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Abstract
Gene expression microarray studies have led to interesting experimental design
and statistical analysis challenges. The comparison of expression profiles across
populations is one of the most common objectives of microarray experiments. In
this manuscript we review some issues regarding design and statistical analysis for
two-colour microarray platforms using mixed linear models, with special attention
directed towards the different hierarchical levels of replication and the consequent
effect on the use of appropriate error terms for comparing experimental groups.
We examine the traditional analysis of variance (ANOVA) models proposed for
microarray data and their extensions to hierarchically replicated experiments. In
addition, we discuss a mixed model methodology for power and efficiency calculations
of different microarray experimental designs. Copyright  2005 John Wiley & Sons,
Ltd.
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Introduction

Early applications of the two-colour microarray
technology were generally limited to experiments
with a single slide comparing two mRNA sam-
ples, e.g. treated and control samples. Numerous
statistical approaches were suggested for selecting
differentially expressed genes between the two tar-
get samples. Some methods considered spots as
the experimental units, e.g. when genes are spotted
multiple times on each array; others employed dif-
ferent sorts of shrinkage estimation to come up with
estimates of variances and test statistics. Biological
variability, however, was not yet accounted for in
those experiments and statistical procedures. As a
result, inferences obtained from those early experi-
ments, such as differential expression significance,
as well as gene expression fold change estimates,
were restricted to the two specific samples used in
the competitive hybridization. Broader inferences,

relative to the two populations of interest, were not
possible (albeit researchers have frequently ignored
this fact), simply because of the lack of replication.

The importance of replication in gene expression
experiments is nowadays unambiguous. With two-
colour platforms (cDNA or long oligonucleotide
arrays), replication is considered at various hierar-
chical levels, including multiple subjects per exper-
imental group (biological replication), as well as
multiple slides per subject or multiple spots per
gene (technical replication). Multiple spots per
gene are intended to attenuate spatial effects on
each slide. Multiple slides per mRNA sample are
generally suggested to attenuate technical noise.
Only biological replication, however, can provide
information on subject-to-subject variability, essen-
tial for inferring differences on the populations rep-
resented in the experiment.

This new perception regarding microarray exper-
iments has given rise to further experimental
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design and statistical analysis challenges. From
an experimental design perspective, planning a
microarray trial now involves deciding not only
the number of replications (at both technical and
biological levels), but also the distribution of the
mRNA samples across slides and the labelling
assignments of mRNA samples in each competitive
hybridization.

From a data analysis standpoint, after a microar-
ray experiment is conducted and the image analysis
and data normalization are performed (which are
per se very interesting and important steps of any
microarray study), statistical tools are needed to
deal with data sets of unprecedented complexity
and dimensionality. Various statistical procedures
have been proposed or adapted from traditional
methods for the analysis of replicated microarray
experiments. Available procedures span a broad
range of statistical tools, such as linear and non-
linear models, alternative distributional assump-
tions, multivariate methods, shrinkage estimators,
multiple testing significance level adjustments and
so on.

Specifically for the comparison of expression
profiles across groups or populations (within either
experimental or observational settings), the
ANOVA models (including those with random
effects) are the most popular, due to their flexi-
bility and ease of use, as well as the availability of
software for their implementation. A careful look
at recent publications making use of such mod-
els for microarray data analysis, however, reveals
that the distinction between the different levels of
replications is not fully appreciated by a number
of researchers, either when performing F tests for
the selection of differentially expressed genes, or
for precision and power analysis before the experi-
ments are conducted. As a result, sample size calcu-
lations and test statistics p-values are unavoidably
incorrect, and so is any a posteriori multiple test-
ing approach for significance adjustment based on
these misleading p-values. Therefore, the accurate
definition of the experimental unit, with the appro-
priate distinction between technical and biological
replication, is crucial for the validity of inferences
from microarray gene expression studies. In this
context, the linear mixed effects models play a cen-
tral role. These models are extremely useful for the
analysis of data from a wide range of experimental
design settings, including incomplete block struc-
tures, missing data and different hierarchical levels

of replication and co-variance structures, such as
those encountered in microarray experiments.

In this manuscript, a brief overview of incom-
plete block designs and their application to two-
colour microarray experiments is presented. The
traditional analysis of variance (ANOVA) models
proposed for microarray data are reviewed, as well
as their extensions to mixed effects models to deal
with hierarchically replicated experiments. In addi-
tion, we discuss how these models can be used to
compare different experimental designs, as well as
to assess precision and power. A final section pro-
vides some concluding remarks and directions for
future research.

