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An atomic model of brome mosaic virus using
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Advances in electron cryo-microscopy have enabled structure determination of macro-

molecules at near-atomic resolution. However, structure determination, even using de novo

methods, remains susceptible to model bias and overfitting. Here we describe a complete

workflow for data acquisition, image processing, all-atom modelling and validation of brome

mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating

mode and an exposure beyond the traditional radiation damage limit. The final density map

has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the

map to derive an all-atom model with a newly implemented real-space optimization protocol.

The validity of the model was verified by its match with the density map and a previous model

from X-ray crystallography, as well as the internal consistency of models from independent

maps. This study demonstrates a practical approach to obtain a rigorously validated atomic

resolution electron cryo-microscopy structure.
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E
lectron cryo-microscopy (cryo-EM) has progressed to the
point of determining near-atomic resolution maps of
macromolecular complexes (for example, see refs 1–3).

However, de novo structure determination remains challenging
due to initial model bias, map and model overfitting and/or lack
of rigorous map and model validation4,5. The ultimate goal of a
high-resolution cryo-EM study is to derive all-atom models for
the macromolecular components of the assembly that pass
the rigorous validation metrics routinely applied to X-ray
crystallographic structures6.

This study integrates a number of recently developed
technologies, including a direct electron detector, image proces-
sing using data beyond conventional radiation damage limits,
map validation and resolution assessment using multiple indices,
and de novo all-atom modelling, refinement and validation. Using
this complete experimental protocol, we report a de novo near-
atomic structure of a small (B284 Å in diameter) single-stranded
RNA virus, brome mosaic virus (BMV), with a T¼ 3 icosahedral
lattice7. This designation indicates that there are three quasi-
equivalent subunits (QES) in the icosahedral asymmetric unit.
A crystal structure is available at a comparable resolution8,
allowing for subsequent comparison to our results. In addition, its
relative small size reduced computational time when testing
different image processing protocols. Our goal was to use the
crystal structure to post-validate our analysis of the cryo-EM data
and to explore whether structural information missing from the
crystal structure could be retrieved from the cryo-EM map.

Results
Image acquisition using integrating mode with DE-12. Charge-
coupled device (CCD) cameras are widely used despite their
relatively low signal-to-noise ratio (SNR) at medium to high
spatial frequencies9,10. More recently, the development of
radiation-hardened complementary metal-oxide semiconductor
(CMOS) detectors that can directly detect primary electrons in an
electron microscope has proven a superior alternative to CCD
cameras. These new direct detectors have been successfully used
for data collection in cryo-EM (for example, see refs 2,3,11,12).
In addition to improving the spectral SNR (SSNR) of acquired
images12,13, direct detection cameras also provide the advantage
of intrinsic dose fractionation by recording multiple images per
specimen area within a single continuous exposure (hereafter
we refer to this type of data collection as a ‘movie’ and each
individual image within the movie a ‘frame’). Frames can be
prepared individually or in groups before being used for image
reconstruction2,3,14.

Direct detection cameras may operate in two different modes:
integrating mode or electron counting mode15,16. Counting mode
processes each electron event individually to normalize the energy
deposited by each incident electron and/or attempt to more
precisely localize each incident electron. This requires a very low
exposure per frame and a very high camera frame rate to
distinguish individual electron events. Consequently, current
implementations of counting mode typically require much longer
exposure times than integrating mode2,13. In contrast, integrating
mode generates frames by summing the signal generated by all
incident electrons in each pixel without attempting to distinguish
each electron event. Therefore, integrating mode is not limited by
the beam intensity and the frame rate of the device, and image
acquisition can use shorter exposure times to increase throughput
and reduce the overall amount of specimen motion due to
specimen stage instability.

In this study, we used a DE-12 Camera System (Direct
Electron, LP), comprised of a 4,096� 3,072 back-thinned Direct
Detection Device (DDD) sensor operated in integrating mode.

This camera was installed in the photographic film chamber
of a JEM-3200FSC (JEOL, Tokyo, Japan) electron microscope
operated at 300 kV with an in-column energy filter (with an
energy width of 20 eV).

BMV was deposited on a thin continuous carbon substrate (see
Methods) to improve the particle distribution and to reduce
beam-induced specimen movement. Images were recorded at a
nominal microscope magnification of � 50,000, corresponding to
a detector magnification of � 60,600. Each movie was collected
at 25 frames per second over 1.5 s and a specimen exposure rate
of B35 e� Å� 2 s� 1. Therefore, each specimen area was imaged
with a cumulative exposure of B52 e� Å� 2, distributed over 37
frames. This cumulative exposure is 2–3 times the typical number
used for high-resolution cryo-EM studies. Various subsets of
these frames were used for processing, as described below.

Evaluation of particle motion. Frame processing methods can be
done in two ways: (1) aligning individual or groups of frames or
boxed particles from those frames before summing to compensate
for specimen motion and/or charging during the course of data
recording2,3,14, and/or (2) summing various combinations of
frames to generate different particle images used separately for
particle orientation determination and for map generation4. Here
we assess new ways of processing DDD frames to improve the
efficiency of image processing and optimize the resolvability of
the final reconstruction.

