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Non-coding RNAs have been shown to be important biomarkers and mediators of many
different disease entities, including cardiovascular (CV) diseases like atherosclerosis,
aneurysms, and valvulopathies. Growing evidence suggests a central role of ncRNAs
as regulators of different pathological pathways involved in endothelial dysfunction,
cardiovascular inflammation, cell differentiation, and calcification. This review will
discuss the role of protein-bound and extracellular vesicular-bound ncRNAs as
biomarkers of vascular and valvular diseases, their role as intercellular communicators,
and regulators of disease pathways and also highlights possible treatment strategies.
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INTRODUCTION

Non-coding RNAs (ncRNAs) consists of transfer RNA (tRNA), microRNA (miRNA, or miR), long
noncoding RNA (lncRNA), circular RNA (circRNA), and other small RNAs. NcRNA expression has
been shown to correlate with several cardiovascular diseases including aortic stenosis. Modulating
ncRNA expression in vitro has also been shown to affect disease progression (Das, 2020). While
considerable advances in understanding the molecular functions of ncRNAs in vitro have been
achieved in the last years, unravelling the role of ncRNAs in vivo, their establishment as biomarkers
and possible use as potential therapeutics are still in its infancy. Therefore, ncRNAs are promising
targets for further research.

REGULATION OF CELLULAR NCRNA EXPRESSION UNDER
PHYSIOLOGICAL AND PATHOLOGICAL CONDITIONS

NcRNA expression in CV cells can vary, depending on the pathophysiological condition of the
parent cell. Different stimuli, such as glucose levels, oxidative stress, inflammation, and an osteogenic
milieu—all important in CV pathologies—can influence ncRNA expression in the affected cells
(Libby et al., 2019; Yuan et al., 2019). Current knowledge on synthesis and maturation of different
classes of ncRNAs, under physiological and pathological conditions, will be summarized and
discussed in this section.

Hyperglycemia
High plasma glucose concentrations are a major risk factor for atherosclerosis as well as aortic
stenosis (Cosentino, 2019; Goody et al., 2020). In vitro, human umbilical vascular endothelial cells
(HUVECs) exposed to high glucose medium displayed an upregulation of 214 lncRNAs, while 197
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were downregulated and several ncRNAs interfered directly with
glucose metabolism, while 945 possible lncRNA-mRNA pairs
were found, indicating a strong regulatory link (Sun and Wong,
2016; Xu et al., 2020a).

In a diabetic mouse model, the lncRNA metastasis associated
lung adenocarcinoma transcript 1 (MALAT1) mediated pro-
inflammatory cytokine expression was altered according to
glucose concentration and MALAT1 inhibition lead to a
diminished inflammatory response as well as reduced
endothelial cell apoptosis and tube formation in retinal cells
(Radhakrishnan and Kowluru, 2021).

Plasmacytoma variant translocation 1 (PVT1), another
apoptosis mediator, is upregulated in kidney cells exposed to
high glucose levels and mediates hypoxic cardiac injury by acting
as a sponge for miR-135a-5p, thus upregulating Forkhead box O1
(FOXO1)-mediated apoptosis (Sun and Wong, 2016; Xu et al.,
2020b).

Recently, Liu et al. demonstrated a glucose-dependent steroid
receptor RNA activator (SRA) mediated increase in insulin
sensitivity, most likely via the insulin-like-growth-factor 1
(IGF1) and PPARγ signaling pathway (Liu et al., 2014a; Liu
et al., 2014b; Liu et al., 2016). Unlike IGF1 and PPARγ, SRA co-
activation negatively regulates Toll-like-recptor 4 (Tlr4) and
subsequent TNFα release, both of which have been linked to
the pro-inflammatory response in the early stages of
atherosclerosis and aortic stenosis (Chong et al., 2004; Xu
et al., 2010; Liu et al., 2016; Goody et al., 2020).