Alternative design layouts for microarray
experiments

Incomplete block structures

A first step of planning a microarray experiment
refers to the design of the array, including the
choice of the clones to be represented, the number
of spots and their spatial distribution on the slide.
A second step relates to the allocation of mRNA
samples to the slides, as well as the assignment of
labelling tags. Whenever an experiment involves
only two experimental groups, a natural alternative
for the allocation of the samples to the arrays is
to have one sample from each group represented
in each slide. Some additional variations may be
considered as well, including dye-swap and pooling
of samples. However, if more than two groups are
to be compared, an incomplete block structure is
inevitable and a number of different experimental
layouts may be adopted.

To review the concept of completely randomized
and block designs, consider the four fictitious agro-
nomical experiments depicted in Figure 1, involv-
ing three crop varieties (A, B and C) and six plots.
Squares with different border shadings represent
heterogeneous plots, due for example to differences
in soil fertility, water and light abundance, and
so on. In the case where plots are homogeneous
(Figure 1a), each variety can be assigned to two
of the plots with no restriction on the randomiza-
tion, within a completely randomized design. On
the other hand, if there are any inherent factors
splitting the plots into blocks, such that plots are
homogeneous within blocks but may be hetero-
geneous across blocks, the randomization should
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be performed within blocks, such that varieties
are spread out across blocks. This restriction in
the randomization generates the so-called block
design. If the number of plots within each block
is equal to the number of varieties, each vari-
ety will be represented in each block, within a
complete block design (Figure 1b). However, if
it is not possible to allocate all varieties in each
block, an incomplete block structure is required.
An alternative to overcome this situation is to
introduce an additional variety in the experiment,
which is assigned to every block of the experi-
ment as a mean to estimate and correct for dif-
ferences among blocks. This is the so-called ref-
erence design (Figure 1c1). Another possibility to
deal with this situation is to assign different sets of
varieties to each plot having, for example, any pair
of varieties appearing together equally often within
some block (Figure 1c2).

An important concept regarding incomplete
block designs refers to direct and indirect compar-
isons. A direct comparison between two varieties is
possible only if the varieties are represented within
the same block. An example in Figure 1 would be
the comparison of the varieties A and B within
the first block (white border plots) of Figure 1c2.
An indirect comparison refers to a contrast between
varieties represented in different blocks, but having
a third variety that links the two blocks, making
it possible to correct for differences due to plots
heterogeneity. Examples of indirect comparisons
would be any contrast between the varieties A, B or
C on the reference design of Figure 1c1. Another
example would be the comparison of varieties A
and C on the two first blocks (white and hatched
border plots) of Figure 1c2, in which case the vari-
ety B would work as the linking variety.

Microarray experiments resemble the situations
illustrated in Figures 1c1 and 1c2, where varieties
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Figure 1. Four possible design layouts for an agronomical
experiment involving three crop varieties (A, B and C) and
six plots. Completely randomized (a) and complete block
(b) designs, and incomplete block structures: reference (c1)
and circular (c2) designs

represent the mRNA samples, and the blocks repre-
sent the slides, which can accommodate two sam-
ples, one with each dye labelling. Different incom-
plete block designs have been discussed in the liter-
ature for microarray experiments, including layouts
such as those of Figure 1c1, in which a reference
mRNA sample is obtained for example by pool-
ing target samples or by using genomic DNA, and
of Figure 1c2, with the so-called loop (or circular)
designs (Kerr and Churchill, 2001a). Some advan-
tages and disadvantages of each alternative design
have been discussed, e.g. by Kerr and Churchill
(2001a) and Yang and Speed (2002). Direct com-
parisons provide more information regarding a spe-
cific contrast between two samples, as compared to
indirect comparisons. The estimated variance for a
specific contrast results from the combination of
all direct and indirect comparisons linking the two
varieties in the experiment.