Particles were selected using the sum of all frames in a movie
(without alignment or other processing procedures), which
provided sufficient contrast for particle identification. The
particle coordinates were then used to extract the same particle
from each of the 37 frames. We then assessed the motion of each
of the B30,000 selected particles throughout their entire 1.5 s
exposure. To assess particle motion, we summed three sequential
frames for each particle (corresponding to an exposure of
4.2 e� Å� 2) at different time points within a movie. Figure 1a
shows a histogram of the observed translational shift of the
B30,000 particle data set, between the initial time point (frames
2–4) and either an intermediate time point (frames 10–12) or the
ending time point (frames 34–36). The particle motion we
observed was relatively small, with only B1.5 Å mean deviation
between the initial and middle time points, and B2.1 Å mean
deviation between the initial and ending time points. Only B8%
of the particles were observed to move 43.3 Å (which
corresponded to the resolution of our final density map averaged
from the subunits in an asymmetric unit, see detail below) over
the entire exposure. This differs from previous reports observed
substantial motion, requiring computational motion correction
for single particle reconstruction at similar resolution2,3,14. One
possible explanation for the observed specimen stability in our
data was the use of a continuous carbon support film, which may
provide mechanical stability and/or minimize charging by
increasing the specimen’s electrical conductivity17. Since the
detected motion was relatively small (approximately equivalent
to the reciprocal of the Nyquist frequency of the imaging
conditions), we did not include motion correction in subsequent
image processing.

Evaluating SSNR in different frame sums. Though most of our
data did not appear to be affected by significant charging or
specimen motion, this does not guarantee the preservation of
high-resolution data. Next, we assessed the SSNR by computing
the one-dimensional (1D) power spectrum for various sums of
frames in a movie. The left panel of Fig. 1b,c shows an example of
a portion of the entire frame summed from frames 2–12 and 2–36
respectively, and right panel shows the 1D SSNR from 92
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particles (box size 420� 420 pixels) extracted from the corre-
sponding summed frames. While we did not correct for motion
during the exposure, the first two frames (frames 0 and 1) were
removed due to slow beam unblanking in our microscope and
known initial beam-induced specimen movement and/or char-
ging2,18. The power spectrum in Fig. 1b used a cumulative
exposure on the specimen of B18 e� Å� 2, which is considered a
safe exposure for high-resolution cryo-EM studies19,20.

The left panel of Fig. 1c represents a cumulative exposure on
the specimen of B53 e� Å� 2 for the same specimen area as in
Fig. 1b. At this increased cumulative exposure, high-resolution
features in biological macromolecules are damaged19–21. To
eliminate this data from the damaged specimen, we applied
radiation damage weighted filtering to each frame prior to
summing (hereafter called ‘damage compensation’). This is a
series of low-pass filters applied to each frame, modelled after the
disappearance of the high-resolution features resulting from

radiation damage as described previously19,20. Using this damage
compensation method (see Supplementary Methods), the overall
image contrast at low-resolution was enhanced by between a
factor of 1.25 to 2, while preserving high-resolution signal
(Fig. 1b–d). This factor is not linearly related to the number
of frames being averaged (see Supplementary Methods and
Supplementary Fig. 1).

3D reconstructions using various combinations of frame sums.
Our goal is to produce the structure with the best quality and
resolution from direct detection movie-mode data. To this end,
we performed multiple reconstructions using various sums of
frames and damage compensation. To properly assess the
resolution of our final density maps and to further validate
our reconstructions, we followed the gold-standard procedure,
that is, dividing the entire set of particle data into two separate
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Figure 1 | Assessment of particle movement and SSNR through the use of movie frames. (a) Histogram showing particle movements assessed by

comparing three-frame averages from the beginning, middle and end of each movie. The cumulative exposure was B53 e� Å� 2 accumulated over

1.5 s. (b) Left, a magnified portion of a summed frame (2–12). Right, the 1D SSNR of 92 BMV particles computed from that frame. (c) Same as b,

from summed frames 2–36. (d) Same as c, from summed frames 2–36, with damage compensation for each frame.
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data subsets prior to further image processing and 3D recon-
struction22,23. Each data subset used an independent initial model
generated by starticos of EMAN1 (ref. 24) (Fig. 2), which builds a
rough reconstruction from particles close to the five, three and
twofold symmetry axes. Multi-path simulated annealing
(MPSA)25 was used to quickly refine the map to 5 Å. MPSA
utilizes cross common lines in Fourier space to determine both
centre and orientation of a particle image simultaneously. When
the independent reconstructions reached a resolution of B5 Å,
we switched to EMAN1 and used a finer particle orientation
search (Supplementary Fig. 2). Resolution was estimated by the
0.143 Fourier shell correlation (FSC) criterion between the two
independent reconstructions, with an inner mask to remove the
RNA, which lacks overall icosahedral symmetry. The mask had a
Gaussian profile with a width of 5 Å to avoid the sharp mask-edge
effects, which may cause resolution exaggeration. A combined
map was then generated from all of the data, and filtered. The size
scale of the map was refined during the model optimization
process (Methods). All reported resolutions are based on the final
adjusted map scale of 0.99 Å pixel� 1.

