantly decreased
trypsin-like activity in promastigotes compared with control. To
prove that the peptides’ effects on the promastigote trypsin-
like activity were due to their interaction with MCA and not with
other enzymes, we analyzed the effects of peptides 1, 3, 10
and 11 on trypsin-like activity in bacteria extracts. Trypsin-like
activity of bacteria expressing or not MCA in the presence of
the peptides is shown in Figure 3b. Activity was again higherin
bacteria transformed with MCA plasmid (control in grey) than
with control vector (control in white), as previously shown in
Figure 2a. As observed in promastigote extracts (Figure 3a),
peptide 3 decreased trypsin-like activity of MCA expressing
bacteria (Figure 3b). Peptides 10 and 11 showed no significant
increase in activity, and peptide 1 decreased activity in
bacteria, differently from promastigote data. Peptides had no
effect on trypsin-like activity of bacteria transformed with
control vector.

Peptides bind to recombinant MCA and to fixed and live
parasites. To confirm that peptides modulated activity due to
direct interaction with the enzyme we evaluated the binding of
peptides 1, 3, 10 and 11 to MCA. Peptides were conjugated
with Alexa 488 and incubated with either immobilized
recombinant MCA or streptavidin. The results shown in
Figure 4 indicate that all peptides have significant higher
binding to MCA than to streptavidin, indicating that the phage
selection was effective and specific.

We then tested if the peptides were able to recognize and
bind to MCA in parasites. To answer this question, we
incubated fixed non-permeabilized promastigotes or fixed
promastigotes after heat shock (1 h at 37 °C) with peptides
conjugated with Alexa 546 and analyzed labeling under the
microscope. Representative images shown in Figure 5a and
the corresponding quantifications shown in Figure 5b indicate
that peptide 3 binds to fixed parasites previously submitted or
not to heat shock, while peptides 1, 10 and 11 bind weakly in
the absence of heat shock and more intensely to promasti-
gotes submitted to incubation at 37 °C for 1 h. The lower
binding of the other peptides compared with peptide 3
suggests that its stronger binding is not artefactual.
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Heat shock induces death of L. (L.) amazonensis promastigotes and increases trypsin-like activity. (a) Flow cytometry plots for annexin V and Pl labeling of

promastigotes incubated at 22 or 37 °C for 1, 2, 3 or 4 h. (b) Percentage of parasites with annexin V or annexin V+P! labeling (named as % labeled parasites) by flow cytometry
(controls in Supplementary Figure 1). (c). MTT assay showing viability after 1, 2, 3 and 4 h of heat shock (37 °C), each of them relative to the incubation at 22 °C for the same
period, considered as 100%. (d). Trypsin-like activity (named as relative trypsin-like activity) using Z-Arg-Arg-AMC substrate and 2 g of extract of promastigotes incubated at
37 °C, relative to the extract obtained after incubation at 22 °C for the same period, considered as 1.0. For all figures, data represent means and standard deviations of three

independent experiments. Statistical analysis by ANOVA followed by Tukey, *P<0.05

Peptide 3, similar to ecotin, reduces trypsin-like activity
and parasite death after heat shock. To test the effect of
peptides in live parasites, we investigated whether the four
peptides could bind (possibly enter) intact parasites by flow
cytometry. Parasites showed labeling with all peptides, with
low median fluorescence intensities (MFIs) (Supplementary
Figure 2), suggesting that few parasites bound or internalized
peptides, probably in low amounts. These results prompted
us to evaluate the effect of peptides in live parasites, in an
attempt to shed light on the role of the natural MCA ligand.
Considering that peptide 3 binds to immobilized MCA
(Figure 4), binds to fixed and live parasites (Figure 5 and

Supplementary Figure 2), and alters enzyme activity
(Figure 3), we analyzed whether it could modulate trypsin-
like activity and parasite death induced by heat shock. Results
shown in Figure 6 indicate that peptide 3 significantly reduces
parasite trypsin-like activity (a) and parasite death (b) after
heat shock. These effects are observed with at least 100 uM of
peptide 3 and do not increase with higher peptide concentra-
tions (Supplementary Figure 3).

