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Dosimetric analysis of isocentrically 
shielded volumetric modulated 
arc therapy for locally recurrent 
nasopharyngeal cancer
Jia-Yang Lu1,*, Bao-Tian Huang1,*, Lei Xing2, Daniel T. Chang2, Xun Peng1, Liang-Xi Xie1,  
Zhi-Xiong Lin1 & Mei Li1

This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc 
(IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the 
isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws 
were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For 
fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regarding 
target coverage, organ-at-risk (OAR) sparing and monitor units (MUs). The relationship between the 
dose reduction of BS/SC and some geometric parameters including the angle extended by the target 
with respect to the axis of BS/SC (Ang_BSSC), the minimum distance between the target and BS/SC 
(Dist_Min) and the target volume were evaluated. The IS-RA reduced the BS/SC doses by approximately 
1–4 Gy on average over the C-RA, with more MUs. The IS-RA demonstrated similar target coverage and 
sparing of other OARs except for slightly improved sparing of optic structures. More dose reduction in 
the isocentric region was observed in the cases with larger Ang_BSSC or smaller Dist_Min. Our results 
indicated that the IS-RA significantly improves the sparing of BS/SC without compromising dosimetric 
requirements of other involved structures for lrNPC.

Radiotherapy is the main treatment paradigm for nasopharyngeal carcinoma (NPC)1. Though loco-regional con-
trol rate of NPC has been improved significantly in the past decade, local recurrence remains a major problem2 
with an incidence of 10–36%3. Re-irradiation with a tumoricidal dose above 60 Gy is commonly used as a main 
treatment for locally recurrent NPC (lrNPC) patients4,5. Clinically, an important factor affecting the local control 
of lrNPC radiotherapy is the dose administered to the target. In the era of 3D conformal radiotherapy (3D CRT), 
Wang3,6 reported lrNPC is clearly dose responsive. The 5 year survival rate was 45% when ≥ 60 Gy was delivered, 
but no patient survived in the < 60 Gy group. Lu et al.7 reported an excellent local control rate after high dose 
intensity-modulated radiotherapy (IMRT) of 68–70 Gy for lrNPC. Similarly, a better local control and survival 
with escalated dose was observed by Li et al.8. However, delivery of higher-dose radiation is clinically challenging 
due to the pre-irradiated condition of the surrounding organs at risk (OARs), such as the brainstem (BS) and 
spinal cord (SC)9. Myelitis and BS necrosis, which are rare but devastating, may occur if the doses delivered to BS 
and SC exceed the tolerance in the management of NPC patients10,11. The fact that, in most cases, the BS/SC are 
proximal to the locally recurrent lesion and have reached the threshold doses in the primary treatment course, 
aggravates the situation and makes it a challenging task to deliver an adequate dose to the target without causing 
any correlated damage.

Volumetric modulated arc therapy (VMAT) provides a viable solution for re-irradiation of nasopharyngeal 
carcinoma in clinical practice12. Up to this point, however, little effort has been devoted to optimally utilizing 
the technical capability of VMAT for lrNPC. In this work, a proposed RapidArc (RA) strategy, referred to as 
“isocentrically shielded RA (IS-RA)”, was investigated for substantially improved dose sparing of the BS/SC while 
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maintaining the target coverage. A detailed planning study was performed to demonstrate the dosimetric benefits 
of the IS-RA technique.

Methods
Ethics Statement. The protocol was approved by the Ethical Commission of the Cancer Hospital of Shantou 
University Medical College. Because this was not a treatment-based study, our institutional review board waived 
the need for written informed consent from the participants. The patient information was anonymized and 
de-identified to protect patient confidentiality. The methods were carried out in accordance with the approved 
guidelines.

Patient characteristics. Fifteen lrNPC patients with Stage rT1–rT4, N0-1, M0 were included in this study, 
staged according to the American Joint Committee on Cancer (AJCC) 7th edition staging system. Eleven were 
male and four were female, with the median age of 49 (range, 17–70) years. All the patients received radical 
chemoradiation in the first treatment and the median time to treatment failure was 16 months (range, 13–22 
months).

CT simulation and target/OAR delineation. All of the patients were immobilized in the supine position 
in a tailor-made thermoplastic cast from head to shoulders. CT scans with intravenous contrast using a 3 mm 
slice thickness from the head to 2 cm below the sternoclavicular joint were performed by a CT scanner (Philips 
Brilliance CT Big Bore Oncology Configuration, Cleveland, OH). The CT images were then transferred to the 
Eclipse (version 10.0) treatment planning system (Varian Medical System, Inc., Palo Alto, CA) for target and OAR 
delineation and treatment planning.

The gross tumor volume (GTV) included the recurrent primary lesions and positive lymph nodes, which 
were determined by the CT, MRI, Positron Emission Tomography (PET) and endoscopic findings. Clinical target 
volume (CTV) encompassing microscopic disease was defined as the GTV plus margins of 8–10 mm, allowing 
smaller margins close to critical intracranial structures or the SC. Planning target volume (PTV) was generated 
to account for setup variability and internal motion by adding 3 mm margins to the CTV. The median volume of 
the PTV (Vol_PTV) was 89 cm3 with the range of 38–209 cm3.

The OARs, including the SC, BS, lenses, optic nerves, optic chiasm, temporomandibular (T-M) joints, tempo-
ral lobes, oral cavity and parotids were contoured. Planning organ-at-risk volumes (PRVs) were created by adding 
5 mm margins to the SC and 3 mm margins to the BS, denoted as PRV-SC and PRV-BS, respectively. Normal 
tissue was defined as the body subtracting the PTV.