Particle localization and orientation determination relies
heavily on low-resolution signal26. Individual frames collected
from the DDD camera can be manipulated to optimize low-
resolution contrast. We used particle images processed with
damage compensation to determine the particle orientations. We
then applied these particle orientations to generate different
density maps using particle images obtained from various sums of
frames. Using the damage-compensated sum of frames 2–36, a
map of 3.8 Å resolution was obtained (Supplementary Fig. 3). A
similar resolution map was also generated from the sum of frames
2–12 without damage compensation (Supplementary Fig. 3).
However, if we used the particle orientations determined solely
from the sum of frames 2–12 without damage compensation, the
resolution was 4.2 Å. This may be attributable to poorer
orientation determination due to relatively low particle contrast.
This suggests that the improved contrast from high-exposure,
damage-compensated DDD movies yields more accurate particle
orientations determination.

Additional validation of resolution estimates. The gold-
standard resolution estimation between two independently
determined maps may be influenced by factors including mask-
ing, filtering and non-icosahedral symmetry averaging within a
complex. To alleviate potential over-refinement that would result
in an overly optimistic resolution value, we randomized the
phases of the particle data beyond 10 Å, then repeated the
refinement procedure. Due to the lack of self-consistent data, a
robust refinement procedure should not result in resolution that
extends past 10 Å. A significant extension past this resolution is
an indication of model bias. This treatment was applied to the
two independent data sets, and a sharp fall-off was observed at
10 Å (Fig. 3a). According to a recently proposed formula2, the
‘True FSC’ is computed from FSC of the original data set and
the FSC of the randomized phase data set. The result of this
resolution estimation was identical to that from the gold-standard
FSC curve between the two independent reconstructions (Fig. 3a).

Estimate of the B-factor of the map. Map resolution is
dependent on numerous factors including the number of particles
(each of which contains 60 asymmetric units in the case of an
icosahedral particle such as BMV), specimen or stage motion,
envelope functions of the imaging conditions, modulation
transfer function of the detector, orientation estimation error and
various computational errors throughout the reconstruction
steps25,27,28. The cumulative effect of all of these factors can be
approximated as a Gaussian function, where the fall-off of Fourier
intensity, as a function of resolution, is related to the number of
asymmetric units and the ‘B-factor’27. The B-factor is an excellent
indicator of how much data is needed to achieve a particular
resolution in a given experimental and computational setting
for a given specimen. The B-factor can be approximated by
estimating the resolution (as defined above with two independent
maps) of various reconstructions using different subsets of
particles from the entire data set (Fig. 3c). The observed
resolution from various number of particles yielded an overall
B-factor for our data of B165 Å2, as determined from the slope of

Initial maps

Initial maps

Combined density map
50Å

Set 1

Set 2

Final maps

Final maps

Figure 2 | Cryo-EM density maps of two independent data sets and 3D reconstructions after 38 refinement iterations. With maps generated from

data sets 1 and 2 (a) and their combined maps (b). The initial model for each data set/reconstruction was generated using EMAN1. Subsequent

refinement was computed using MPSA. The final five iterations were completed in EMAN1, resulting in the final 3D density maps.
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Fig. 3d. Based on this B-factor, a map resolution (with imposed
icosahedral symmetry) of 4.5 Å requires only 8,274 icosahedral
particles (that is, 496,440 asymmetric units), while a resolution of
3.0 Å would require several orders of magnitude more particles
(that is, over two million icosahedral particles). A small shift in
B-factor will dramatically alter the number of particles needed
to achieve this range of near-atomic resolution under the
given experimental conditions and computational protocols.
Thus, improvements in instrumentation and/or computational
protocols can reduce the overall B-factor, and reconstructions
targeting a specific resolution would require fewer particles.
The above estimation assumes that the structure of all particles is
the same to the targeted resolution limit. If the particles are
not conformationally identical, and remain mixed in the
reconstruction rather than separated into homogeneous classes,
the resolution will not be improved by using more particles.

Approach for generating and validating models. Obtaining an
optimal and validated model from the cryo-EM density map is
the ultimate goal of high-resolution structural studies. To be
confident in our reconstruction, molecular models and inferences,
the gold-standard resolution assessment was taken one step
further by using intermediate maps to assess potential structural
variation in our data and its impact on molecular models. The
gold-standard resolution assessment requires that the entire set of
raw data (individual particles) be split in half (directly after
particle selection) and refined independently, producing two
independent density maps (Map B1 and B2, Supplementary
Fig. 2). A final map was generated from the combined data
(Map B). Models were built independently from each of these

three maps to avoid bias. By comparing the variation between the
two models that used half the data, we can assess the level of
detail we can trust in the final model. This provides insight into
the potential uncertainty that occurs during model generation.

