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Abstract: Marine organisms provide an abundant source of potential medicines. Many of the
marine-derived biomaterials have been shown to act as different mechanisms in immune responses,
and in each case they can significantly control the immune system to produce effective reactions.
Marine-derived proteins, peptides, and protein hydrolysates exhibit various physiologic functions,
such as antimicrobial, anticancer, antioxidant, antihypertensive, and anti-inflammatory activities.
Recently, the immunomodulatory properties of several antimicrobial peptides have been demonstrated.
Some of these peptides directly kill bacteria and exhibit a variety of immunomodulatory activities
that improve the host innate immune response and effectively eliminate infection. The properties of
immunomodulatory proteins and peptides correlate with their amino acid composition, sequence,
and length. Proteins and peptides with immunomodulatory properties have been tested in vitro
and in vivo, and some of them have undergone different clinical and preclinical trials. This review
provides a comprehensive overview of marine immunomodulatory proteins, peptides, and protein
hydrolysates as well as their production, mechanisms of action, and applications in human therapy.
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1. Introduction

The immune response plays a crucial role in maintaining human health by identifying and killing
pathogens, aging cells, or tumor cells. Its functions can be affected by many factors, including
pathogen presence, tissue injury, and cardiac infarction [1]. Immunomodulation refers to the
ability of the immune system to control various life-threatening diseases, such as cancer, human
immunodeficiency virus, multiple sclerosis, and aging [2–4]. Macrophages are mononuclear leukocytes,
which function as primary defenders of the host and can recognize and eliminate microbial pathogens
and cancer cells via phagocytosis. These cells are also involved in immune regulation by producing
cytokines, such as interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10,
and IL-12. Clinically, immunomodulators can be classified as immunoadjuvants, immunostimulants,
and immunosuppressants. Immunotherapy is the treatment of disease by modulating the host’s immune
system. Currently, numerous drugs are used clinically to control human immune function, including
levamisole, imiquimod, pidotimod, tilorone, cyclophosphamide, prostaglandin, cyclosporine A,
thiocarbamate, niridazole, and penicillamine [5–14]. However, most synthesized immunomodulatory
drugs exhibit toxicity and side effects, limiting their use to cases such as those of chronic diseases [15].
In contrast, the majority of naturally-derived immunomodulatory proteins or peptides do not show
side effects and are less costly, suggesting their potential for use in immunotherapy.
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The marine environment is rich in bioactive resources, but few studies have examined the ability
of these resources to modulate the immune response. Approximately 2,210,000 species are thought
to exist in the ocean, but only about 190,000 species have been recorded [16,17]. Peptides, proteins,
and protein hydrolysates isolated from marine algae and fish can function as immunostimulants.
The potential immunomodulatory activity of marine derivatives and their scientific analyses are now
emerging. This review describes the immunomodulatory role of marine-derived biomaterials.

2. Brief Overview of the Immune System

The immune system is a host defense system that serves to remove potentially harmful substances
known as pathogens. The immune system is divided into two subsystems: the innate and adaptive
immune systems.

Innate immunity (natural or native immunity) is non-specific and provides the first line of
defense through the skin, mucosal tissue, bone marrow (neutrophils, eosinophils, basophils, mast cells,
monocytes, dendritic cells, and macrophages), or inflammatory components (cytokines, interferons,
and defensins). Macrophages and neutrophils are important first-line responders in phagocytosis [18].

Adaptive immunity (specific or acquired immunity) is highly specific to dangerous pathogens
and is the body’s second line of defense involving T lymphocytes and B lymphocytes. The adaptive
immune response can be either humoral or cell-mediated. Humoral immunity is mediated by B
lymphocytes, which release antibodies specific for the infectious pathogen. The cell-mediated response
involves binding of T lymphocytes to the pathogen or infected cells, followed by lysis of these cells and
the secretion of immune regulatory factors, such as cytokines. The three subtype of T lymphocytes are
cytotoxic T cells, helper T (TH) cells, and regulatory T (suppressor T) cells. Cytotoxic T cells express a
surface receptor, cluster of differentiation (CD)8+, which recognize endogenous antigens associated
with major histocompatibility complex class I and kill infected cells. TH cells express the surface
receptor CD4+ and recognize exogenous antigens complexed with major histocompatibility complex
class II. TH cells secrete cytokines and help activate B and T lymphocytes and other immune cells [19].
Regulatory T cells help to control the immune response by preventing harmful immune activation and
maintain tolerance, or prevent autoimmune diseases by maintaining self-tolerance.

3. Immunomodulatory Compounds from Marine Organisms

Over the past few decades, more than 16,000 marine organisms have been isolated from the oceans
and have been widely studied. Marine-derived substances, such as proteins, peptides, glycoproteins,
polysaccharides, and lipids show potential for controlling the immune system [20–22]. This review
summarizes the developmental status of marine-derived immunomodulatory proteins, peptides,
and protein hydrolysates from different organisms.

3.1. Immunomodulatory Proteins and Amino Acid

Marine biomaterials (proteins, enzymes, oligosaccharides, biopolymers, fatty acids, minerals,
and pigments, etc.) described come from a variety of marine natural sources. Marine biomaterials
contain large amounts of diverse proteins (10–47% (w/w)) with various bioactivities and functions.
Many proteins in hemolymphs and hemocytes play important roles in the innate immune system by
preserving several immune components, such as metalloproteins, glycoprotein, amino sulfonic acid,
antimicrobial peptides (AMPs), protease inhibitors, and coagulation factors. Table 1 summarizes the
immunomodulatory proteins and amino sulfonic acid (taurine) found in diverse marine biomaterials.
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Table 1. List of immunomodulatory proteins from diverse marine sources.

Name of Protein Source Protein Type Mechanism of Action Ref.

Hemocyanin

Mollusk:
Concholepas concholepas,
Megathura crenulata,
Fissurella latimarginata

Oxygen carrying
metalloprotein

Immunostimulatory activities against certain cancers
without side effects; interact with T cells, monocytes,
macrophages, and polymorphonuclear lymphocytes to
improve the host immune response

[23–28]

Lectin
Clam: Crenomytilus grayanus,
Mytilus trossulus, Fissurella
latimarginata

Glycoprotein

C-type lectins recognize carbohydrates during the
immune response.
Tachylectins recognize pathogen associated molecules
via phagocytosis or the lectin pathway of the
complement system.

The C-type lectins play a key role in carbohydrate
recognition during immune response. Lectins have been
reported as pathogenic recognizing receptors from
marine invertebrates.

MTL stimulates the expression of proinflammatory
cytokines (TNF-α and IFN-γ), but reduces the
hyper-expressions of anti-inflammatory cytokine (IL-10).

[29–34]

Taurine Clam: Tapes philippinarum 2-Amino ethane
sulfonic acid

Cytoprotective and immunomodulatory effects in
immune cells including lymphocytes, monocytes, and
neutrophils; accumulation of phagocytes, contact with
pathogens, activated cells (neutral and macrophages)
produce toxic oxidants and various antibacterial
substances using the peroxidase system and destroy the
pathogens; scavenger to remove unwanted or harmful
substances from the cells and protect them from
oxidative stress; modulation of the immune system by
activating NF-κB and activation PPAR-g.