Graphical representation of microarray
experiments

Microarray experiments are generally illustrated
by a set of arrows (Yang and Speed, 2002), in
which each arrow connects the two samples that are
hybridized together in a single slide. The arrow’s
tail and head denote the Cy3 (green) and Cy5 (red)
labelling assignments, respectively. A number on
the top of an arrow denotes the number of replica-
tions for that specific hybridization. For example,
Figure 2a depicts three replicated hybridizations of
samples A and B, which are labelled with Cy3 and
Cy5, respectively. Figure 2b and 2c represent the
reference and loop designs discussed previously,
respectively. In the reference experiment portrayed,
two target samples (A and B) are hybridized twice
with a third common sample (R). In the loop exper-
iment, the three target samples are arranged on
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Figure 2. Graphical representation of two-colour microar-
ray experiments. (a) Three replicated hybridizations of
samples A and B, labelled with Cy3 and Cy5, respec-
tively. (b) Reference design with two target samples (A
and B). (c) Loop experiment with three target samples and
three slides
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Figure 3. A more appropriate graphical representation
of two-colour microarray experiments, with indexes
representing biological replications. (a1, a2) Connected and
classical loop designs, respectively. (b1, b2) Common and
classical reference designs, respectively

three slides, so that each sample is represented on
two slides, with both labelling dyes.

In the context of different levels of replication,
however, this simplified graphical representation
is not totally satisfactory, e.g. Figure 2c does not
make clear whether the two samples of group A
refer to a single mRNA sample that was split and
labelled with different dyes, or to mRNA samples
from two different subjects. These two completely
different scenarios are much better illustrated by
Figure 3a1 and 3a2, respectively. The scenario in
Figure 3a1 is referred to as connected loop design,
whereas the scenario in Figure 3a2 consists of a
traditional incomplete block design.

Likewise, the reference design depicted in Figure
2b can represent either the so-called common refer-
ence design (Figure 3b1) or the classical reference
design (Figure 3b2) generally found in the agro-
nomical literature. These seemingly small differ-
ences can make a huge difference to experimental
design and statistical modelling of microarray data,
as discussed in the sections below.

Linear models for microarray data

ANOVA models
The first use of an ANOVA approach for analysing
microarray fluorescence intensities was presented
by Kerr et al. (2000). Their model may be described
as:

yadgvr = µ + Aa + Dd + (AD)ad + Gg

+ (AG)ag + (DG)dg + (VG)vg

+ εadgvr (1)

where yadgvr represents the expression intensities
on the log scale; µ is an overall constant; Aa , Dd
and (AD)ad are ‘global factors’ that account for
variation between arrays and dyes; Gg are the gene
effects; (AG)ag represents array by gene interac-
tions; (DG)dg are gene specific dye effects; (VG)vg
are the quantities of interest, related to differen-
tial expression of gene g specifically attributable
to variety (treatment) v ; and εadgvr are random
residual terms with variance σ 2

ε . This paper was
an important contribution to the microarray data
analysis literature, as it proposed that multiple fac-
tors (such as dye, slides, patches within slides and
so on) could be accounted for simultaneously in
the analysis. Nowadays, however, some important
drawbacks of this modelling approach are recog-
nized. First, a common residual variance is consid-
ered for all genes; it is now well known that this
is a very strong and unrealistic assumption. Second
and even more important, a fixed-effects model is
adopted, ignoring the multiple sources of random
variation, and considering the spot as the ‘fun-
damental experimental unit’ (Kerr and Churchill,
2001b).

Biological and technical replication

There are multiple sources of variability in microar-
ray experiments, and an important distinction
between two specific components. One is related
to biological or between-subjects variation (i.e.
individual-to-individual variability) and the other
refers to within-subject variability, related to mul-
tiple measurements on the same subject. This lat-
ter source represents measurement error or sub-
sampling variability, e.g. due to differential effi-
ciency of array hybridizations and image analysis.
Because of biological variability in gene expres-
sion due to genetic and environmental differences
among subjects, it is fundamentally important to
compare treatments based on different individu-
als per treatment. It is only the number of sub-
jects per treatment that determines true replication,
as opposed to pseudoreplication based on multi-
ple measurements or subsamples per subject (Gill,
1978).

To attenuate measurement error, researchers are
often interested in multiple measures for each
individual. Different levels of technical replica-
tion are possible, including multiple tissue samples
from each subject, multiple RNA extractions and
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cDNA syntheses from each tissue sample, repeated
hybridizations of each cDNA sample on differ-
ent arrays, multiple spots of the same gene spread
across each array, and several image analyses of
each array. Whenever multiple levels of replication
are considered, a hierarchical modelling approach
is required for sound statistical inference on treat-
ment differences.