Segment and average three subunits within an asymmetric unit.
Since the X-ray crystal structure of BMV has been previously
determined8, the crystal structure could simply have been fitted
into the cryo-EM density we generated. However, to test the de
novo molecular modelling protocol and our newly developed real-
space optimization procedure (Supplementary Fig. 4), we
modelled the structure without reference to the crystal
structure. The following steps outline the procedures used to
generate three optimized, independent all-atom models in a semi-
automated manner with no a priori knowledge of the BMV’s
structure.

Within one asymmetric unit of BMV (T¼ 3), there are three
quasi-equivalent capsid protein subunits that we segmented using
Segger29,30 (Fig. 4a), an extension for UCSF Chimera which
performs semi-automatic segmentation of maps based on density
connectivity. The resolvability of our density maps was such that
the interfaces between subunits could be readily observed, and we
were able to segment out the three individual subunits within one
asymmetric unit. The three segmented QES were then aligned
using Foldhunter31, which performs an exhaustive rigid-body
rotation and translation search of the density. The aligned QES
were then averaged to improve the visibility of conserved features
in the density map. QES averaging typically results in considerably
reduced noise32 and enhanced subunit connectivity compared
with the unaveraged subunits33. Thus, the ability to determine the
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Figure 3 | Resolution validation of the final cryo-EM density map. (a) FSC curves computed using three different methods (as labelled) between two

independent 3D reconstructions generated from two different data sets. (b) Gold-standard FSC curves of the final density maps before and after QES

averaging. (c) Gold-standard FSC curves of density maps generated using different total numbers of particles. (d) Relationship between varying number of

asymmetric units (equivalent to 60� total number of particle per reconstruction) and the resolution for each reconstruction as determined in Fig. 3c.

Each data point refers to the gold-standard resolution and the total number of particles for each reconstruction, respectively. A least-squares linear

fit of this relationship resulted in an overall B-factor of 165 Å2.
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protein fold improves. The FSC between the QES averages of the
two independent BMV maps (Map E1 and E2, Supplementary
Fig. 2) showed that the resolution improved to 3.3 Å (Fig. 3b).
Although the QES-averaged and low-pass filtered map does not
suggest any substantial structural differences among the QES, it
facilitates the initial establishment of the chain trace using
Pathwalker34 with improved confidence. To account for this
inter-subunit variation, unaveraged density maps were used to
derive the final models.

De novo Ca models for each subunit map. A chain topology
from the QES-averaged maps was generated using Pathwalker8

and a de novo modelling pipeline (Supplementary Fig. 5).
Pathwalker populates the density map (Map E, E1 and E2,
Supplementary Fig. 2) with 164 pseudoatoms (reducing the 189
Ca atoms by 25, due to potentially flexible terminal regions of the
capsid subunits) approximating Ca atoms. At this resolution, the
density map has b-strand separation and the resulting model
matched this density with proper b-sheets. Moreover, both
terminal regions could be distinguished in the map and model.
Slight manual adjustments were made using Gorgon35, an
interactive modelling tool designed for building initial models
using a density map as a constraint, correcting the Ca–Ca
distances generated in Pathwalker. This final model was used as a
template to generate the all-atom models for each of the three
QES. When placing this template into the three individual
subunit maps that together comprised one asymmetric unit, we
note that the region including amino acids LYS41-PRO178
(henceforth denoted as the core) was structurally conserved, but
that the resolvability of the terminal residues varied for each
subunit (Fig. 4b).

All-atom modelling and real-space optimization. Next, we
converted our Ca backbone map into an all-atom structure for
the core of the capsid using the REMO server36. Registration
errors (a shift in sequence versus modelled amino acid

placement) in amino acid placement were noted based on
visible aromatic residue densities, and manually corrected using
COOT. N-terminal residues were added for the subunits that had
visible density37. Each model of the three subunits in the
asymmetric unit was optimized in the respective density maps
(Fig. 4b). To ensure proper fit-to-density, while maintaining good
stereochemistry and rotamer assignments, we developed a new
real-space optimization routine, called phenix.real_space_refine
(underlying implementation described in ref. 38) in the Phenix
crystallographic software package39. Traditionally, Phenix and the
other crystallographic packages perform model optimization in
reciprocal space, improving the model with respect to X-ray
crystallographic data, and thus generating updated phase
information for electron density calculations38. An alternative
approach is to perform the optimization in real space with the
aim of improving the model, but not altering the density map as
in our case. Real-space refinement has long been used in X-ray
crystallography, in particular in the context of interactive model
(re)building37,40,41. Advantages include greater control over the
refinement and model restraints and rapid local optimization of
the model. We combined local real-space model optimization
with multiple geometric restraints and automated rotamer fitting
to maintain good stereochemistry. Moreover, secondary structure
restraints were added to maintain proper distances between
b-strands during the refinement stage (Fig. 4b). Each round of
model optimization was guided by cross-correlation between the
map and the model for both the backbone and side chains,
independently and in combination (Supplementary Movie 1). In
addition, MolProbity (a structure validation tool routinely used
in X-ray crystallography) statistics were monitored for proper
protein geometry6. Additional refinement for regions that had
weak density and lacked strong model constraints was performed
manually with COOT.