[35–77]

3.1.1. Hemocyanins

Hemocyanins are metalloproteins that use copper-binding sites to bind and transport oxygen in a
variety of mollusks. Hemocyanins, like hemoglobin, are multi-subunit molecules with a functional
subunit that binds oxygen. Hemocyanins isolated from several marine gastropods show potent
immunostimulatory effects against certain cancers with tolerable side effects observed in a murine
colon carcinoma model [23,24]. Hemocyanins have been used as innate immunostimulators to suppress
the development of superficial bladder cancer, while hemocyanins obtained from Concholepas concholepas
have been evaluated in clinical trials for treating superficial bladder cancer [25]. Keyhole limpet
hemocyanin is an immunostimulator derived from circulating glycoproteins of the marine mollusk
Megathura crenulata. Keyhole limpet hemocyanin interacts with T cell monocytes, macrophages,
and polymorphonuclear lymphocytes to improve the host immune response (Figure 1) [26,27].
Hemocyanin isolated from a gastropod Fissurella latimarginata is a novel immunostimulator with higher
immunostimulatory activities than traditional hemocyanins, such as keyhole limpet hemocyanin and
Concholepas concholepas, which were isolated from a gastropod [28].
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3.1.2. Lectins

Lectin, a glycoprotein that controls immune function, has been widely reported through innate
immune responses leading to pathogen recognition and endocytosis, and adaptive immune responses
such as B and T activation, and apoptosis [29]. Lectins are found in many different plants and
animals. Lectins isolated from clam are homologous and modulate the innate immune response [30].
Three types of lectins have been identified: Ca2+-dependent (C-type), R-type, and metal independent
galectins. C-type lectins recognize broad endogenous ligands and pathogens that regulate intercellular
interactions and play a major role in carbohydrate recognition during the immune response [31].
These proteins are also very important in autoimmune diseases. Tachylectin, isolated from hemocytes
of the horseshoe crab Carcinoscorpius rotundicauda, recognizes pathogens [32]. Microbes recognition
occurs via phagocytosis or the lectin pathway in the complement system. The lectin from the mussel
Mytilus trossulus stimulates the induction of proinflammatory cytokines such as TNF-α and IFN-γ
but reduces the anaphylaxis of the anti-inflammatory cytokine IL-10 in human peripheral blood
cells (Figure 2) [33]. Lectins, derived from the hemolymph of crustaceans, are considered as active
precursors of antibodies because they play an important role in antimicrobial activity as well as immune
recognition [34].
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Figure 2. Structural model of lectin from the mussel Mytilus trossulus (Genbank: AKI29293.1) created
using the SWISS-MODEL server (https://swissmodel.expasy.org/) [33].

3.1.3. Taurine

Taurine (2-amino ethane sulfonic acid) is an amino acid that is widely distributed in animal
tissues including in the marine clam (Figure 3). Marine organisms are a rich source of taurine, but it
is also produced by many other organisms. Taurine has cytoprotective and immunomodulatory
effects and is enriched in immune cells including lymphocytes, monocytes, and neutrophils [35].
This suggests that high taurine levels in phagocytes mediating inflammatory lesions indicate a role in
innate immunity [36]. Taurine accumulates in phagocytes; after contacting a pathogen, activated cells
(neutral and macrophages) produce toxic oxidants and various antibacterial substances through the
peroxidase system, and act at inflammatory sites to kill pathogens. Toxic oxidants are components
of the innate immune system and protect the host from infections by killing pathogens, but they
may also damage the host tissue. Taurine also acts as a scavenger to remove unwanted or harmful
substances from the cells and protect cells from oxidative stress. Taurine modulates the immune
system by activating NF-κB, a potent signal transducer for inflammatory cytokines [35]. Additionally,
peroxisome proliferator-activated receptor-γ (PPAR-γ) is activated by taurine in the liver to control the
regulation of glucose metabolism and adiposeness. Thus, the activation of PPAR-γ by taurine protects
retinal neuronal damage in diabetic retinopathy [37].
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3.2. Antimicrobial and Immunomodulatory Peptides

Studies of functional peptides that control immune responses are actively being conducted [38].
Although immunomodulatory peptides are known to enhance immune responses such as lymphocyte
proliferation, natural killer (NK) cell activity, and cytokine regulation, the specific mechanisms of these
activities remain unclear [39]. For example, the interactions of immunomodulatory peptides with the
human nervous, digestive, cardiovascular, and immune systems are not well-understood [40]. For
this reason, it is necessary to understand the interaction between peptides and these systems for the
development of specific immunomodulatory peptides.

Marine-derived AMPs are defense molecules with the potential to enhance innate immunity [41].
The discovery that marine AMPs target specific cells confirmed the potential of these molecules as
drug candidates [42]. Therefore, marine-derived AMPs are important sources of molecules with
immunological regulatory properties. Tables 2 and 3 summarize immunomodulatory peptides that
have been identified in diverse marine sources.

Table 2. Antimicrobial and immunomodulatory peptides from marine organisms.

Name of peptide Source Mechanism of action Ref.

Callinectin
Blue crab: Callinectes sapidus,
Mediterranean mussel:
Mytilus galloprovincialis

Antibacterial activity against gram-negative bacteria, binding to
anti-callinectin-like peptides antibodies in blue crab hemocytes [43,44]

Clavanin A,
clavanin-MO Tunicate: Styela clava

Antimicrobial activity against Gram-negative, Gram-positive
drug-resistant bacteria and fungi;
immunomodulation by inhibiting the inflammatory response that
causes sepsis and destroys certain biofilms; affect components of the
immune system and influence inflammatory response; cytokine
modulations (down-regulation of IL-12 and TNF-α, up-regulation of
IL-1) in mice

[45,46]

Crustin

Crustacean: Carcinus maenas,
Pacifastacus leniusculus, Fenneropenaeus
chinensis, Scylla serrata, Scylla
paramamosain, Penaeus monodon

Antimicrobial activity against marine Gram-positive bacteria; release
from the hemocytes of crustacean by exocytosis [47–51]

Defensin

Oyster: Crassostrea virginica.
Crassostrea gigas
Mediterranean mussel: Mytilus
galloprovincialis
M. edulis

Antimicrobial peptides (AMPs) acting as host defense peptides that
disrupt the membrane of microbial pathogens, and play a major role in
immunomodulation by acting in the innate and adaptive immune
response; after bacterial infection, increased MGD-1 in M.
galloprovincialis plasma and MGD-2 stimulates release from hemocytes

[52–55]

Myticin Mediterranean mussel:
Mytilus galloprovincialis

Reached in the bacteria by transportation through hemocytes;
antibacterial activity against Gram-positive bacteria (myticin A, myticin
B, myticin C) and the fungus Fusarium oxysporum and E. coli (myticin C)
and acts as immunomodulator in vivo; immune-related gene
expression following in vivo immunostimulation in mussels

[56–58]

Mytilin
Mollusk: Mytilus edulis (mytilin A and
mytilin B), M. galloprovincialis (mytilin
C, mytilin D, mytilin G1)

Antimicrobial activities; transported through hemocytes to reach
bacteria, and cells containing mytilin act as phagocytosing bacteria to
prevent microbes from entering the circulatory system

[59,60]

Mytimycin
Blue mussel: Mytilus edulis,
Mediterranean mussel:
M. galloprovincialis

Antifungal activity; defense against invading pathogenic microbes;
the gene responsible for mytomycin is mainly expressed in
circulatory hemocytes

[55,59,61]

Phosvitin-derived
peptide Pt5 Fish: Danio rerio

Antimicrobial activity and immunomodulatory activity; increase the
survival rate of zebrafish infected by Aeromonas hydrophila, decrease the
number of A. hydrophila in the blood, spleen, kidneys, liver, and
muscles; inhibition expression of IL-1β, IL-6, TNF-α, and IFN-γ within
the spleen and head kidneys of A. hydrophila-infected zebrafish, but
increased the expression of IL-10 and IL-14

[62]

Salmo salar natural killer
(NK)-lysin Fish: Salmo salar Antimicrobial activity; Salmo salar NK-lysin-derived peptides induce

expression of IL-1β and IL-8 in Salmo salar head kidney leukocytes [63,64]

Scygonadin Mud crab: Scylla serrata AMPs for host defense to protect the reproductive system of organisms [65,66]

Thalassospiramides
A and D Bacteria: Thalassospira sp.

Suppression of LPS-induced NO production in RAW 264.7
macrophages; inhibition of IL-5 expression in TH-2-mediated
inflammatory diseases such as asthma

[67,68]

Tilapia piscidin 3 (TP3)
and tilapia piscidin
4 (TP4)

Fish: Oreochromis niloticus

Antimicrobial, wound-healing, and antitumor activity; increased
expression of several immune-related genes in O. niloticus muscle
(IL-1β, IL-6, IL-8, TGF-β, IκB), decreased expression of TLR5 after Vibrio
vulnificus infection, down-regulation of IL-1β, IL-8 TLR5, TGF-β,
and IκB after Streptococcus agalactiae infection

[69]
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Table 3. The amino acid sequences for marine-derived antimicrobial and immunomodulatory peptides.