A search for possible candidates for peptide 3 indicated high
identity (six of the seven amino acids of the peptide) to L. (L.)
major ISP3, a homologous of bacterial ecotin showing 37%
identity to the prokaryotic protein. This protein has not been
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Figure 2 Recombinant MCA was effectively produced in bacterial system. (a) Trypsin-like activity (named as relative trypsin-like activity) measured in 20 ug of bacterial
extract transformed with control vector (pET-28a) or MCA-containing plasmid, induced with IPTG. Results of three experiments with technical triplicates. Statistical analysis by
ttest, *P< 0.05. (b) SDS-PAGE (lanes 1 and 2) and western blot (lanes 3 and 4) using anti-his for detection of MCA in bacterial system with (+) or without ( — ) IPTG induction. (c)
SDS-PAGE showing recombinant MCA after purification

described nor annotated in L. (L.) amazonensis, but the
corresponding gene sequence (TriTrypDB) is conserved in this
peptide sequence frequency species and the translated protein is 81% identical to L. major

Table 1 Peptide sequences and frequencies of the 50 phages

1 NHRPHLD 1/50 ISP3, suggesting that peptide 3 corresponds to endogenous

2 GSTPNWH 2/50 L. (L.) amazonensis ISP3. Sequence alignment of L. (L.)

3 YAAHRSH 5/50 amazonensis ISP3 with L. major ISP3 and Escherichia coli

4 IDPQTPT 2/50 ecotin is shown in Figure 7a.

5 ADRAWAR 2/50 RT-PCR using L. (L.) amazonensis promastigotes RNA

6 KFPAINQ 5/50 (Figure 7b) shows that ISP3 gene is transcribed in this species,

7 TNPHLNW 1/50 indicating that the gene is active and is not a pseudogene.

8 VPFPSAS 2/50

9 GVQSPHF 4/50 . .

10 | ATWVSPY 2/50 Discussion

1 AFPSPTD 1/50 L. (L.) amazonensis trypsin-like activity correlates with

12 STSPESA 1/50 heat shock and promastigote death. We have shown for

13 GIHTLMG ﬁgg the first time that heat shock at 37 °C induces L. (L.)
ALHGPTP amazonensis death and increases trypsin-like activity. Pre-
Aozf‘:lk; ::;gg vious.studies have shown Fhat Leishrg(;’:zgigsMCA_increases
FPPFQTQ 1750 parasite death after oxidative stress.“”="=> Besides, heat
GHYASGC 1/50 shock, oxidative stress and drugs have been shown to alter

MCA processing in several Leishmania species, including

LRSI :;:g L. (L.) amazonensis.2%21-38
ISPQTPT T ’
LIAASNN 1/50
LPPSSRM 1/50 MCA ligands alter enzyme activity. Regulators of MCA
NSHSMPE 1/50 that increase enzyme activity can represent potential drugs
QFATQSH 1/50 for a specific leishmaniasis treatment. We searched for MCA
QIGYQRA 1/50 modulators among ligands of the recombinant protein
QSFWFHA 1/50 identified using phage display over the recombinant L. (L.)
SVSPISH 1/50 amazonensis enzyme. The effects of the peptides on trypsin-
TPLTPHQ 1/50 like activity were analyzed in Leishmania (native enzyme
TSSHAPL 1/50 condition) and MCA expressing bacteria extracts, because
VALSAPY 1/50 the purified recombinant enzyme showed very low activity
VAPWEKL 1/50 (data not shown). Indeed, MCAs from L. major®?' and
VIIVPPA 1/50 probably L. (L.) amazonensis, as well as yeast YCA1 (ref. 22)
YIPTAMK 1/50 and Arabidopsis MCA?32* require processing to be active,

what hampers the purification of an active recombinant
Peptide numbers_(cplumn1),_p¢_eptide sequences shpwing polaraminoacids_ in enzyme. In fact, the 0n|y active Leishmania recombinant
green, hydrophobic in red, acid in blue and basic in pink (column 2), frequencies . . . .
of the sequences (column 3) enzyme described until date was the catalytic domain

(equivalent to processed enzyme) of L. (L.) major (Gonzalez
et al?). Five peptides modulated trypsin-like activity in

Cell Death and Disease
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Figure 3 Peptides modulate trypsin-like activity in promastigotes and in bacteria expressing MCA. Relative trypsin-like activity of (a). Promastigote extracts pre-incubated
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Figure 4 Peptides 1, 3, 10 and 11 bind to MCA. Binding of the four Alexa 488-
conjugated peptides to MCA or streptavidin. 15 ug of MCA or streptavidin were
immobilized in plates and incubated with 100 .M of each fluorescent peptide. Results
of three experiments with technical triplicates. Statistical analysis by ANOVA followed
by Tukey. *P<0.05 (MCA versus streptavidin binding)
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parasite extracts, but only two significantly affected trypsin-
like activity in bacteria expressing MCA, both decreasing
enzyme activity. Since none of the peptides affected the
activity in bacteria not expressing MCA, we concluded that
the effects observed were specific for MCA. Promastigotes
have enzymes other than MCA with trypsin-like activity, such
as cysteine proteinase C,%® and have higher activity than
MCA expressing bacteria (data not shown). These facts may
explain the differences between the results.