Scaling the cryo-EM map pixel. After our initial round of model
optimization, our density maps were re-calibrated for the map

Subunit CSubunit A Subunit B

Figure 4 | Density maps and associated models of segmented subunits in an asymmetric unit. (a) Segmented density of a single asymmetric unit

from the final cryo-EM combined density map. Subunit A is blue, subunit B is green and subunit C is red. (b) Final optimized models are displayed with

their corresponding segmented density maps. A varying number of amino acids were visible for the terminal arms within each subunit because of

disordered regions of density.
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pixel scale and sharpening. In general, precise electron micro-
scope magnification is not as critical for low-resolution as for
high-resolution studies for generating accurate atomic model. In
practice, the pixel scaling of the final map can be refined during
the model-building step. For instance, the pitch of an
a-helix may be used to obtain a proper map pixel scale by
maintaining correct geometry and having good fit-to-density.
Unfortunately, BMV is primarily composed of b-sheets with no
a-helices of sufficient length for map pixel calibration. We gen-
erated our initial de novo model using the computed map scale
value of 0.93 Å pixel� 1 from the initial magnification calibration
using graphitized carbon. Using this scaling to optimize a larger
complex (asymmetric unit as described in the subsequent step)
caused fitting errors, and resulted in models that lacked proper
polypeptide geometry. When analyzing MolProbity scores, our
resulting models had high clash and poor Ramachandran scores.
One possible cause was that our initial map pixel scale was
inaccurate. We therefore adjusted the map pixel scaling based on
model scores, using scales from 0.93 to 1.06 Å pixel� 1 while
optimizing our all-atom de novo model for each scale. Clash
scores and the Ramachandran plot were assessed for each
optimized model at the varying scales. The best models resulted
when the density map was scaled to 0.99 Å pixel� 1.

Obviously, we could have scaled the magnification of our
cryo-EM map using the crystal structure. We chose not to do so
because the purpose of this investigation was to work out the
computational protocol for a specimen having no known crystal
structure. However, to validate our scaling procedure, we
subsequently did assess the cross-correlation between various
scaled maps and the crystal structure. Iterating through the
previously used pixel scaling of 0.93 to 1.06 Å pixel� 1, we
measured the cross-correlation between our density map and a
simulated map generated from the crystal structure. Again, the
optimal cross-correlation value was obtained at 0.99 Å pixel� 1,
confirming that our map pixel scaling protocol was correct.
Therefore, the remainder of our model-building and resolution
assessments (as reported in Fig. 3 and Supplementary Fig. 3a) was
then performed using 0.99 Å pixel� 1.

All-atom models for asymmetric unit and its neighbours.
Following the real-space model optimization of individual capsid
subunits and adjusting map pixel scale as described above, a
complete asymmetric unit was assembled (Supplementary Fig. 4).
From these models, an additional round of real-space optimiza-
tion was performed to improve interfaces and eliminate clashes.
The asymmetric unit was iteratively modelled using the real-space
optimization routine with minor manual adjustments made in
COOT. After five rounds of optimization the asymmetric unit
model converged to a final asymmetric unit model with
MolProbity and clash score statistics in the top 90% for structures
at equivalent resolution. At the next level of interactions, the
asymmetric unit interfaces, seven surrounding asymmetric units
were added to the original asymmetric unit and real-space
optimization was performed on this complex (Supplementary
Movie 2). After real-space optimization, our model revealed good
fit-to-density and ranked high in terms of protein geometry and
clash score (Table 1) when compared with models in the Protein
Data Bank (PDB)42 at equivalent resolution. Figure 5 and
Supplementary Fig. 6 show examples of regions of each subunit
for their match between density and the model with
unambiguous side-chain resolvability.

Assessing cryo-EM model and map variation. To validate our
cryo-EM map and model, we examined the agreement between
the two independently optimized models derived from half data

sets43. The density map and subsequently derived models were
optimized from half data sets using the real-space optimization
routine (Fig. 6a). Variations that exist between the two models
may indicate the level of uncertainty for particular regions of the
map. Distances between corresponding Ca atoms were computed
per residue and, as expected, amino acids with strong density in
the backbone and side chains showed little variation. The root
mean square deviation (RMSD) between the models generated
from maps B1 and B2 (Fig. 6b) is 1.96 Å, and no difference in Ca
positions was 42.5 Å. This variation in atom placement
correlates with potential uncertainty of the models due to weak
density. Density at the side-chain level is a key factor in model
variation. Obtaining the best fit-to-density at the backbone and
side-chain level, while using proper rotamers, resulted in model
variation. Well-resolved regions had little variation between the
two independently generated models (Supplementary Fig. 7a),
while poorly resolved regions had greater Ca variation
(Supplementary Fig. 7b). Amino acids in loops, which are more
disordered when compared with b-sheet regions, have higher
RMSD values, resulting in a greater level of uncertainty (RMSD of
1.87 Å in b-sheet regions versus 2.10 Å for non b-sheet regions
comparing all Ca atoms from the two models). Furthermore, the
two data sets have less deviation at the core of the capsid protein
(1.51 Å RMSD) when compared with the terminal domains
(2.41 Å RMSD), consistent with our comparison of the crystal
structure and the cryo-EM model. Finally, a FSC was computed
(Supplementary Fig. 7c) between the refined model from the even
data set (model B1) and the two independent half data set density
maps separately. The similarity between the two FSC plots
indicate that this model is in agreement with both maps and that
overfitting did not occur in the half data sets.