Peptide Source Amino acid sequences Ref./Genbank

Callinectin Callinectes sapidus WNSNRRFRVGRPPVVGRPGCVCFRAPCPCSNY-
NH2

[43]

Clavanin-A, clavanin-MO Styela clava

Clavanin A: VFQFLGKIIHHVGNFVHGFSHVF-
NH2
Clavanin-MO:
FLPIIVFQFLGKIIHHVGNFVHGFSHVF-NH2

[45,46]

Crustin Scylla serrata
EASRVPPYLGRDCKHWCKDNNQALYCCGPPGIT
YPPFIRNHPGKCPSVRSTCTGVRSYRPKLCPHDG
ACDFRSKCCYDACVEHHVCKTV

[47]
ADW11096.1

Defensin Crassostrea gigas GFGCPGNQSKCNNHCKSISCRAGYCDAATLWLR
CTCTDCNGKK

[52]
ACQ76262.1

Myticin C Mytilus galloprovincialis QSIPCTSYYCSKFCGSAGCSLYGCYKLHPGKICYC
LHCRRAESPLALSGSARNVNEQNKE

[58]
AEZ79080.1

Mytilin B Mytilus galloprovincialis
SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLR
CSSEHSMKFPENEGSSPSDMMPQNENENTEFGQ
DMPTGETEQGETGI

[59]
AAD45013.1

Mytomycin Mytilus edulis DCCHRPYYYHCWDCTAATPYCGYRPCNIFGCGC
TCRTEPHGKSCYERGDRCRCYT

[61]
AET85056.1

Phosvitin-derived peptide Pt5 Danio rerio SRMSKTATIIEPFRKFHKDRYLAHHSATKDTSSGS
AAASFEQMQKQNRFLGNDIP [62]

Salmo salar NK-lysin Salmo salar
KGTCWVCKWALNKVKKSISTSSSPETLKQKLLSV
CDKVGFLKSMCKGLMKKHLWVLIEELSTSDDVR
TICVNIKACKPKE

[63]
XP_013985382

Scygonadin Scylla serrata
GQALNKLMPKIVSAIIYMVGQPNAGVTFLGHQC
LVESTRQPDGFYTAKMSCASWTHDNPIVGEGRSR
VELEALKGSITNFVQTASNYKKFTIDEVEDWIASY

[65]
AAW57403.1

Thalassospiramides A and D Thalassospira sp. cyclic lipopeptides contained rigid 12-membered
ring containing an α,β-unsaturated carbonyl moiety [67]

TP3 and TP4 Oreochromis niloticus TP3: FIHHIIGGLFSVGKHIHSLIHGH,
TP4: FIHHIIGGLFSAGKAIHRLIRRRRR [69]

3.2.1. Callinectin

Callinectin is a proline- and arginine-rich AMP composed of 32 amino acids, including four cysteine
residues, and shows antibacterial activity against gram-negative bacteria. Callinectin was isolated from
hemocytes of the blue crab Callinectes sapidus and Mediterranean mussel Mytilus galloprovincialis with the
amino acid sequence WNSNRRFRVGRPPVVGRPGCVCFRAPCPCSNY-NH2 (Figure 4) [43]. Callinectin
has three isoforms, hydroxy-N-formylkynurenine group, N-formylkynurenine, and hydroxyl
tryptophan, and has diverse functional groups according to changes in the tryptophan residues.
Tryptophan modification of callinectin isoforms were reported in the AMPs of marine animals [44].
Callinectin strongly binds to anti-callinectin-like peptide antibodies in blue crab hemocytes and shows
the potential for immunomodulation [43].
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Myticin C 

Mytilus 

galloprovinciali

s 

QSIPCTSYYCSKFCGSAGCSLYGCYKLHPGKICYC

LHCRRAESPLALSGSARNVNEQNKE 

[58] 

AEZ79080.1 

Mytilin B 

Mytilus 

galloprovinciali

s 

SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLR

CSSEHSMKFPENEGSSPSDMMPQNENENTEFGQ

DMPTGETEQGETGI  

[59] 

AAD45013.1 

Mytomycin Mytilus edulis 
DCCHRPYYYHCWDCTAATPYCGYRPCNIFGCGC

TCRTEPHGKSCYERGDRCRCYT  

[61] 

AET85056.1 

Phosvitin-derived 

peptide Pt5 
Danio rerio 

SRMSKTATIIEPFRKFHKDRYLAHHSATKDTSSGS

AAASFEQMQKQNRFLGNDIP 
[62] 

Salmo salar NK-

lysin 
Salmo salar 

KGTCWVCKWALNKVKKSISTSSSPETLKQKLLSV

CDKVGFLKSMCKGLMKKHLWVLIEELSTSDDVR

TICVNIKACKPKE  

[63] 

XP_01398538

2 

Scygonadin Scylla serrata  

GQALNKLMPKIVSAIIYMVGQPNAGVTFLGHQC

LVESTRQPDGFYTAKMSCASWTHDNPIVGEGRSR

VELEALKGSITNFVQTASNYKKFTIDEVEDWIASY  

[65] 

AAW57403.1 

Thalassospiramide

s A and D 

Thalassospira 

sp. 

cyclic lipopeptides contained rigid 12-membered 

ring containing an α,β-unsaturated carbonyl moiety 
[67] 

TP3 and TP4 
Oreochromis 

niloticus 

TP3: FIHHIIGGLFSVGKHIHSLIHGH,  

TP4: FIHHIIGGLFSAGKAIHRLIRRRRR 
[69] 
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in the AMPs of marine animals [44]. Callinectin strongly binds to anti-callinectin-like peptide 
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Figure 4. Structures of callinectin. Simulations of the three-dimensional structures were obtained from
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD [43].

3.2.2. Clavanin A and Clavanin-MO

Clavanin A (VFQFLGKIIHHVGNFVHGFSHVF-NH2) was isolated from hemocytes of the
marine tunicate Styela clava [45]. Clavanin A shows broad antimicrobial activity both in vitro and
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in vivo against Gram-negative and Gram-positive drug-resistant bacteria and fungi. Clavanin-MO
(FLPIIVFQFLGKIIHHVGNFVHGFSHVF-NH2) was synthesized by adding five hydrophobic amino
acids to the N-terminus of clavanin A, which improved its cell interaction and ability to penetrate cell
membranes compared to clavanin A (Figure 5). Clavanin-MO shows antibacterial activity against
Escherichia coli and Staphylococcus aureus, and has been shown to suppress inflammatory responses that
cause sepsis and destroy certain biofilms [46]. Both clavanin A and clavanin-MO affect components
of the immune system and influence the inflammatory response through their immunomodulatory
properties in C57BL/6 mice. The peptides increased the level of IL-10, an anti-inflammatory cytokine,
and decreased the levels of IL-12 and TNF-α, two pro-inflammatory cytokines that boost inflammation
and may lead to excessive damage [46].
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Figure 5. Structures of clavanin A (a) and clavanin-MO (b). Simulations of the three-dimensional
structures for A and B were obtained from http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#
forms::PEP-FOLD [46].

3.2.3. Crustin

Crustins, found in crustaceans, are cysteine-rich AMPs with a typical whey acidic protein (WAP)
domain and play an important role in innate immune mechanisms [47]. The WAP domain is a conserved
motif containing twelve cysteine residues with six disulfide bonds (Figure 6). Crustins with specific
activity against marine Gram-positive bacteria Corynebacterium glutamicum have been reported in
various crustaceans such as C. maenas, Pacifastacus leniusculus, Scylla paramamosain, and Penaeus monodon
(MW 7–14 kDa). Crustins are released from the hemocytes of crustaceans by exocytosis [47–51].

Mar. Drugs 2019, 17, x 8 of 27 

 

Figure 4. Structures of callinectin. Simulations of the three-dimensional structures were obtained from 

http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD [43]. 