Mixed effects models

Wolfinger et al. (2001) extended the ANOVA app-
roach of Kerr et al. (2000), including random
effects to model the dependence among observa-
tions relative to the same spots or arrays, and allow-
ing for gene-specific variance components. For
computational convenience, a two-step approach
was proposed. The first stage, referred to as ‘global
normalization’, fits all the data using a model
expressed as:

yadgvr = µ + Aa + Dd + (AD)ad + eadgvr

where the terms are defined as for model (1). From
the global normalization, the estimated residuals
êadgvr are saved. The second stage comprises a
series of gene specific models, which can be written
as:

êadgvr = µg + Aag + Ddg + Vvg + εadgvr (2)

where µg , Aag , Ddg , and Vvg are gene-specific
overall constant, array effects, dye effects and treat-
ment effects, respectively. Gene-specific variance
components are fitted for the random effects of
arrays and the residual terms. Additional factors
may be included into the model, depending on the
treatment structure (e.g. factorial experiments) and
design settings (e.g. patch effects, spot effects and
interactions involving random factors). For a dis-
cussion on the choice of fixed and random effects
in microarray experiments, see e.g. Steibel et al.
(2005).

It is important to note, however, that it does
not suffice to include biological replication in the
experiment and to include random effects into the
model; a correct definition of the experimental unit
is also crucial, with an appropriate characteriza-
tion of the model as well as the denominator of
the ANOVA F -statistic for comparing treatments
(Churchill, 2002; Wernisch et al., 2003).

Connection between model choice and design

The statistical modelling of experimental data
should be intimately connected with the design
layout of the experiment. To illustrate this point,
consider a simple experiment where two treatments
(varieties) are compared, and n subjects within
each treatment are measured m times for a cer-
tain trait. Assume that the data generation process
can be described as:

yvsr = µ + Vv + S (V )vs + εvsr (3)

where yvsr is the observed trait; µ is a general con-
stant; Vv represents the treatment effects; S (V )vs
refers to the random effect of subjects within treat-
ments, having variance σ 2

S ; and εvsr is a residual
term with variance σ 2

ε .
Suppose, however, that the following model is

used for analysing the data:

yvsr = µ + Vv + evsr (4)

where evsr is a random term with variance σ 2
e ,

assumed to be common to all observations, regard-
less of whether or not they refer to the same sub-
jects (repeated measurements). Under these circum-
stances, as the hierarchical replication structure is
ignored in the analysis and the ANOVA shown in
Table 1 is obtained.

Another incorrect specification for the analysis
would be using the model (3), but considering all
the components as fixed. In this case, the ANOVA
shown in Table 2 would be obtained.

It is clear that the treatment comparisons obtained
from such analyses are incorrect, as in both cases
the residual mean square would be used as the
denominator of the F test. Under the null hypoth-
esis, the F test statistic would tend to be greater
than 1, increasing the type I error rate beyond the
nominal significance level set by the researcher.

Table 1. ANOVA table associated with model (4), when
model (3) represents the true data generation process

SV DF E[MS]|model E[MS]|data generation

V 1 σ 2
e + φV σ 2

ε + mσ 2
S + φV

Residual 2(nm − 1) σ 2
e σ 2

ε +
[

m(n − 1)
nm − 1

]
σ 2

S

SV, source of variation; DF, degrees of freedom; E[MS]|model,
expected mean squares under model (4); E[MS]|data generation,
expected mean squares under model (3).
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Table 2. ANOVA table associated with a fixed effects
version of model (3)

SV DF E[MS]|model E[MS]|data generation

V 1 σ 2
ε + φV σ 2

ε + mσ 2
S + nmφV

S(V) 2(n − 1) σ 2
ε + φS(V) σ 2

ε + mσ 2
S

Residual 2n(m − 1) σ 2
ε σ 2

ε

SV, source of variation; DF, degrees of freedom; E[MS]|model,
expected mean squares under a fixed effects model; E[MS]|data
generation, expected mean squares under model (3).
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Figure 4. The graphics represent the smallest part of
alternative circular design layouts. In (a), independent
samples are used on each array (classical incomplete block);
in (b), each sample is represented on two arrays (connected
loop); and in (c), the same subject is assayed on all arrays,
such as in a longitudinal study

Similarly to the example discussed above, the
statistical modelling of a microarray data should be
intimately connected with its experimental design.
If a fixed effects model is adopted, the number
of differentially expressed genes may be overesti-
mated. This is because when a fixed effects model
is used, the error term refers only to the lowest level
of replication (e.g. spots). This apparent increase in
power, however, translates into an inflation of the
type I error and false discovery rates.