Another necessary validation of both the density map and the
derived all-atom model is their mutual agreement. As evidenced
by the FSC between the combined map and the corresponding
model, the two are in agreement up to B4 Å at 0.5 FSC (Fig. 6c).
This value is consistent with resolutions computed from the gold-
standard resolution assessment and the ‘True FSC’ (Fig. 3a). Note,
that such a measure is affected by the lack of solvent in the model,
which causes a relatively poor agreement at low spatial
frequencies relative to conventional FSC curves.

Comparison of all-atom models between cryo-EM and crystal.
We directly compared the quality of our cryo-EM derived model
from the combined data set (Map B, Supplementary Fig. 2) with
the X-ray crystal structure by examining the MolProbity6

statistical scores (Table 1) and the variation that existed
between the two models (Fig. 7a,b). The MolProbity results
showed that the cryo-EM model was statistically better than the
crystal structure. This is likely due to our use of much more
rigorous model validation and optimization routines than were
available for the crystal structure determination, which was
undertaken more than a decade ago8. When compared with the
crystal structure, our model differs in the more flexible loop
regions, and the terminal arms of the subunits. Similar to the
crystal structure, subunit A lacked visible density corresponding
to the first 40 amino acids at the N-terminal arm, probably
attributable to interactions with the disordered RNA44. In subunit
C, the chain density was traceable from ARG26 in our map
(Fig. 4b), while the crystal structure was only traced from
residue 40.

As for the general fold of the capsid protein, our model and the
crystal structure are in good agreement (Fig. 7a). The Ca RMSD
between the cryo-EM model and crystal structure of the
asymmetric unit (Fig. 7b) was B1.94 Å (for all amino acids
modelled in both structure). In particular, secondary structure
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elements had less deviation (1.40 Å RMSD) than the loops (2.10 Å
RMSD), and the core of the capsid subunits was generally better
conserved (1.68 Å RMSD) compared with the terminal arms
(3.08 Å RMSD). These computed RMSD values were expected
since terminal residues interacting with RNA were likely variable
and loops that are surface-exposed generally had high B-factor
values in the crystal structure.

We computed the FSC to allow comparison of the cryo-EM
density (Fig. 7c) to the 2Fo-Fc density map generated from
deposited structure factors (Fig. 7d). The resolution of the resulting
FSC curve was 3.8 Å at 0.5, validating the claimed resolution of our
map (Supplementary Fig. 7d). The maps exhibit high-resolution
features such as b-strand separation and some side chains.
Connectivity of the capsid protein, specifically the core, was
consistent with weaker density at loops. The number of visible
amino acids at the terminal arms is consistent between the two
maps, even though a poly-alanine tail was added to the crystal
structure8. Variation did exist at the asymmetric unit center, where
density was observed in the crystal structure corresponding to the
presence of a magnesium ion from crystallization conditions8. This
density was absent in the cryo-EM map.

Discussion
Recent studies have demonstrated the superiority of a direct
detection camera when compared with a CCD camera used in
single particle cryo-EM2,3,11,12. Two distinct detector design
strategies (counting mode and integrating mode) are currently in
use, and each has advantages and disadvantages. In theory,
electron counting provides superior SSNR because it reduces
noise15,16. However, counting mode has several practical
disadvantages primarily due to limitations of the current
hardware. For example, counting mode requires an extremely
low exposure (for example, o0.01 electron per pixel per frame)
for optimal performance. At increased exposure, the performance
diminishes significantly13, due to the inability to distinguish
coincident electron events in each frame. Users must balance the
exposure rate (which is inversely related to the performance
of the camera) with exposure time and overall microscopy
throughput. However, an integrating mode detector (for example,
DE-12) provides increased data throughput and comparable
resolutions.

Our results also demonstrate the benefit of using damage
compensation for single particle cryo-EM studies of biological

Table 1 | MolProbity statistics comparing the cryo-EM map-derived models before and after real space optimization (RSO) and
the X-ray structure (PDB id: 1JS9).