3.2.2. Clavanin A and Clavanin-MO 

Clavanin A (VFQFLGKIIHHVGNFVHGFSHVF-NH2) was isolated from hemocytes of the 

marine tunicate Styela clava [45]. Clavanin A shows broad antimicrobial activity both in vitro and in 

vivo against Gram-negative and Gram-positive drug-resistant bacteria and fungi. Clavanin-MO 

(FLPIIVFQFLGKIIHHVGNFVHGFSHVF-NH2) was synthesized by adding five hydrophobic amino 

acids to the N-terminus of clavanin A, which improved its cell interaction and ability to penetrate cell 

membranes compared to clavanin A (Figure 5). Clavanin-MO shows antibacterial activity against 

Escherichia coli and Staphylococcus aureus, and has been shown to suppress inflammatory responses 

that cause sepsis and destroy certain biofilms [46]. Both clavanin A and clavanin-MO affect 

components of the immune system and influence the inflammatory response through their 

immunomodulatory properties in C57BL/6 mice. The peptides increased the level of IL-10, an anti-

inflammatory cytokine, and decreased the levels of IL-12 and TNF-α, two pro-inflammatory 

cytokines that boost inflammation and may lead to excessive damage [46]. 

 

Figure 5. Structures of clavanin A (a) and clavanin-MO (b). Simulations of the three-dimensional 

structures for A and B were obtained from http://mobyle.rpbs.univ-paris-diderot.fr/cgi-

bin/portal.py#forms::PEP-FOLD [46]. 

3.2.3. Crustin 

Crustins, found in crustaceans, are cysteine-rich AMPs with a typical whey acidic protein (WAP) 

domain and play an important role in innate immune mechanisms [47]. The WAP domain is a 

conserved motif containing twelve cysteine residues with six disulfide bonds (Figure 6). Crustins 

with specific activity against marine Gram-positive bacteria Corynebacterium glutamicum have been 

reported in various crustaceans such as C. maenas, Pacifastacus leniusculus, Scylla paramamosain, and 

Penaeus monodon (MW 7–14 kDa). Crustins are released from the hemocytes of crustaceans by 

exocytosis [47–51]. 

 

Figure 6. Amino acid sequences of crustin from the haemocyte of the mud crab Scylla serrata
(Genbank: ADW11096.1) [47]. (a) Amino acid residues in the open square box indicate a putative
signal sequence. Cysteine residues that participate in the formation of intramolecular disulfide bonds
are red characters and the WAP domain is denoted in the gray box. Six disulfide bonds indicated
green lines. (b) Structural model of active crustin of S. serrata created using the SWISS-MODEL server
(https://swissmodel.expasy.org/).
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3.2.4. Defensin

Defensins are small cysteine-rich cationic AMPs that act as host defense peptides (Figure 7).
Defensin was found in various sources, including animals, plants, and insects. The human defensins
are classified into the α-defensins and β-defensins on the basis of their sequence homology and their
cysteine residues. The first marine defensin was isolated by acidified gill extraction from Crassostrea
virginica [52,53]. Defensins are antimicrobial peptides that disrupt the membrane of microbial pathogens
and play a major role in immunomodulation by acting in the innate and adaptive immune response [54].
Marine-derived defensins were isolated from the oysters C. gigas and C. virginica and mussels Mytilus
edulis and M. galloprovincialis. Three types of defensins (Cg-Defs) were identified in the pacific oyster
C. gigas (Cg-defh1 and Cg-defh2) and hemocytes. Two defensins, MGD1 and MGD2, derived from M.
galloprovincialis showed potent antimicrobial activity by activating the immune response [55]. Following
bacterial infection, an increase of MGD-1 in M. galloprovincialis plasma and MGD-2 stimulated the
release from hemocytes.
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Figure 7. Amino acid sequences of defensin from the oysters Crassostrea gigas (Genbank:
ACQ76262.1) [52]. (a) Amino acid residues in the open square box indicate a putative signal sequence.
The active defensin is denoted in the gray box. (b) Structural model of defensin of C. gigas created
using the SWISS-MODEL server (https://swissmodel.expasy.org/).

3.2.5. Myticin

Myticin is also a cysteine-rich AMP derived from the Mediterranean mussel M. galloprovincialis.
It has three isoforms, myticin A, myticin B, and myticin C. Myticin A (4.438 Da) and B (4.562 Da)
were identified in the hemocytes and plasma of M. galloprovincialis and showed antibacterial activity
against Gram-positive bacteria [56]. Myticin C showed antibacterial activity against the fungus
Fusarium oxysporum and E. coli as well as Gram-positive bacteria and acted as an immunomodulator
in vivo [57]. RT-qPCR analysis revealed immune-related Myticin C gene expression following in vivo
immunostimulation in mussels, indicating its important role in innate immune defense (Figure 8) [58].

3.2.6. Mytilin

Mytilins are cysteine-rich cationic AMPs found in marine mollusks. Mytilin A and mytilin B,
isoforms mytilin C, mytilin D, and mytilin G1 were isolated from Mytilus edulis and M. galloprovincialis
(Figure 9). All mytilin isoforms show potent antimicrobial activities [59,60]. Mytilins are transported
through hemocytes to reach bacteria, and cells containing mytilin act as phagocytosing bacteria to
prevent microbes from entering the circulatory system [60].

https://swissmodel.expasy.org/
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3.2.7. Mytimycin 

Mytimycin is an antifungal peptide (6233.5 Da) isolated from the blue mussel Mytilus edulis and 

M. galloprovincialis [55,59]. Mytimycin, which consists of 12 cysteines connecting six disulfide bridges 

and an C-terminal extension that contains an EF-hand domain (Ca2+ binding motif), defends against 

invading pathogenic microbes. The gene responsible for mytimycin is mainly expressed in circulatory 

hemocytes (Figure 10) [61]. 

Figure 8. Amino acid sequences of myticin C from the Mediterranean mussel Mytilus galloprovincialis
(Genbank: AEZ79080.1) [58]. (a) Amino acid residues in the open square box indicate a putative
signal sequence. The mature peptides are denoted in the gray box. Black-lined amino acid residues
indicate C-terminal regions. (b) Structural model of myticin C of M. galloprovincialis created using the
SWISS-MODEL server (https://swissmodel.expasy.org/).
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Figure 9. Amino acid sequences of mytilin B from the Mediterranean mussel Mytilus galloprovincialis
(Genbank: AAD45013.1) [59]. (a) Amino acid residues in the open square box indicate a putative
signal sequence. (b) Structural model of active mytilin B of M. galloprovincialis created using the
SWISS-MODEL server (https://swissmodel.expasy.org/).

3.2.7. Mytimycin

Mytimycin is an antifungal peptide (6233.5 Da) isolated from the blue mussel Mytilus edulis and
M. galloprovincialis [55,59]. Mytimycin, which consists of 12 cysteines connecting six disulfide bridges
and an C-terminal extension that contains an EF-hand domain (Ca2+ binding motif), defends against
invading pathogenic microbes. The gene responsible for mytimycin is mainly expressed in circulatory
hemocytes (Figure 10) [61].
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Figure 10. Amino acid sequences of mytimycin from the blue mussel Mytilus edulis (Genbank:
AET85056.1) [61]. (a) Amino acid residues in the open square box indicate a putative signal sequence.
Cysteine residues that participate in the formation of intramolecular disulfide bonds are red characters
and the mature peptide is denoted in the gray box. Six disulfide bonds are indicated by green lines.
Black-lined amino acid residues indicate EF hands, Ca2+ binding motif. (b) Structural model of active
mytimycin of M. edulis created using the SWISS-MODEL server (https://swissmodel.expasy.org/).