The ability of the peptides to bind to MCA was confirmed
using recombinant enzyme and fixed parasites submitted or
not to heat shock. Heat shock is known to promote enzyme
processing, and could also alter enzyme structure and affinity
to the peptides, and even open pores in the parasite
membrane, facilitating peptide binding. In fact, all peptides
showed visible labeling to parasites after heat shock, while
peptide 3 was the only peptide with visible binding to parasites
at 22 °C, suggesting a more effective interaction with the
‘native’ MCA inside the parasite.

Peptide 3 inhibits MCA and reduces parasite death. The
four peptides could represent natural regulators of MCA or
could be artificial synthetic mimotopes. To perform functional
assays on the effect of the peptides in parasite death, we first
checked their ability to bind/enter live cells. Although none of
them had the extremely basic amino acid composition or
amphipatic membranotropic composition usually found in cell
penetrating peptides (CPPs),***° peptides 1 and 3 are
predominantly basic (three out of seven amino acids) and
peptide 11 predominantly nonpolar/hydrophobic (three out of
seven amino acids). Peptide labeling was observed in a small
proportion of the parasites, suggesting that they bound/entered
cells and that functional tests in live parasites could be done.
Functional assays were performed with peptide 3, which
significantly reduced trypsin-like activity and parasite death
after heat shock. This data indicates that even a small
inhibition of MCA by the peptide has an impact on parasite
death induced by stimuli such as heat shock. We believe
similar effects would be observed if parasite death was
triggered by stimuli such as oxidative stress and drugs.
Although peptide 3 decreases cell death and thus could not
be used as drug for parasite killing, it may shed light on natural
regulators of Leishmania MCA. In fact, its similarity to parasite
ecotin, more specifically ISP3, suggests that this protein
regulates endogenous MCA activity and thus parasite death.
First described in E. coli, ecotin is a potent inhibitor of several
serine proteases.®* L. (L.) major was shown to have three
ecotin-like genes, named ISP 1, 2, 3 for inhibitor of serine
peptidase, and ISPs 2 and 3 seem to have a role on the
interaction with the host cell.®® ISP3 seems to have a very low
expression in L. (L.) major,®® but we were able to identify its
transcript in L. (L.) amazonensis promastigotes. An ISP was
recently identified in L. (L.) donovani, and shown to inhibit
trypsin activity but not the activity of a L. (L.) donovani serine
protease.*! Ecotin and ISPs are considered inhibitors of
serine peptidase from S1A family. Genomic studies have
proven that L. (L.) major has several serine peptidases
belonging to six families but not to S1A family.*? Our findings
suggest that ecotin may also inhibit cysteine proteases such

Cell Death and Disease
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incubated with peptide 3 (100 xM) or DMSO (control), submitted (37 °C) or not (22 °C) to heat shock for 1 (a) and 2 (b) hours, relative to control at 22 °C. (c). Viability (by MTT) of
promastigotes pre-incubated with peptide 3 (100 M) or DMSO (control) submitted (37 °C) or not (22 °C) to heat shock for 2 h, relative to control at 22 °C. Results of three

experiments with technical triplicates. ANOVA followed by Tukey, *P<0.05

as MCA. Besides, we show that phage display is an efficient
tool to search for ligands and regulators of proteins and
enzymes with poorly known pathways.

Conclusion

Our data demonstrate that L. (L.) amazonensis trypsin-like
activity and promastigote death are induced by heat shock.
We showed that peptides that bind to recombinant MCA,
selected by phage display, may affect enzyme activity. One of
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the peptides, similar to Leishmania ISP3, is able to reduce
parasite trypsin-like activity induced by heat shock and
promastigote death after the shock. We suggest for the first
time that ISP3, considered a serine peptidase inhibitor, may
also inhibit cysteine proteases such as MCAs.