To illustrate some possible mixed effects mod-
els and their connection with the design layout of
microarray studies, consider the three experiments
depicted in Figure 4. The model (2) described
above would be a reasonable choice for analysing
data on each gene from the experiment shown in
Figure 4a, in which different subjects are repre-
sented in each array. In this case, observations
from different slides may be regarded as indepen-
dent, and the random effect of arrays models the
co-variance among observations within each slide.
Moreover, if each gene is represented on multi-
ple spots per slide, an additional term (the random
effect of spots within arrays) is needed to model
this extra level of technical replication.

Model (2), however, is not unique and may be
not appropriate to model microarray data from

other design layouts; e.g. if multiple connected loop
structures, such as the one represented in Figure 4b,
are considered, the dependency between observa-
tions relative to the same subject on different arrays
should be included in the model. This may be
accomplished by including a term for the random
effect of subjects within treatments, as follows:

êadgvsr = µg + Aag + Ddg + Vvg

+ S (V )svg + εadgvsr

It is important to note that in this case the term
S (V )svg is the appropriate error term (denominator
of the F test) to compare treatments.

As another example, consider an experiment in
which each subject is evaluated under different
conditions. Suppose, for example, that a blood
sample from each subject is split and submitted
to three different treatments (T0, T1 and T2),
before the evaluation of gene expression. The
three samples from each subject are then assayed
using a loop structure (Figure 4c). Under these
circumstances, all observations within a specific
loop may present some level of dependence. A
possible model for the analysis of such data may
be described as:

êadgvsr = µg + Ddg + Vvg + Ssg + VSvsg

+ A(S )asg + εadgvsr

where Ssg represents the random effect of subjects,
VSvsg is the interaction between treatments and
subjects, and A(S )asg refers to the random effect
of arrays within loops (subjects). In this case, the
error term for the comparison of treatments is the
interaction VSvsg .

Relative efficiency and robustness of
alternative experimental designs

A number of studies addressed specific aspects of
microarray experimental design, e.g. Lee and Whit-
more (2002) studied the sample size and power
calculation for replicated arrays; Black and Doerge
(2003) determined the optimal number of repli-
cated spots; and Pavlidis et al. (2003) evaluated the
effect of biological replication. Kerr and Churchill
(2001b), Dobbin and Simon (2002) and Yang and
Speed (2002) compared several designs in terms
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of the relative efficiency to estimate a treatment
effect. More recently, Churchill (2002) and Cui and
Churchill (2003) addressed the problem of hier-
archical replication and presented general expres-
sions for the variances of treatment contrasts,
and Kerr (2003) compared three common designs
using a mixed model ANOVA. A more explicit
use of mixed models methodology for compar-
ing microarray experimental designs was discussed
by Tempelman (2005) and Steibel et al. (2005).
They considered the method proposed by Stroup
(2002) to determine power, standard errors and
sample size calculations. This methodology is sim-
ple, as it does not require stochastic simulations and
can be implemented using standard mixed models
analysis software. A brief overview of this method-
ology is provided below.

A linear mixed effects model can be expressed
in a matrix notation as y = Xβ + Zu + e, where
y is a vector of observations, representing in
our case the expression intensities in the log
scale. The vectors β and u represent fixed and
random effects in the model, such as the treatment
and slides effects, respectively; and X and Z are
matrices of constants associate with β and u, which
characterize the experimental settings, such as the
treatment structure and the experimental design,
respectively. It is generally assumed that u and e
have independent multivariate normal distributions
with mean vectors 0 and co-variance matrices G
and R.