3.2.8. Phosvitin-Derived Peptide (Pt5)

Zebrafish phosvitin-derived peptide Pt5, consisting of the C-terminal 55 residues
of phosvitin, has been shown to have antimicrobial activity and immunomodulatory
activity comparable to phosvitin in vitro. Amino acid sequence of Pt5 was
SRMSKTATIIEPFRKFHKDRYLAHHSATKDTSSGSAAASFEQMQKQNRFLGNDIP (Figure 11).
Pt5 has been reported to increase the survival rate of zebrafish infected by Aeromonas hydrophila by
significantly decreasing the number of A. hydrophila in the blood, spleen, kidneys, liver, and muscles.
Pt5 also inhibits the expression of proinflammatory cytokine genes (IL-1β, IL-6, TNF-α, and IFN-γ)
in the spleen and head kidneys of A. hydrophila-infected zebrafish, but increased the expression of
anti-inflammatory cytokine genes (IL-10 and IL-14) [62].
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3.2.9. Salmo Salar NK-Lysin-Derived Peptides

NK-lysin are AMPs composed of 74 to 78 residues and that contain six cysteine residues that
form three disulfide bonds and a C-terminal region that contains a saposin B-type domain (Figure 12).
Peptide activity depends on these intact disulfide bonds, and the antimicrobial activity of NK-lysin was
inhibited when the peptide was pre-treated with dithiothreitol [63]. NK-lysin from Atlantic salmon

https://swissmodel.expasy.org/
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(Salmo salar) induced the expression of proinflammatory cytokines (IL-1β and IL-8) in the S. salar head
kidney leukocytes. NK-lysin modulates the immune response, suggesting its potential for enhancing
the immune response in fish [64].
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3.2.10. Scygonadin

Scygonadin (10.8 kDa) is an anionic AMP isolated from the seminal plasma of the mud crab
Scylla serrata (Figure 13) [65,66]. Scygonadin are AMPs involved in the host defense by protecting the
reproductive system of organisms [66].
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Figure 13. Amino acid sequences of scygonadin from the seminal plasma of the mud crab Scylla serrata
(Genbank: AAW57403.1) [65]. (a) Amino acid residues in the open square box indicate a putative signal
sequence. (b) Structural model of active scygonadin of S. serrata created using the SWISS-MODEL
server (https://swissmodel.expasy.org/).

3.2.11. Thalassospiramides A and D

Thalassospiramides A and D, which are cyclic lipopeptides, were isolated from Thalassospira
sp. Thalassospiramide D differs in structure at the N-terminus in which the proteinogenic serine
residue in thalassospiramide A is replaced with the nonstandard phenylalanine-based statine residue

https://swissmodel.expasy.org/
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4-amino-3-hydroxy-5-phenylpentanoic acid (Figure 14) [67]. Thalassospiramides A and D suppressed
lipopolysaccharide (LPS)-induced nitric oxide (NO) production by murine macrophage RAW 264.7
cells [68]. Thalassospiramides A and D were inhibited by IL-5, which plays an important role in
TH2-mediated inflammatory diseases such as asthma.
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Figure 14. Chemical structures of thalassospiramide A (a) and thalassospiramide D (b) created using
the Chemdraw. Lipopeptide side chain indicated by two elliptical circles [67,68].

3.2.12. Tilapia Piscidin 3 (TP3) and Tilapia Piscidin 4 (TP4)

The tilapia piscidins are a group of peptides with antimicrobial, wound-healing, and antitumor
functions. TP3 (FIHHIIGGLFSVGKHIHSLIHGH) and TP4 (FIHHIIGGLFSAGKAIHRLIRRRRR) are
AMPs isolated from Oreochromis niloticus (Figure 15). TP3 and TP4 significantly increased the expression
of several immune-related genes in muscle (IL-1β, IL-6, IL-8 TGF-β, and IκB) and decreased the
expression of Toll-like receptor 5 (TLR5) after Vibrio vulnificus infection. Infection with Streptococcus
agalactiae significantly decreased IL-1β, IL-8, TLR5, TGF-β, and IκB. TP3 and TP4 show potential for
development as drug candidates to combat fish bacterial infections in aquaculture [69].
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3.3. Immunomodulatory Protein Hydrolysates

Protein hydrolysates derived from various proteins have been reported to have a wide range of
biological activities, such as anti-inflammatory, anticancer, antioxidant, antimicrobial, anti-hypertensive,
and immunomodulatory activities [17,20,70,71]. During protein hydrolysis, peptide bond cleavage
results in the formation of bioactive peptides with different sizes. Several proteolytic enzymes were
successfully used to produce immunomodulatory protein hydrolysates. These enzymes include
pancreatin, KojizymeTM, trypsin, Alcalase®, Flavourzyme®, ProtamexTM, α-chymotrypsin, pepsin,
Neutrase®, and thermolysin.

Immunomodulatory protein hydrolysates have not been reported to be cytotoxic, unlike protein
hydrolysates with antibacterial or anticancer activity [70]. Antimicrobial peptides are important in the
first line of the host defense system against pathogenic microorganisms that easily come in contact with
the host through the environment [52,53]. Antimicrobial peptides from marine protein hydrolysates
are increasingly isolated and reported during the last few years [72–76]. Since there are few reports
of marine-derived protein hydrolysates having both antibacterial and immunomodulatory activity,
this review summarizes the immunomodulatory protein hydrolysates isolated from diverse marine
sources (Table 4).
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Table 4. Immunomodulatory protein hydrolysates from diverse marine sources.

Name of
hydrolysate

Source/amino acid
sequence, MW Treated enzymes Mechanism of action Ref.

Chlorella protein
hydrolysate

Algae: Chlorella vulgaris
(<5000 Da) Pancreatin

Enhanced hemopoiesis, leukocyte count,
peritoneal exudate cells, macrophage activity;
stimulation of both humoral and cell-mediated
immune functions (T-dependent antibody
response and reconstitution of delayed-type
hypersensitivity response) in BALB/c mice

[77]

Ecklonia protein
hydrolysate Algae: Ecklonia cava KojizymeTM

Increases in lymphocytes, monocytes, and
granulocytes; increase in numbers of CD4+ T
cells, CD8+ T cells, and CD45R/B220+ B cells;
down-regulation of TNF-α and IFN-γ,
up-regulation of IL-4 and IL-10 in ICR mice

[78]

Porphyra protein
hydrolysate Algae: Porphyra columbina Alcalase®, trypsin, combination

of both protease
Cytokine modulations (inhibition of TNF-α
and IFN-γ, increase of IL-10) in rat splenocytes [79]

Porphyra columbina
protein hydrolysate Algae: Porphyra columbina Flavourzyme®and fungal

protease concentrate

Immunomodulatory effects on rat
macrophages and lymphocytes, activates
NF-κB- and MAPK-dependent pathways, and
mainly induces IL-10 production; inhibition of
TNF-α, IL-1β, and IL-6

[80]

Edible red algae
protein hydrolysate Algae: Porphyra tenera

Alcalase®, Flavourzyme®,
Neutrase®, ProtamexTM,
amyloglucosidase (AMG),
Celluclast®, Dextrozyme®,
Maltogenase, Promozyme,
Termamyl®, Viscozyme®

Inhibition of LPS-induced NO production by
murine macrophage RAW 264.7 cells [81]

Edible microalgae
Spirulina protein
hydrolysate

Algae: Spirulina maxima
LDAVNR (686 Da), MMLDF
(655 Da)

Trypsin, pepsin,
α-chymotrypsin

Inhibited histamine release and production
from RBL-2H3 mast cells; interference with
signaling pathways dependent on Ca2+ and
microtubules (LDAVNR); inhibition of
phospholipase Cγ activation and reactive
oxygen species formation (MMLDF); NF-κB
translocation and formation of IL-4

[82]

Oyster
peptide-based
enteral
nutrition formula

Oyster: Crassostrea
hongkongensis Bromelain, pepsin, trypsin Enhanced spleen lymphocyte proliferation and

activity of NK cells in BALB/c mice [83]

Oyster protein
hydrolysate

Oyster: Crassostrea gigas
(<3 kDa)

Protease from Bacillus
sp. SM98011

Enhanced spleen lymphocyte proliferation;
macrophage phagocytosis and NK cell
cytotoxicity in BALB/c mice

[15]

Paphia undulata
meat protein
hydrolysate

Mollusk: Paphia undulata
PHTC, VGYT, EF, LF and
EGAL,
WI, or WL

Protease from Bacillus subtilis Enhanced mice spleen lymphocyte
proliferation ability ex vivo [84]

Cyclina sinensis
protein hydrolysate

Venus clam: Cyclina sinensis
RVAPEEHPVEGRYLV
(1750.81 Da)