The lncRNA myocardial infarction-associated transcript
(MIAT) has initially been associated with myocardial
infarction but can also act as a sponge for miR-150-5p, which
regulates VEGF-expression, and its expression is increased in
patients with renal dysfunction and high blood glucose levels
(Yan et al., 2015; Sun and Wong, 2016).

Oxidative Stress
Another mediator of vascular and valvular damage on a cellular
level is oxidative stress (Kattoor et al., 2017; Goody et al., 2020).

NcRNAs are differentially expressed in monocytes and
macrophages isolated from human blood samples from
patients with and without high risk for atherosclerosis (Liu
et al., 2014c; Yan et al., 2015). Linc-TP53I13 and linc-
POTED8 are overexpressed in an in vitro model mimicking
oxidative stress through lipopolysaccharide exposure in
monocytes and adipocytes and in obese patients (Liu et al.,
2014c). MIAT1 expression is increased in cells exposed to
oxidative stress (Yan et al., 2015).

Inflammation
TNFα is major signaling molecule in innate and adaptive
immunity responses in different tissues (Whitley et al., 1994).
One of its many pro-inflammatory downstream signaling
pathways includes the NF-κB pathway, which induces gene
expression of cytokines such as IL-1, and different miRs as
well as lncRNA (e.g., LincRNA-Cox2). The regulated ncRNAs
have been shown to often lie adjacent to coding genes that were
also regulated by NF-κB such as Cox2 Divergent and Gp96
Convergent (Rapicavoli et al., 2013).

LincRNA-Cox2 is found proximally to the prostaglandin-
endoperoxide synthase 2 (Cox2) gene locus and its expression is
promoted in a pro-inflammatory environment, such as after TLR-2
and -4 stimulation or after LPS stimulation in macrophages in vitro
(Guttman et al., 2009; Carpenter et al., 2013). The activation of
TLRs plays a key role in atherosclerosis and myocardial infarction
(Chong et al., 2004). LincRNA-Cox2 downregulates the expression
of immune genes, similar to an auto-feedback-mechanism, by
binding to heterogeneous nuclear ribonucleoproteins (hnRNPs)
in order to repress transcription (Carpenter et al., 2013).

While ncRNAs were shown to regulate inflammatory
responses in a variety of cardiovascular diseases, the number
of studies investigating the role of ncRNAs in aortic stenosis
remains low. Yet, key promoters of aortic stenosis such as TNFα,
members of theWnt-pathway, and TLR activation are modulated
by ncRNA expression and thus may provide a promising target
for future investigations (see Figure 1) (Wang et al., 2013;
Venardos et al., 2014; Goody et al., 2020). Recently published
data suggests a key role of ncRNA in regulating oxLDL-uptake,
endothelial-to-mesenchymal-transformation (EndMT) and
valvular calcification (Mahmut et al., 2014; Rayner, 2020).

Osteogenic Milieu
NcRNA expression is also modified in osteogenic milieus and
can promote osteoblastic differentiation of cardiovascular cells,
a major driver of calcific valve disease and atherosclerotic plaque
development (Alexopoulos and Raggi, 2009; Goody et al., 2020).
MiR-30 family members moderate mesenchymal stem cell
(MSC) transformation to osteocytes by regulating Runx2-
expression (Eguchi et al., 2013). In human aortic valvular
interstitial cells that have been treated with an osteogenic
medium, miR-30 b/c are downregulated during MSC
transformation, while miR-30 a, d, and e are upregulated
with miR-30e acting as a co-activator of the Wnt-pathway
and inductor of Runx2 expression in human coronary artery
smooth muscle cells (HCASMC) (Nigam et al., 2010; Eguchi
et al., 2013; Wang et al., 2013). MiR-125b, miR-143 and -145 are
downregulated in vitro in human vascular smooth muscle cells
(HVSCM) after treatment with high levels of inorganic
phosphate to promote osteogenic differentiation in these cells
(Coffey and Jones, 2014). Furthermore, miR-125b was found to
be downregulated in an in vivo model of atherosclerosis and
aortic calcification in mice (Goettsch et al., 2011; Rangrez et al.,
2012; Coffey and Jones, 2014), while miR-223 was
overexpressed in calcified murine aortas (Rangrez et al.,
2012). Human calcific aortic valve disease is associated with
significantly reduced miR-204 levels and miR-204 mimics
suppressed the osteogenic activity of interstitial cells from
diseased valves (Song et al., 2020).