Material and Methods

Leishmania (L.) amazonensis promastigotes. Promastigotes of
Leishmania (L.) amazonensis LV79 (MPRO/BR/72/M1841) or M2269 (MHOM/BR/
1973/M2269) strains were cultured at 24 °C in M199 medium supplemented with
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Figure 7 ISP3 sequence and expression in L. (L.) amazonensis. (a) Alignment of protein sequences of E. coli ecotin, L. majorISP3 and L. (L.) amazonensis (deduced) ISP3,
showing peptide 3 corresponding sequence. (b) Expression of ISP3in L. (L.) amazonensis promastigotes by RT-PCR. Lane 1: PCR negative control (RNA), lane 2: PCR of cDNA,

lane 3: PCR of genomic DNA

10% fetal calf serum (FCS). Parasites were sub-cultured every 7 days at inoculums
of 2x 10%/ml.

Heat shock. Promastigotes at day 3 (log phase) were resuspeded at the density
of 5x107parasites/ml in 116 mM NaCl, 10mM CaCl2, 54 mM KCI, 0,8 mM
MgSQs, 5,5 mM p-glicose, 50 mM MOPS (3-N-Morpholino propanesulfonic acid pH
7,4) and incubated at 22 or 37 °C in media only or with peptides or DMSO during
different periods.

MTT assay. 100 ul of parasites incubated at 22 or 37 °C were transferred to 96
well plates. 20 pl of MTT (MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide 5 mg/ml in PBS) were added and the plate was incubated at 22 °C for
50 min. 100 ul of SDS 10% were added and absorbance at 595 nm (reference at
655 nm) was measured in a BioTek ELx800 equipment (Biotek., Winooski, VT, USA).

Annexin V and PI labeling by flow cytometry. Promastigotes at log
phase (day 3) were centrifuged at 4000 x g for 5 min and washed three times in
Hepes buffer (100 mM Hepes, 150 mM NaCl, 5 mM KCI, 3 mM CaCly, 1 mM MgCls,
pH 7,2). Parasites were resuspended at 5x 10° cells/ml in the same buffer and
200 pl were incubated with annexin V Alexa Fluor 488 1 : 200 for 20 min on ice,
then washed three times and incubated with 10 ug/ml propidium iodide (IP) for
20 min. As positive control we treated parasites with 100 M digitonin in annexin V
reaction. 30.000 events were captured for each sample in Guava easycyte
(Millipore, Bedford, MA, USA).

Trypsin-like activity of soluble extracts of promastigotes and
bacteria. 10° promastigotes were lysed in 200 ul of lysis buffer containing
20 mM PIPES, 100 mM NaCl, 1 mM EDTA, 0,1% CHAPS, 10% sucrose, 0,1%
Triton X-100 pH 7,2, with 1 mM PMSF, 2 uM Pepstatin A and 50 1M digitonin on ice
for 30 min. The lysate was centrifuged at 16 000x g at 4 °C for 5 min, soluble
fraction was collected and proteins were measured using Bradford assay (BioRad,
SP, Brazil).

10 ml of E. coli BL21 (DE3) expressing MCA or containing pET28a plasmid were
centrifuged at 16 000x g at 4 °C for 20 min, resuspended in 250 ul lysis buffer
containing 0,4 mg/ml lysozyme, and kept on ice for 1 h with vortexing every 10 min.
The lysate was then centrifuged as described above.

For both promastigote and bacteria lysates, activity was assayed in 96-well Costar
3603 plates (Costar-Sigma, SP, Brazil) in 100 ! of buffer containing 50 mM Tris-HClI,
15 mM NaCl, 5mM DTT, 10 mM de CaCl, pH 8.0. Extracts were added in the
presence or not of peptides or DMSO and incubated for 2 h at 22 °C. Z-Arg-Arg-AMC
substrate was added for 10 uM and capture was performed at 30.5°C in a
POLARstarOmega (BMG, Ortenberg, Germany) fluorimeter excitation at 380 nm and
emission at 460 nm.

SDS-PAGE and western blot. Gels and membranes were prepared as
described before,*® using 10 ug of proteins and 1 ug of recombinant MCA.