Pepsin

Enhanced macrophage phagocytosis, increased
production of NO, TNF-α, IL-6, and IL-1β, and
up-regulated protein levels of iNOS, NF-κB,
and NLRP3 in RAW 264.7 cells;
down-regulation of the expression of inhibitor
of IκB-α; stimulation of macrophage activities
by activating the NF-κB signaling pathway

[85]

Rudi tapes protein
hydrolysate

Short-necked clam:
Ruditapes philippinarum
QCQQAVQSAV (876 Da)

Alcalase®, Flavourzyme®,
Neutrase®, ProtamexTM,
α-chymotrypsin, papain, pepsin,
trypsin

NO inhibitory activity in LPS-stimulated RAW
264.7 macrophages [86]

Shellfish Mytilus
protein hydrolysate

Shellfish: Mytilus coruscus
GVSLLQQFFL (1151.37 Da)

Alcalase®, Flavourzyme®,
Neutrase®, α-chymotrypsin,
papain, pepsin, trypsin

Inhibited LPS-induced NO production in
RAW264.7 macrophages [87]

Alaska pollock
protein hydrolysate

Alaska pollock: Theragra
chalcogramma
PYGADY (622 Da)

Trypsin Enhanced humoral, cellular, and non-specific
immunity in immunosuppressed mice [88]

Alaska pollock
frame protein
hydrolysate

Alaska Pollock: Theragra
chalcogramma
NGMTY (584 MW), NGLAP
(470 MW), and WY
(305 MW)

Trypsin Enhanced mice spleen lymphocyte
proliferation activity [89]

Fermented pacific
whiting protein

Fish: Merluccius merluccius
(<1 kDa) Yeast

Enhanced phagocytic activity of peritoneal
macrophages, increased number of IgA+ cells,
and increased IL-4, IL-6, IL-10, IFN-γ, and
TNF-α levels in the small intestine lamina
propria in mice

[90]
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Table 4. Cont.

Name of
hydrolysate

Source/amino acid
sequence, MW Treated enzymes Mechanism of action Ref.

Chum salmon
oligopeptide
preparation

Fish: Oncorhynchus keta
(300–860 Da) Complex protease

Enhanced lymphocyte proliferation capacity
increased number of plaque-forming cells,
increased NK cell activity, increased percentage
of CD4+ TH cells in spleen and secretion of
TH1 (IL-2, IFNγ) and TH2 (IL-5, IL-6)-type cell
cytokines in ICR mice

[91]

Salmon fish protein
hydrolysate

Fish: Atlantic salmon fish
(Contained 60–70% di/tri
peptides
of < 10 kDa)

Endogenous hydrolyzing agents
Changes of IgM, IgG, and IgA and CD4/CD8
ratios were observed in malnourished Indian
children

[92]

Salmon byproduct
protein

Salmon fish byproduct from
pectoral fin
(1000–2000 Da)

Alcalase®, Flavourzyme®,
Neutrase®, ProtamexTM,
pepsin, trypsin

Inhibited TNF-α, IL-6, and IL-1β in
LPS-induced RAW264.7 macrophages [93]

Salmon pectoral fin
byproductprotein

Salmon fish byproduct from
pectoral fin
PAY (349.15 Da)

Pepsin

Inhibited production of NO and prostaglandin
E2; production of pro-inflammatory cytokines,
TNF-α, IL-6, and IL-1β in LPS-stimulated
RAW264.7 cells

[94]

Shark-derived
protein hydrolysate

PeptiBalTM, (innoVactiv, Inc.)
(<10 kDa)

Trypsin, α-chymotrypsin

Enhanced gut barrier function via
up-regulation of IgA-producing cells and
intestinal cytokine production, including IL-6
and TNF-α in mice; inhibited production of
TGF-β and IL-10 caused by infection with
enterotoxigenic E. coli H10407

[95]

Sweetfish-derived
protein hydrolysate Sweetfish Pepsin, trypsin, α-chymotrypsin

Inhibited production of NO, cytokines (TNF-α
and IL-6), and PGE2 in LPS-induced
RAW264.7 macrophages

[96]

Common carp egg
protein hydrolysate

Fish: Cyprinus carpio egg
(5-90 KDa) Alcalase®, pepsin, trypsin

Enhanced proliferation of spleen lymphocytes,
NK cell cytotoxicity, macrophage phagocytosis,
level of mucosal immunity (S-IgA), and
percentages of CD4+ and CD8+ cells in
BALB/c mice

[97]

Rohu egg protein
hydrolysate

Fish: Labeo rohita egg
(<10 kDa) Alcalase®, pepsin, trypsin

Significantly enhanced macrophage
phagocytosis, NK cell cytotoxicity, mucosal
immunity (S-IgA), splenic CD4+ & CD8+ T
cells, and level of serum IgA in mice

[98]

3.3.1. Chlorella Protein Hydrolysate

An enzymatic protein hydrolysate from the green microalga Chlorella vulgaris was prepared by
hydrolysis of an ethanol-extracted cell biomass with pancreatin (Sigma-Aldrich, St. Louis, MO, USA).
Both innate and specific immune responses (such as bone marrow cellularity and leukocyte counts
in peripheral blood) were recovered when Chlorella protein hydrolysate was orally administrated in
undernourished BALB/c mice, including significant increases in the lymphocyte pool, production of
T-cell dependent antibody reactions, and reconstruction of delayed-type hypersensitivity reactions [77].
Starved mice treated with Chlorella protein hydrolysate showed a larger number of peritoneal exudate
cells and higher activation of macrophages compared to non-supplemented mice. Additionally,
stimulation of the mononuclear phagocytic system occurred as carbon clearance increased in the
peripheral blood.

3.3.2. Ecklonia Protein Hydrolysate

An enzymatic protein hydrolysate from the brown seaweed Alariaceae Ecklonia cava was prepared
by hydrolysis of cell biomass with Kojizyme (Novo Nordisk, Bagsvaerd, Denmark). Ecklonia cava
hydrolysate was shown to activate or suppress immune cell functions of murine splenocytes in vitro.
ICR mice injected with Ecklonia protein hydrolysate showed enhanced splenocyte proliferation and
increased numbers of splenocytes, lymphocytes, monocytes, and granulocytes. The numbers of CD4+ T
cells, CD8+ T cells, and CD45R/B220+ B cells also increased. Additionally, TNF-α and IFN-γ, which are
type Th1 cytokines, were downregulated by Ecklonia protein hydrolysate, while the type TH2 cytokines
IL-4 and IL-10 were upregulated. Thus, Ecklonia protein hydrolysate has immunomodulatory effects
and activates anti-inflammatory responses [78].
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3.3.3. Porphyra Protein Hydrolysate

An enzymatic protein hydrolysate from the algae Porphyra columbina was prepared by hydrolysis
with Alcalase®(Danisco S.A., Arroyito, Cordoba, República Argentina), trypsin, and a combination of
both proteases. The hydrolysate showed immunosuppressive effects in rat splenocytes by enhancing
anti-inflammatory cytokine (IL-10) production, while the production of pro-inflammatory cytokines
such as TNF-α and IFN-γwas decreased [79].

3.3.4. Porphyra columbina Protein Hydrolysate

An enzymatic protein hydrolysate from P. columbina was prepared by hydrolysis with flavourzyme
(Sigma-Aldrich, St. Louis, MO, USA) and fungal protease concentrate. P. columbina protein hydrolysate
was enriched in aspartic acid, alanine, and glutamic acid. It showed immunomodulatory effects
on primary splenocytes, macrophages, and T lymphocytes in vitro. IL-10 secretion was increased
in splenocytes (235%), macrophages (150%), and lymphocytes (472%) following treatment with
P. columbina protein hydrolysate, while the production of TNF-α, IL-1β, and IL-6 by macrophages
was inhibited (15–75%). The effect of P. columbina protein hydrolysate on IL-10 occurred through JNK,
p38 MAPK, and NF-κB pathways in T cells [80].