Asymmetric unit Three subunits Cryo-EM model 477 residues at
3.8 Å resolution after RSO

Cryo-EM model 477 residues at
3.8 Å resolution before RSO

X-ray (PDB id:1JS9) 503
residues at 3.4 Å resolution

Density agreement Correlation coefficient 0.84 0.76 0.68
All-atom contacts Clash score (all atoms)* 13.35 97th percentile 16.02 97th percentile 31.77 78th percentile
Protein geometry Poor rotamers 0 0% 172 46% 181 49%

Ramachandran outliers 12 2.55% 48 10% 44 9%
Ramachandran favored 434 92.14% 345 69% 351 71%
Molprobity score* 2.11 100th percentile 3.82 46th percentile 4.1 21st percentile
Cb deviations 0 0% 0 0% 0 0%
Bad backbone bonds 0 0% 1 0.05% 0 0%
Bad backbone angles 0 0% 8 0.32% 5 0.2%

Cryo-EM, electron cryo-microscopy.
A complete asymmetric unit was analyzed, but the number of amino acids varies due to resolvability in the density map. In addition, cross-correlation values were computed between the map and the
model for the asymmetric unit. Percentiles were calculated based on the deposited structures at the reported resolution.
*Percentile values based on deposited structures at the reported resolution.
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Figure 5 | Side-chain details from regions in subunit B shown with map and model. Comparable regions from the other two capsid subunits are shown in

Supplementary Fig. 5.
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macromolecules. Damage compensation not only maintains high-
resolution signal, but also increases low-resolution signal by
removing high-frequency noise in high-exposure direct detection
movies. Using damage-compensated data, we successfully
obtained a near-atomic resolution density map.

A growing concern in the cryo-EM community has become the
validation of both maps and models. In this study, we used two
non-identical initial starting maps for each data set to eliminate
model bias, and tested with randomized phases beyond 10 Å or
both data sets to assure no map over-refinement (Fig. 3a,b,
Supplementary Fig. 2). Similar to density map assessment, our
derived molecular models also required additional validation
procedures to describe both quality and potential uncertainty due
to map variability (Fig. 6; Supplementary Figs 4 and 7). We
generated de novo models from our two independent data sets
and the combined data set to provide insight into map variability.
Once complete, our models, specifically the higher quality model
from the combined data set, could be compared with the crystal
structure, providing further validation of our all-atom model
(Fig. 7; Supplementary Fig. 7d).

Our results reveal that the model variation between the X-ray
crystallography model and the cryo-EM model is similar to the
variance between the two models generated from the half data
sets (Figs 6b and 7b). At the Ca backbone level, the variance

between the cryo-EM models was as high as 2.5 Å (Fig. 6). This
primarily occurred in two specific locations of the capsid protein:
(1) the RNA interacting region in the N-terminal arm and (2)
physically flexible areas, such as the loops (Supplementary Figs 6b
and 7d). These model variations are similar for all three subunits.
Neither the cryo-EM nor the X-ray crystallography structure
resolved the entire polypeptide chain, likely due to the
conformational variability of the N-terminal regions and inter-
action with the encapsulated RNA.

Methods
BMV virion preparation. BMV was generated by an Agrobacterium-mediated
gene delivery system that expresses BMV RNA1, RNA2, and RNA3 in Nicotiana
benthamiana plants44. BMV virions were purified using a method modified from
previous procedure45. N. benthamiana were grown at a constant 25 �C, 70–75%
humidity and a 16:8 h light/dark cycle.

Briefly, N. benthamiana leaves were homogenized in buffer I (250 mM
NaOAc, 10 mM MgCl2, pH 4.5), and the supernatants were clarified by a
10 min mixing with 10% chloroform. The supernatant was then layered on
a 10% sucrose cushion prepared in buffer I, and centrifuged for 3 h at 28,000 r.p.m.
using a Beckman SW32 rotor to pellet the virus. The pellets were dissolved
in buffer II (50 mM NaOAc, 10 mM MgCl2, pH 5.2) with 38.5% caesium
chloride (w/v) and banded by centrifugation for 20 h at 65,000 r.p.m. using
a Beckman TLA110 rotor. The virions were collected from the gradient
using a needle and dialyzed with three changes of buffer II and stored at
� 80 �C until use.
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Cryo-EM specimen preparation and imaging. The specimen was prepared by
deposition onto a 400-mesh grid with 1.2-mm-hole size (Quantifoil Micro Tools
GmbH, Jena, Germany), which we first coated with a thin continuous carbon
support film. Each grid was plunge-frozen in liquid ethane and maintained at
liquid nitrogen temperature before and during imaging. A total of 30,908 particles
were selected for final refinement from 728 total imaging areas (DDD movies).

Analysis of specimen motion in DDD frames. To detect the movement between
each frame in a movie, we used a script to align any potential translational motion
of each particle. In this alignment protocol, we ignored potential translational
motion along the direction parallel to the electron beam (z-direction), as well as
any potential particle rotation. To improve the accuracy of alignments, we used a
box size twice the diameter for each particle, and we summed the boxed particles of
every three consecutive frame for the alignment search. Thus, the translational
alignment of the ith frame was based on the sum of frames i-1, i and iþ 1. For each
sum of three consecutive frames, the summed particle image was filtered in Fourier
space based on the corresponding dark reference image to reduce possible artifacts
from fixed pattern noise, and then downsampled by 5� . Cross-correlation based
alignment was calculated based on the tiltxcorr program in IMOD46, using the
following options: ‘-RotationAngle 0 -FirstTiltAngle 0 -TiltIncrement 0 -
FilterRadius2 0.30 -FilterSigma1 0.01 -FilterSigma2 0.02 -CumulativeCorrelation -
Iterate 1 -ReverseOrder.’