Furthermore, MALAT1 has been demonstrated to promote
osteogenic differentiation in an osteogenic milieu via an
increased ALP activity and Runx2 activation (Wang et al.,
2020). MALAT1 is regulated in an osteogenic milieu via
human antigen R (HuR) expression, which itself is
upregulated by MALAT1 via inhibition of miR-191-3p,
establishing a positive feedback loop for osteogenic
differentiation (Wang et al., 2020).

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7496812

Bartsch et al. NcRNAs Vascular Valvular Intercellular Communication

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


CELLULAR SELECTION AND PACKAGING
MECHANISMS OF NCRNAS INTO
EXTRACELLULAR CARRIERS
Growing evidence suggests that secreted ncRNA profile reflects
the state of the parent cell and can be released directly into the
extracellular space/blood stream, bound to RNA-binding
proteins such as Argonaute 2 (Ago-2) or be (selectively)
packaged into different forms of extracellular vesicles (EVs)
(Kim et al., 2017). These EVs include exosomes, microvesicles
and apoptotic bodies.

The ncRNA content of EVs often does not reflect their
corresponding concentrations in the cytoplasm of the
originating cell, thus underlining the concept that ncRNA
sorting into EVs and secretion are actively regulated cellular
processes that are relevant for intercellular communication
(Villarroya-Beltri et al., 2013; Gezer et al., 2014; Shurtleff
et al., 2016).

MiRNAs with gene sequences GGAG, C/UCCU/G, so called
EXOmotifs, in the 3′ half of the RNAwere found overrepresented
in EVs, while miRNAs with mutated EXOmotifs were not
detected in EVs, indicating a cause-effect relation between
EXOmotifs and EV packaging, potentially mediated via
heterogeneous nuclear ribonucleoproteins (HNRNP)
(Villarroya-Beltri et al., 2013; Zietzer et al., 2020). EV sorting
functions as a tool for cellular ncRNA homeostasis. Thus, ncRNA
EV levels are reduced when their cellular binding proteins or
target mRNAs are artificially overexpressed (Gao and Wu, 2015).

NcRNA can also be found outside of EVs in all body fluids
(Tzimagiorgis et al., 2011) and their composition differs
significantly between EVs and the non-EV secretome, with

miRNAs composing the largest fraction of ncRNA found in
both compartments (Langevin et al., 2020). Secretion of
unbound ncRNA seems to be associated with necrosis and
apoptosis of the releasing cell. Since EV-unbound DNA and
RNA is similarly fragmented as the DNA/RNA in apoptotic
bodies, unbound DNA/RNA could also originate from
apoptotic bodies (Halicka et al., 2000; Li et al., 2003).

EV uptake into target cells is mediated through a variety of
pathways (Maas et al., 2017). EVs can interact with their target
cells via specific ligand-receptor interactions such as clathrin-
mediated endocytosis and activate downstream signaling
pathways (Mulcahy et al., 2014; Costa-Silva et al., 2015). In
order for ncRNAs to carry out their cellular functions, EVs
not only have to bind to their target cells but need to deliver
their cargo into the cytoplasma of the cell, most likely via
endocytosis (Mulcahy et al., 2014). Phagocytosis of EVs is
promoted when their content is lipid-rich and the extracellular
environment is acidic (Parolini et al., 2009; Mulcahy et al., 2014).
To prevent degradation via lysosomal fusion, ncRNAs need to
escape this compartment before fusion (Stalder et al., 2013).
Uptake of EV-cargo into the endosome is regarded as a
potential escape mechanism for ncRNA degradation (Maas
et al., 2017). NcRNAs may avoid degradation by binding to
Ago and interact with the RNA interference silencing complex
(RISC), a multi-protein complex at the ER that uses ncRNA as a
template to cleave the corresponding mRNA (Pratt and MacRae,
2009; Stalder et al., 2013). EVs were found to encircle the ER
before fusing with lysosomes, thus potentially allowing RISC and
ncRNA interaction, induction of miRNA/mRNA degradation
and silencing protein translation, rather than sole miRNA
degradation (Barman and Bhattacharyya, 2015).