3.3.5. Edible Red Algae Protein Hydrolysate

An enzymatic protein hydrolysate from the edible red algae Porphyra tenera was prepared
by hydrolysis with four proteases (Alcalase®, Flavourzyme®, Neutrase®, and ProtamexTM)
and seven carbohydrases [amyloglucosidase (AMG), Celluclast®, Dextrozyme®, Maltogenase,
Promozyme, Termamyl®, and Viscozyme®]. These enzymatic hydrolysates showed antioxidant,
anti-acetylcholinestrase (AChE), and anti-inflammation activities. Edible red algae protein hydrolysate
showed no cytotoxicity in RAW264.7 macrophages, and inhibited LPS-induced NO production in
RAW264.7 macrophages [81]. Therefore, edible red algae protein hydrolysate shows potential as a
source of anti-inflammatory drugs.

3.3.6. Edible Microalgae Spirulina Protein Hydrolysate

An enzymatic protein hydrolysate from the filamentous blue-green algae Spirulina maxima was
prepared by hydrolysis with trypsin, pepsin, and α-chymotrypsin (Sigma-Aldrich, St. Louis, MO,
USA). Two peptides, LDAVNR (P1, 686 Da) and MMLDF (P2, 655 Da), from edible microalgae
Spirulina protein hydrolysate significantly inhibited RBL-2H3 mast-cell degranulation by decreasing
histamine release and increasing intracellular Ca2+. The inhibitory activity of P1 by blocking Ca2+- and
microtubule-dependent signaling pathways, and the suppression of P2 were involved in phospholipase
Cγ activation and reactive oxygen species production. Additionally, the inhibitory effect of P1 and P2
on the generation of IL-4 occurred via decreased nuclear factor-κB translocation [82].

3.3.7. Oyster Peptide-Based Enteral Nutrition Formula

An enzymatic peptide-based enteral nutrition formula from the oyster Crassostrea hongkongensis
was prepared by hydrolysis with bromelain, pepsin, and trypsin. The immunological effects of an oyster
peptide-based enteral nutrition formula using malabsorption mice and cyclophosphamide-induced
immunosuppression mice were investigated, and spleen lymphocyte proliferation and NK cell activity
was observed to be enhanced. This indicates that an oyster peptide-based enteral nutrition formula
has an immune-stimulating effect on mice [83].

3.3.8. Oyster Protein Hydrolysate

An oligopeptide-enriched protein hydrolysate oyster C. gigas was prepared by hydrolysis with
protease from Bacillus sp. SM98011. The growth of implantable sarcoma-S180 was inhibited in a
dose-dependent manner in BALB/c mice injected with oyster protein hydrolysate. Additionally,
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the body weight of BALB/c mice was further reduced by oral administration of oyster protein
hydrolysate, while the weight coefficients of the thymus and spleen, activity of NK cells, spleen
proliferation of lymphocytes, and growth of macrophages in mice with S180 increased markedly after
administration of oyster protein hydrolysate. These results showed that oyster protein hydrolysate has
strong immunostimulation activity in mice, which may lead to antitumor activity [15].

3.3.9. Paphia Undulata Meat Protein Hydrolysate

An enzymatic protein hydrolysate from the Chinese clam Paphia undulata was prepared by
hydrolysis with alkaline protease from Bacillus subtilis. The isolated fractions (P2 and P3) of P. undulata
meat protein hydrolysate contained the peptides PHTC, VGYT, EF, LF, EGAL, WI, or WL, respectively.
Amino acid analysis of P2 and P3 confirmed that the DPPH radical scanning activity was strong
because of the high levels of hydrophobic amino acids, including leucine, phenylalanine, valine,
and tryptophan. In addition, P. undulata meat protein hydrolysate enhances spleen lymphocyte
proliferation activity [84].

3.3.10. Cyclina sinensis Protein Hydrolysate (Novel Pentadecapeptide)

An enzymatic protein hydrolysate from the bivalve mollusk Cyclina sinensis was prepared by
hydrolysis with pepsin. Cyclina sinensis protein hydrolysate with a molecular weight of less than 3
kDa showed immunomodulatory activity with the highest relative proliferation rate in RAW264.7
macrophages. The amino acid sequence of this novel pentadecapeptide is RVAPEEHVEGRYLV
(1750.81 Da) and its immunomodulatory activity was found to result in enhanced macrophage
phagocytosis, increased productions of NO, TNF-α, IL-6, and IL-1β, and up-regulation of the levels
of iNOS, NF-κB, and NLRP3 in RAW264.7 cells (Figure 16). Thus, this protein hydrolysate shows
potential for immunomodulation because it can facilitate macrophage activity by activating the NF-κB
signaling pathway [85].
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3.3.11. Ruditapes Protein Hydrolysate

An enzymatic protein hydrolysate from short-necked clam, Ruditapes philippinarum, was prepared
by hydrolysis with eight proteases (Alcalase®, Flavourzyme®, Neutrase®, ProtamexTM,
α-chymotrypsin, papain, pepsin, and trypsin). These enzymatic hydrolysates showed NO-inhibitory
activity. Among the purified peptides in the Ruditapes protein hydrolysate, the NO-inhibitory peptide
consisted of 10 amino acid residues (QCQAVASAV, 876 Da) at the N-terminal region (Figure 17).
Additionally, purified peptides inhibited NO production in LPS-stimulated RAW264.7 cells. Purified
peptides in the Ruditapes protein hydrolysate showed strong anti-inflammatory activity [86].
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3.3.12. Shellfish Mytilus Protein Hydrolysate

An enzymatic protein hydrolysate from shellfish, Mytilus coruscus, was prepared by hydrolysis with
eight proteases (Alcalase®, Flavourzyme®, Neutrase®, ProtamexTM, α-chymotrypsin papain, pepsin,
and trypsin). Among the purified peptides in the Mytilus protein hydrolysate, the anti-inflammatory
peptide consisted of 10 amino acid residues (GVSLLEEFFL, 1151.37 Da) at the N-terminal region
(Figure 18). Additionally, purified peptides were found to inhibit NO production in LPS-stimulated
RAW264.7 cells. Purified peptides in the shellfish Mytilus protein hydrolysate show anti-inflammatory
activities [87].
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An enzymatic protein hydrolysate from Alaska pollock (Theragra chalcogramma) was prepared
by hydrolysis with trypsin (Sigma-Aldrich, St. Louis, MO, USA). The molecular weight of this
hydrolysate is 622 Da and amino acid sequence is PTGADY. The hydrolysate was confirmed
to have immunomodulatory activity, resulting in increased production of IL-2, IL-4, and IL-6 in
immunosuppressed mice. Additionally, purified Alaska pollock protein hydrolysate significantly
enhanced humoral, cellular, and non-specific immunity in immunosuppressed mice [88].

3.3.14. Alaska Pollock Frame Protein Hydrolysate

An enzymatic protein hydrolysate from Alaska pollock (T. chalcogramma) were prepared by
hydrolysis with seven proteases (alkaline protease, bromelain, Flavourzyme®, mixed enzymes for
animal proteolysis, neutral protease, papain, and trypsin). The amino acid sequences of Alaska pollock
frame protein hydrolysates are NGMTY (584 Da), LGLAP (470 Da), and WY (305 Da). These protein
hydrolysates show immunomodulatory activity with the highest relative lymphocyte proliferation
activity. The main amino acid residues in the purified Alaska pollock frame protein hydrolysate were
proline, aspartate, glutamic acid, and leucine, and the peptides enriched with the main amino acid
residues affected immunomodulatory activity [89].

3.3.15. Fermented Pacific Whiting Protein

The fish protein concentrate from pacific whiting Merluccius merluccins were prepared by
fermentation followed by proteolysis. In mice injected with fermented pacific whiting protein,
the number of immunoglobulin A (IgA) cells increased in the small intestine laminaria propria, but not
in the bronchial tissues. Significant increases in IL-4, IL-6, and IL-10 were observed in the laminar
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propria of mice injected with fermented pacific whiting protein. Pro-inflammatory cytokines (IFN
and TNF-α) also increased, while intestinal homeostasis was maintained and no tissue damage was
observed [90].