Damage compensation for DDD frames. Since CMOS-based direct detection
cameras provide continuous streaming with negligible dead time between frames,
the set of frames acquired with each movie represents an exposure series, where
each subsequent frame has an incrementally higher cumulative exposure on the
specimen. We therefore applied a Gaussian low-pass filter to the Fourier transform
of each individual frame (prior to summing multiple frames). The strength of
the filter (Gaussian width) applied to each frame was based on the cumulative
exposure of the frame. Previous radiation damage studies have deduced the optimal

exposure to maximize the SSNR at each spatial frequency for cryo-EM imaging of
frozen-hydrated catalase crystal at liquid nitrogen temperature47. To be
conservative in filtering our data in this study, we arbitrarily added 30% to the
exposures determined for catalase crystal. For example, in catalase crystal imaged at
300 kV, the SSNR at 3 Å is maximized at an exposure of B14 e� Å� 2. Thus, we
applied a low-pass filter with a Gaussian width of 1/3 Å� 1 to frame 12
(corresponding to a cumulative exposure of B14� 1.3¼ 18 e� Å� 2). Each
subsequent frame was low-pass filtered with increasing strength, according to the
spatial frequency optimized at the corresponding cumulative exposure. After all
frames from each DDD movie were low-pass filtered according to this procedure,
they were summed to generate a single image. In theory, the resulting image had
maximized SSNR (with respect to radiation damage) over a broad range of spatial
frequencies with a relatively high cumulative exposure.

Relationship between sum of frames and SSNR. An important assumption built
into the mathematical formulation performed during single particle analysis is that
SSNR will relate linearly with the number of particles (N). When tripling the
number of frames, however, we observed only up to a twofold improvement in
SSNR (Fig. 1c,d). To rationalize this discrepancy, we computed the SSNR indivi-
dually for three different sums of frames (frames 0–12, 13–24 and 25–36) and then
summed the three resulting curves (Supplementary Fig. 1). We found that the
SSNR of this ‘incoherent sum’ of SSNR curves is substantially higher than the
actual SSNR computed from the sum of all 37 frames. This occurrence is due to the
portions of the image considered to be signal versus noise. In single particle
analysis, the signal is the information from the particle being reconstructed, and the
noise is everything else, including statistical noise, detector noise and scattering of
the buffer and substrate. When averaging two different but ostensibly identical
particles, this works as expected, and SSNR scales linearly to N.

However, in movie-mode imaging, the buffer and carbon film substrate are no
longer independent for each particle image frame. Instead of averaging
incoherently, with sqrt(N) statistics, as is the case with detector and statistical noise,
they average coherently like the particle. This means that our SSNR of multiple

X-ray 2Fo-Fc
PDBID: 1JS9
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Subunit C

Cryo:EM asymmetric unit

Figure 7 | Comparisons of cryo-EM and X-ray BMV structures. (a) Overlapping models of cryo-EM (in green, blue and red) and X-ray model (grey,

PDB id: 1JS9). (b) Ca deviation between X-ray and cryo-EM derived models. Large deviations are shown in red, with small deviations shown in blue. Cryo-

EM map and model (c) and X-ray 2Fo-Fc map (3.55 s) and model (d) of the asymmetric unit.
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sums of frames is no longer the sum of the SSNR of the individual images as it is in
single particle averaging, but now scales as some combination between sqrt(N) and
N. Therefore, the relative contribution from the particles (the desired signal) versus
the buffer/substrate (which is included in ‘noise’ in our operational definition of
SSNR) does not improve with increasing exposure. Increasing exposure only serves
to reduce the relative noise levels of the truly random noise sources in the image
(for example, detector and statistical noises). Therefore, the SSNR in our
operational definition does not improve with exposure as much as expected
because the carbon film and the buffer are not really random noise. Note, however,
that this does not impact the single particle processing. That process remains
mathematically valid, as the solvent and substrate are different for each particle
being averaged, and thus can be effectively treated as noise.

Map sharpening. Before modelling, our density maps (Map B, B1 and B2,
Supplementary Fig. 2) were subjected to sharpening as follows: We started with our
derived B-factor value, sharpening the map with a value of 165 Å2 to the reported
resolution of 3.8 Å using a B-factor script (http://grigoriefflab.janelia.org/bfactor).
Furthermore, the density map did not exhibit increased noise. We then sharpened
the density map by applying various B-factor values at different resolution ranges,
none of which improved the resolvability of the density map, while maintaining or
reducing the presence of noise.
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