Production of recombinant metacaspase. Metacaspase (Metala) gene
was amplified from L. (L.) amazonensis using primers based on L. (L.). mexicana
metacaspase sequence (MetaLaF 5’ ATGGCAGACTTTCTTGATATTTTGGGG3' and
MetaLaR 5'TTACCCAGGCGGAGCCGS'). Amplification product was cloned into the
pCR4 TOPO sequencing vector (LifeTechnologies, Thermo Fisher, SP, Brazil) and
then into the pET28a expression vector, generating pET-28aMeta construct.
Escherichia coli BL21 (DE3) was transformed with pET-28a and pET-28aMeta, and
induced with 0.1 or 1 mM IPTG at 37 °C for 4 h. Bacteria were centrifuged and
lysed by sonication (Unique Ultrasonic DES500, SP, Brazil) in 57 mM NaH,PO,,
1.2M NaCl pH 7,0 with 0.4 mg/ml lysozyme and 1 mM PMSF. Lysates were
centrifuged, filtered in 0.45 uM and transferred to Niquel Ni-NTA column (Qiagen).
Column was washed with 57 mM NaH,PO, pH 6.0, 128 mM NaCl, 20 mM imidazol
and 10% glycerin and recombinant protein was eluted with 500 mM imidazol in
wash buffer, dialyzed against 57 mM NaH,PO,, 1.2 M NaCl pH 7.0 and quantified
using Bradford assay (Bio Rad, SP, Brazil).

Phage display selection. 15 xg of MCA 100 xg/mlin 0.1 M NaHCO3 pH 8,6
were incubated in 96-well plates (Costar EIA/RIA High binding) at 4 °C o/n. Wells
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were blocked with 150 ! of 5 mg/ml BSA in 0.1 M NaHCO3 pH 8,6 for 1 h at 4 °C,
washed six times with TBST (50 mM Tris-HCI pH 7,5, 150 mM NaCl, 0,1% Tween
20) and incubated with 2x 10" phages from Ph.D.- 7 Phage Display Peptide Library
Kit (New England Biolabs, Ipswich, MA, USA) in 100 I of TBST for 1 h at room
temperature. Unbound phages were removed by 10 washing steps in TBST and
bound phages were recovered by incubation with 200 4l of exponentially growing
(ODgoo=0,5) E. coli (ER2738) for 5min at room temperature. Tittering and
amplification were performed as recommended.

Binding of peptides to metacaspase. 15ug of MCA or 15ug
streptavidin in 150 ul of 0.1 M NaHCO; pH 8,6 were incubated in 96-well plates
(Costar3603) at 4 °C o/n. Wells were blocked with 150 ul of 1% BSA in 0.1 M
NaHCO3 pH 8,6 for 1 h at 4 °C, washed six times with PBS and incubated with
100 uM of Alexa Fluor 488 conjugated peptide (labeled with Protein Labeling Kit-
Thermofisher, SP, Brazil) for 1 h at 4 °C. Binding was estimated after analysis in
POLARstar Omega at 488 nm for excitation and 520 nm for emission.

Labeling of parasites with fluorescent peptides. For the binding
analysis, promastigotes were washed in PBS, fixed in 4% paraformaldehyde for
30 min, resuspended in PBS and applied in glass slides. After drying, slides were
blocked with 1% BSA in PBS for 1 h, washed in PBS and incubated with 100 xM
Alexa Fluor 546 peptide in PBS 1% BSA o/n. Slides were then washed in PBS,
incubated with 1 «M DAPI in PBS 1% BSA for 1 h, dried and mounted in ProLong
(Molecular Probes, Thermo Fisher, SP, Brazil). Images were captured in ZEISS Axio
Imager M2 Imaging System (Oberkochen, Germany) and quantification was
performed using ImageJ (Bethesda, MD, USA), and expressed as of fluorescence
intensity/um2 (mean values of three parasites normalized by parasite area).

For the evaluation of peptide entry in intact promastigotes we used flow cytometry
and the same Alexa Fluor 546 peptides. Promastigotes were incubated for 2 h at
22 °C with 100 M Alexa Fluor 546 peptide in HEPES buffer 10 mM, washed in PBS
and analyzed in Guava easycyte cytometer (Millipore).

RT-PCR. RNA was isolated from 5x 10" promastigotes using Trizol reagent
(Life Technologies). cDNA was prepared from 2 g of RNA using random primers,
oligodT and Superscript Il Reverse Transcriptase (Life Technologies) in 20 pl. PCR
was performed with 2 I cDNA reaction 1: 10, the corresponding RNA mass or
70 ng of genomic DNA, using 0.7 U Taq polymerase (Life Technologies) and the
following cycle conditions: 94 °C for 4 min, 35 cycles of 94 °C 30's,60°C 455,72 °
C 2 min and 72 °C for 10 min.

Statistical analysis. GraphPad software (San Diego, CA, USA) was used to
perform all analysis. We employed one way ANOVA followed by Tukey’s multiple
comparison test (for three or more samples), or ttest (for comparison of two
conditions).
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