FIGURE 1 | ncRNA regulation in aortic stenosis. ncRNAs are differently expressed during aortic stenosis disease progression in valvular endothelial cells (VEC) and
valvular interstitial cells (VIC). Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is upregulated in VECs und VICs and increases pro-inflammatory
cytokine expression and regulators of osteoblastic differentiation. Plasmacytoma variant translocation (PVT1) regulates apoptosis. Apoptosis is part of a complex system
leading to programmed cell death thus causing increased calcium uptake of VICs through cell debris steroid receptor RNA activator (SRA) which downregulates
Toll-like receptor (TLR) activation. Cellular symbols were adopted with permission from smart.servier.com and Vecteezy.
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Under ischemic conditions, cardiomyocytes transmit EVs
promoting inflammation via IL6 and CC2 release. In contrast,
endothelial cells can prevent cardiomyocyte apoptosis in ischemia
via EV secretion and miR-transfer (Davidson et al., 2018; Loyer
et al., 2018). In calcific aortic valve disease (CAVD) EVs and
ncRNA expression appear to regulate the initial inflammatory
phase and may promote calcification of the valve (Hutcheson
et al., 2014; Bakhshian Nik et al., 2017).

In summary, ncRNA mediate a variety of cardiac diseases
through uptake into endothelial cells, smooth muscle cells,
cardiomyocytes as well as immune cells.

THE NON-CODING TRANSCRIPTOME AS
BIOMARKER: CHALLENGES AND FUTURE
DIRECTIONS
NcRNAs have become of great interest as biomarkers of various
diseases (Busch et al., 2016). Circulating EV- and protein-bound
ncRNAs have been shown to be differentially expressed in
patients with and without CV diseases such as atherosclerosis,
aortic aneurysms, aortic valve stenosis, and (pulmonary)
hypertension (Liu et al., 2019). Levels of ncRNAs can be either
increased or decreased and correlate with disease outcome, thus
demonstrating their ability to serve as biomarkers of CV disease.

NcRNAs have been tested as screening biomarkers for several
cardiovascular diseases such as myocardial infarction (MI),
coronary artery disease (CAD) and heart failure. In
myocardial infarction miRNA-1, -133a/b, -208a, -499 became
a frequently studied group referred to as myomirs due to cardiac
specific interactions with different myosin chains and quick
expression response after myocardial injury (van Rooij et al.,
2009; Busch et al., 2016). In a study determining the correlation of
miRNAs with myocardial infarction, only the levels of miRNA-
134 and miR-184 appeared to correlate with infarction, with
miRNA-134 promoting proliferation of cardiac progenitor cells
in vitro (Wu et al., 2015; Busch et al., 2016). Troponin assays were
superior to circulating miRNAs in predicting myocardial
infarction in patients presenting with chest pain, but some
miRNAs (miR-208b) showed a high predictive value for the
lifetime risk of MI (Zampetaki et al., 2012; Devaux et al., 2015).

In CAD miRNA-133a and miRNA-499 showed a positive
correlation with vessel calcification, while miRNA-145 and -155
expression showed an inverse correlation with CAD-severity and
progression (Busch et al., 2016). However, in a clinical setting no
ncRNA was able to predict angina pectoris. The number of
patients enrolled in this study was limited and, with miRNA-
155 shown to alter atherosclerosis in vivo in a mouse model of
atherosclerosis, larger cohorts may yield more reliable results in
the future (Bhattachariya et al., 2015).