The comparison of treatment groups involves
hypothesis testing of estimable functions of the
form K′β, where K is a matrix of constants. An
approximated F statistic for testing the hypoth-
esis H0 : K′β = 0 (e.g. no differential expression
among treatments) is given by:

F (K′β = 0) = β̂ ′K(K′ĈK)−1K′β̂
Rank(K)

where β̂ = (X′V−1X)−X′V−1y, C = (X′V−1X)−
and V = ZGZ′ + R. This statistic has an approxi-
mate F[Rank(K),ν,φ] distribution with Rank(K)
numerator degrees of freedom; ν denominator
degrees of freedom, e.g. approximated by:

ν = 2E [(K′CK)]2/V [(K′CK)];
and non-centrality parameter

φ = β ′K(K′CK)−1K′β

The procedure to evaluate power for a given design
(which determines X and Z), co-variance structure
(given by G and R) and treatment differences
(encapsulated within β), is as follows (Stroup,
2002):

1. Determine the critical value (Fcrit ) of F
needed to reject H0 : K′β = 0, such that
Pr[F[Rank(K),ν,φ=0] > Fcrit] = α.

2. Determine φ from X and Z that follow from the
design, and the assumed V and β.

3. Determine the power, that is, Pr[F[Rank(K),ν,φ] >

Fcrit].

This procedure was used by Tempelman (2005)
to assess power and relative efficiency, as well as
robustness to missing arrays or spots, of reference
and non-reference layouts, such as those illustrated
on Figure 3. The results showed that, for a fixed
number of slides, the relative performance of
non-reference designs generally exceeds that of
reference designs. In addition, the classical loop
structure is generally better than the connected loop
alternative, whereas the common reference design
outperformed the classical reference alternative.
Nevertheless, the magnitude of the differences
depends on the ratio of biological to technical
variability. A similar approach was used by Steibel
et al. (2005), who compared the loop, dye-swap
and reference designs for experiments with two
treatments and three levels of replication (subjects,
arrays and spots). The reference design was again
outperformed by the non-reference alternatives.

It is important to mention, however, that the
choice of experimental design and the determina-
tion of the sample size in microarray experiments
are not exclusively a statistical issue, but they also
depend on logistic limitations of each laboratory
and field of research. For example, if limited quan-
tities of RNA are available from the test samples,
the reference design may be preferred, as the dye
swap and the loop designs would require twice the
quantity from each subject.

Discussion and concluding remarks

The mixed effects model approach discussed above
performs independent analyses for each gene, one
at a time. The drawback of this approach is that,
because sample sizes for each gene are usually
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relatively small, the power to detect differentially
expressed genes may be low. Various alternatives
have been proposed to overcome this situation and
to improve power. Shrinkage estimators aiming to
borrow information across genes are a promising
alternative in this context. An especially suitable
approach for mixed model analysis of microarray
data was presented by Feng et al. (2005). Their
procedure starts with the gene-specific analyses,
as discussed above, from which the estimated
variance components are transformed to ANOVA
components. The distribution of each ANOVA
component is then used as a prior distribution
in a second analysis, within an empirical Bayes
procedure.

Another interesting issue related to microarray
data analysis refers to the multiple testing problem.
The effect of treatments or experimental conditions
is tested for a series of genes, and a specific gene
is declared differentially expressed if its p-value
is less than α. The problem with this approach is
that, in a situation under the null hypothesis (i.e.
no differential expression at all, such as in self-self
hybridizations), 100α% of the genes are expected
to have significant p-values. So, for example, if
100 genes are tested considering α = 0.05, five
false positives (genes with p-values less than 0.05)
are expected. In addition, the probability of at
least one false positive is 1–0.95100 = 0.9941. The
situation evidently gets worse as the number of
genes increases. Various approaches have been
suggested to adjust the p-values and to control
family-wise error rates or false discovery rates. For
a review on this topic, see e.g. Dudoit et al. (2003).

This paper reviews power analysis and sample
size calculations for microarray experiments with
different sources of variation and hierarchical repli-
cation. The calculations require the input of vari-
ance components values, as well as of expression
fold changes. Plausible values for these quantities
can be obtained, for example, from the empiri-
cal distribution of parameter estimates obtained in
previous experiments. Nonetheless, genes present
different values of fold change and variance com-
ponents, such that any specific value used for sam-
ple size calculations will overestimate the power
for some genes and underestimate the power for
others. Moreover, in a multiple testing scenario,
power may be defined in different ways, such as
the probability of detecting at least one (or a pre-
specified proportion) of the differentially expressed

genes. Alternatively, power may be considered in
the context of expected discovery rate (EDR), as
discussed by Gadbury et al. (2004).
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