3.3.16. Chum Salmon Oligopeptide Preparation

An enzymatic protein hydrolysate from the chum salmon Oncorhynchus keta was prepared by
hydrolysis with complex protease. The molecular weight distribution of chum salmon oligopeptide
preparations was 300–860 Da, and its main amino acid composition was glutamic acid, aspartic acid,
lysine, leucine, arginine, and glycine. Chum salmon oligopeptide preparation greatly improved
lymphocyte proliferation induced by mitogen concanavalin A, the number of plaque-forming cells,
NK cell activity, the ratio of CD4+ TH cells in the spleen, and the secretion of TH1 (IL-2, IFN-γ) and
TH2 (IL-5, IL-6) cytokines in female ICR mice. No differences were observed in weight gain, lymphoid
organ indices, and phagocytosis capacity. Chum salmon oligopeptide preparation was confirmed to
enhance the immune response of the host [91].

3.3.17. Salmon Fish Protein Hydrolysate

Protein hydrolysate from Atlantic salmon was prepared by hydrolysis with endogenous
hydrolyzing agents. The hydrolysates contained 60–70% di/tri peptides (less than 10 kDa). Following
ingestion of salmon fish protein hydrolysate to malnourished children with grade I and II (Gomez’s
classification), the immunoglobulin, CD4/CD8 ratio, and hemoglobin levels measured as immunological
parameters did not vary significantly. Thus, salmon fish protein hydrolysate may be useful as a safe
nutrient supplement for malnourished children [92].

3.3.18. Salmon Byproduct Protein Hydrolysate

Enzymatic protein hydrolysate from salmon byproduct protein from the pectoral fin was prepared
by hydrolysis with six proteases (Alcalase®, Flavourzyme®, Neutrase®, ProtamexTM, pepsin, and
trypsin). Salmon byproduct protein hydrolysate showed potent DPPH and hydrogen peroxide
scavenging activities in a dose-dependent manner. Among the protein hydrolysates, salmon byproduct
protein hydrolysate 1, which showed the highest antioxidant action among purified salmon byproduct
protein hydrolysates, had a molecular weight of 1000–2000 Da. Its antioxidant amino acids (such as
tyrosine, phenylalanine, proline, alanine, histidine, and leucine) account for 28.62% of the total amino
acid content. Salmon byproduct protein hydrolysate 1 shows no cytotoxicity in Chang liver or RAW264.7
macrophage cells and inhibits intracellular reactive oxygen species generation, lipid peroxidation,
and glutathione levels in in Chang liver cells. Salmon byproduct protein hydrolysate 1 also shows
anti-inflammatory activity by inhibiting NO production and proinflammatory cytokines (TNF-α, IL-6,
and IL-1β) in RAW264.7 cells [93].

3.3.19. Salmon Pectoral Fin Byproduct Protein Hydrolysate

Enzymatic protein hydrolysates from salmon byproduct protein from the pectoral fin were
prepared by hydrolysis with pepsin. All salmon pectoral fin byproduct protein hydrolysates showed
anti-inflammatory activities. Among the protein hydrolysates, the tripeptide (PAY), which had a
molecular weight of 349.15 Da, exhibited strong NO- and prostaglandin E2 (PGE2)-inhibition activity
in LPS-stimulated RAW264.7 macrophages. Additionally, PAY significantly inhibited the protein
expression of inducible NO synthase and cyclooxygenase-2 responsible for generating NO and PGE2.
PAY treatment also inhibited the production of inflammatory cytokines (TNF-α, IL-1β, and IL-6) [94].

3.3.20. Shark-Derived Protein Hydrolysate

Enzymatic protein hydrolysates from shark-derived protein (PeptiBalTM, innoVactiv, Inc.,
Rimouski, Canada) were prepared by hydrolysis with trypsin and α-chymotrypsin. All shark-derived
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protein hydrolysates had molecular weights below 10 kDa. Following oral administration of
shark-derived protein hydrolysate, intestinal barrier function was enhanced by increasing the
production of IgA and intestinal cytokines (IL-6 and TNF-α). Increased TGF-β and IL-10 contributed
to the uncontrolled inflammatory response caused by infection with enterotoxigenic E. coli H10407.
This confirmed that shark-derived protein hydrolysate can be used as a pharmaceutical agent to reduce
the risk of bacterial infections and inflammatory-related diseases [95].

3.3.21. Sweetfish-Derived Protein Hydrolysate

Enzymatic protein hydrolysates from sweetfish-derived proteins were prepared by hydrolysis
with pepsin, trypsin, and α-chymotrypsin. Sweetfish-derived protein hydrolysate inhibited the
production of NO, inflammatory cytokines (TNF-α and IL-6), and PGE2 in LPS-stimulated RAW264.7
cells. Moreover, sweetfish-derived protein hydrolysate inhibited the mRNA expression levels of
inflammation-mediated proteins and inhibition of NF-κB activation. These results suggest that
sweetfish-derived protein hydrolysates can be used as anti-inflammatory agents [96].

3.3.22. Common Carp Egg Protein Hydrolysate

Enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg were prepared by
hydrolysis with Alcalase®, pepsin, and trypsin. The molecular weights of the three sweetfish-derived
protein hydrolysates were 5–90 kDa and contained high levels of essential amino acids and
docosahexaenoic acid among ω-3 fatty acids. The three sweetfish-derived protein hydrolysates
increased the proliferation of spleen lymphocytes, serum IgA, spleen NK cytotoxicity, and mucosal
immunity (secretory IgA), as well as induced spleen CD4+ and CD8+ cells in female BALB/c mice.
The results confirmed that sweetfish-derived protein hydrolysates can improve immune system
function [97].

3.3.23. Rohu Egg Protein Hydrolysate

Enzymatic protein hydrolysates from rohu (Labeo rohita) egg were prepared by hydrolysis with
Alcalase®, pepsin, and trypsin. The molecular weights of rohu egg protein hydrolysates were less than
10 kDa. Rohu egg protein hydrolysate increased splenic NK cell cytotoxicity, macrophage phagocytosis,
serum IgA levels, mucosal immunity (secretory IgA) in the gut, and percentages of spleen CD4+ and
CD8+ cells in BALB/c mice. The results confirmed that rohu egg protein hydrolysates can improve
immune function [98].

4. Marine Immunomodulatory Peptide-Based Drug Therapeutics and Future Prospects

Immunomodulatory protein, peptides, or protein hydrolysates act on a variety of targets,
containing monocytes, macrophages, NK cells, T and B lymphocytes, CD4+ and CD8+ T cells,
and CD45R/B220+ B cells (Tables 1–3). The mechanisms of action of marine-derived immunomodulatory
proteins, peptides, or protein hydrolysates mainly affects by macrophages activation; phagocytosis
stimulation; increased number of leukocytes; increased production of NO, immunoglobulins,
and cytokines; splenocyte proliferation; NK cell stimulation; and activation of the NF-κB- and
MAPK-dependent pathways (Figure 19).

The number of elderly people in the population is increasing. As people age, immune system
function decreases and inflammation increases. This leads to a greater number of infections and
higher death rates [99]. Innate immune responses are affected by various factors. During aging,
cytokine production by monocytes and macrophages is altered, phagocytotic capacity is decreased,
and TLR expression is reduced [100]. Marine-derived proteins, peptides, and protein hydrolysates were
found to be capable of controlling immune functions [90]. Thus, marine-derived proteins, peptides,
and protein hydrolysates palliated weakening of the immune system, thus improving the quality of
life and reducing medical costs as well as contributing to immunity.
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5. Conclusions

Bioactive proteins, peptides, or protein hydrolysates from marine biomaterials, particularly their
immunomodulatory effects, have been widely studied. A recent increase in the incidence of various
diseases has prompted attempts to use various immunomodulatory agents to control these diseases.
Most studies have focused on evaluating immune effects of marine-derived biomaterials in cellular
culture or animal studies, and subsequent studies in humans are rare. Therefore, additional clinical
studies are needed to investigate the safety, biocompatibility, and immune effects of immunomodulatory
products containing proteins, peptides, and hydrolyzed proteins developed from marine-derived
biomaterials in the human body. The effects of immunomodulation by marine-derived proteins or
peptides require detailed investigation.
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