Research in lncRNA as biomarkers are less advanced due
to difficulties in maintaining their structural integrity in
bodily fluids over prolonged periods of time (Shi and
Yang, 2016). Circulating levels of the ncRNA LIPCAR
were found to be upregulated in heart failure patients and
could predict cardiac remodeling in general with high
LIPCAR levels associated with increased cardiac mortality

(Kumarswamy et al., 2014). Vausort et al. identified three
circulating lncRNAs (aHIF, KCNQ1OT1, and MALAT1)
upregulated and one downregulated (ANRIL) in patients
with myocardial infarction, but again all lncRNAs were
inferior in predicting MI than conventional troponin
assays (Vausort et al., 2014).

To analyze and quantify ncRNAs in exosomes and
microvesicles, they must be isolated from platelet-depleted
plasma (Liu et al., 2020). Isolation techniques differ between
ncRNAs transported in EVs and those transported in ncRNA-
protein complexes (Liu et al., 2020). A commonly used technique
is differential centrifugation, although a variety of isolation
methods are applied (Witwer et al., 2013). After purification of
EVs, ncRNA isolation can be performed with phenol-containing
reagents or phenol free assays (E et al., 2018). NcRNAs are then
further analyzed using reverse transcription and quantitative
PCR. Yield and purity differ immensely between different
approaches as well as between research groups (E et al., 2018),
and the low concentration of protein-ncRNA complexes can
make quantification difficult (Gallo et al., 2012). While
differential ultracentrifugation is an established method, it is
time consuming and demands large sample sizes, while only
producing a low recovery rate, thus making it impractical in large
scale clinical settings (Liu et al., 2020). Other techniques, better
suited for small sample sizes, such as spectrofluorimetry and
capillary electrophoresis are more expensive and even more time
consuming, and thus also not feasible in a high throughput
diagnostic setting (E et al., 2018; Gallo et al., 2012). Cheaper
and faster alternatives are size based methods such as
ultrafiltration or hydrostatic filtration dialysis with commercial
EV filter kits already established. Exosomes can also be isolated
using a weight or size specific filter. However, increased
mechanical sheer may break vesicles and influence results.
With exosomes derived from the endocytic pathway and
microvesicles formed from the plasma membrane, they express
different CD-markers, making immunocapture-assays another
potential route for isolation (Liu et al., 2020).

A general problem when using extracellular ncRNAs as
potential biomarkers is their high dependency on sex,
ethnicity and pre-analytical variabilities, as well as their
altered concentrations after heparin, acetylsalicylic acid, or
statin administration, making the definition of pathological
threshold levels difficult (Moldovan et al., 2014; Viereck and
Thum, 2017). While no international standards have been set,
due to potential heparin interference blood serum obtained in
the morning hours from fasting patients promises more reliable
results. In order to harmonize standards a compendium of
exosomal proteins and ncRNA by the International Society of
Extracellular Vesicles (ISEV) has been established
(Keerthikumar et al., 2016).

NCRNAS AS POTENTIAL THERAPEUTIC
TARGETS

Several pathomechanisms in cardiovascular disease are
influenced by ncRNA, making them promising and desirable
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targets to influence by way of ncRNA mimics or inhibitors.
NcRNA therapeutics do not induce drug resistance effects in
target cells and can be modified to increase their half-life, making
them almost ideal therapeutic molecules (Geary et al., 2015).

In order to modulate miR- or lncRNA concentration in
cardiovascular and valvular disease, RNA-based therapeutics
need to reach either target cells (e.g., valvular or vascular
endothelial cells, cardiomyocytes, etc.) via the blood stream or
local injection (Zietzer et al., 2021). Intracardial application of
RNA therapeutics demands a more invasive application pathway
while i.v. or s.c. application leads to systemic distribution (Ito
et al., 2009). Due to limited clinical trials, it is currently unknown
how and if the local intracardial concentration of miRNA
therapeutics differs between different application methods
(Huang et al., 2020). In murine and porcine models,
intracardial antimiR-132 concentrations in cardiomyocytes
showed no difference after intravenous or intracoronary
injection (Foinquinos et al., 2020).

Another hurdle for ncRNA therapeutics is identifying a
transporter that can deliver its cargo specifically to its target.
Virus-based approaches, using a modified adeno associated
virus-capsule with an increased cardiac target specificity, are
seen as a reliable transport mechanism with limited systemic
effects demonstrated in rhesus macaques (Mingozzi et al.,
2013). However, AAV-delivery may be limited due to
potentially high adenovirus antibody titers in the general
population (Calcedo et al., 2011). Also, due to its small
genome size (3–4 kb capacity) the inserted ncRNA size is
limited, making the overexpression of lncRNAs difficult or
impossible, at least with AAV-based vectors (Smith et al.,
2009). AAV transfection, when successful, leads to long-term
persistence, thus pro proliferative effects must be regulated via
the promoter region to avoid cancerogenic transformation
(Braga et al., 2021).

Alternatively, delivery methods based on EVs and
liposomes are already being tested in clinical settings (Braga
et al., 2021). So called lipoplexes consist of small lipid
molecules and have successfully been used to transfect
cardiomyocytes in vitro and in vivo in different animals and
are currently tested in clinical trials (Kulkarni et al., 2018). For
systemic application it is important that lipoplexes are not
positively charged to avoid increased plasma clearance as well
as systemic inflammation and must not be too large (< 1 µm) to
avoid systemic inflammatory responses and toxicity. Only
recently, smaller (< 100 nm) and ionizable or neutral lipid
nanoparticles were introduced to avoid inflammation and
toxicity (Kulkarni et al., 2018). For amyloidosis Patisiran is
already used in a clinical setting (Hoy, 2018). Modified
exosomes, through engineering of specific ligands onto the
exosomal membrane, have also been tested as ncRNA
transporters as well (Mathiyalagan and Sahoo, 2017). While
exosome-based therapy is still in its infancy, the use of cellular
organelles promises low systemic toxicity and antigenicity
(Mathiyalagan and Sahoo, 2017; Braga et al., 2021). For
example, trial NCT04327635 investigates patient safety in
intracoronary exosomes application after myocardial
infarction, which may limit systemic toxicity (McLeod, 2021).

Synthetic Nanoparticles with diameters ranging between 50
and 100 nm showed an optimized distribution of RNA
therapeutics in vivo as well as an increased half-life (Boca
et al., 2020). Their surface can easily be modified with
aptamers, antibodies or peptides, potentially making them
tissue specific and reducing off-target side effects (Di Mauro
et al., 2018). However, their cargo capacity is limited and their
effectiveness in cardiovascular cells still needs to be
demonstrated (Di Mauro et al., 2018). While ncRNAs are
promising targets for pharmaceutical therapy and ncRNA
derived pharmaceuticals may yield almost ideal
pharmacokinetic properties, their delivery method as well as
their method of transportation within the body still pose major
challenges.

CONCLUSION

NcRNAs are important mediators in cardiovascular and
valvular disease. NcRNA expression is altered according to
the parental cells’ patho/physiological condition. Some
ncRNAs mediate are involved in cardiovascular and
valvular disease progression, while others may serve as
biomarkers. EVs, lipoplexes or proteins play a key role for
ncRNA transportation. Defining pathological thresholds for
ncRNAs remains non-unified with ncRNA isolation
techniques varying internationally. While ncRNA-based
therapeutics may significantly alter cardiovascular and
valvular disease progression, neither the application
method nor the mode of transportation has been reliably
established and this will be an important focus of future
research.
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