Treatment planning. Three different plans were created for each patient in Eclipse using the three differ-
ent techniques, IS-RA, conventional RA (C-RA) and RA with the same gantry and collimator angles as those of 
IS-RA (RA-SGC). 6-MV photon beams from the TrueBeam linear accelerator (Varian Medical System, Inc., Palo 
Alto, CA) were employed for all the plans. The Progressive Resolution Optimizer (PRO, version 10.0.28) algo-
rithm was used for RA optimization. The prescribed dose to the PTV was 60–69.9 Gy (2.00–2.33 Gy/fraction) 
administered in 30 fractions. All the treatment plans were normalized to achieve the goal of 95% of the PTVs 
covered by 100% of the prescription dose, except for 4 advanced cases where compromises were necessary to 
protect the critical OARs.

The planning goals of the PTVs and OARs used in this dosimetric study are shown in Table 1. Dx represents 
the dose which is reached or exceeded in x of the volume. V100% represents the % volume covered by 100% of the 

Structure Planning constraint(s)

PTV D95% =  prescribed dose (60–69.9 Gy)

D2% <  110% of the prescribed dose

SC D2% <  10 Gy, Dmean as low as possible

PRV-SC D2% <  15 Gy, Dmean as low as possible

BS D2% <  15 Gy, Dmean as low as possible

PRV-BS D2% <  20 Gy, Dmean as low as possible

Lens D2% <  4 Gy

Optic nerve D2% <  10 Gy

Optic chiasm D2% <  10 Gy

T-M joint D2% <  30 Gy

Temporal lobe Dmean <  12 Gy

Oral cavity Dmean as low as possible

Parotid Dmean as low as possible

Normal tissue Dmean as low as possible

Table 1.  Planning goals for the IS-RA, C-RA and RA-SGC plans. Abbreviation: IS-RA =  isocentrically 
shielded RapidArc; C-RA =  conventional RapidArc; RA-SGC =  conventional RapidArc with the same gantry 
and collimator angles as those of IS-RA; PTV =  planning target volume; SC =  spinal cord; PRV-SC =  planning 
organ-at-risk volume of spinal cord; BS =  brainstem; PRV-BS =  planning organ-at-risk volume of brainstem; 
Dx% =  dose which is reached or exceeded in x% of the volume; Dmean =  mean dose;  
T-M joint =  temporomandibular joint.
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prescription dose. The planning constraints were fine-tuned, balancing the tradeoffs between the lowest dose to 
the BS/SC and the acceptable PTV coverage.

In generating an IS-RA plan, the isocenter was set at the center of the BS (13 cases) or SC (2 cases), to which 
the PTV was adjacent. Four or six coplanar partial arcs were placed in two gantry rotations (two or three partial 
arcs in clockwise gantry rotation, and the other two or three in counter-clockwise rotation). The collimators 
rotated to angles approximately parallel to the BS and SC during the gantry rotation, generally 1°–20°. The jaw 
positions were set individually for each partial arc, with the priority of shielding the PRVs of BS and SC, followed 
by the partial coverage of PTV, but ensuring full PTV coverage if possible during the whole gantry rotation. The 
geometry settings of a representative IS-RA plan are shown in Fig. 1. There were some overlaps between the 
adjacent partial arcs in the cases where the PTV was large and more arc length was required to irradiate every 
portion of the PTV. One partial arc irradiated one side of the PTV near the BS/SC from the beam’s eye view (BEV) 
while the other partial arc irradiated the opposite side of the PTV. The gantry start and stop angles for each partial 
arc were individually determined using the BEV. For the cases in which the PTVs were in proximity to the optic 
structures, two non-coplanar arcs (gantry 45°–90°) with couch 90° were used to bypass the optic structures and 
deliver sufficient doses to the PTVs.

For each C-RA plan, the isocenter was set at the center of the PTV. Two coplanar full arcs (gantry angle: 
181°–179° and 179°–181°) with the same non-coplannar arcs settings as IS-RA were used. The collimator angles 
were set to 30° aiming at minimizing the tongue and groove effect. The optimization objectives of the C-RA plans 
were set the same as those of the IS-RA plans.

In order to discriminate the effects of the isocenter placement in the BS/SC and the prolonged arc length with 
different collimator rotation (1°–20°), the RA-SGC plans were generated, in which the only differences from 
IS-RA were that the isocenter was placed at the center of the PTV (but not in the BS/SC) and the jaws were auto-
matically set to fit to the whole PTV (but not manually fixed to irradiate the partial PTV). The same optimization 
objectives were used. All the plans were conducted by a medical physicist.

Plan evaluation. To compare the three plans, dose-volume statistics, isodose distributions and cumulative 
dose-volume histograms (DVHs) were calculated. According to the International Commission on Radiation 
Units and Measurements (ICRU) report 83, D2% and D98% were selected as near-maximal and near-minimal 
doses for the PTV, respectively. Homogeneity index (HI) was employed to assess the target dose homogeneity13:

=
−HI D D

D (1)
2% 98%

50%

The target dose conformality was measured by the conformity index (CI) introduced by Paddick14 accounting 
for the overlap between the prescription isodose volume (PIV) and the target volume (TV):

=
×

CI TV within PIV
TV PIV

( )
(2)

2

The CI and HI values were both between 0 and 1, with 1 and 0 indicating the ideal conformity and homo-
geneity, respectively. D5% was used to evaluate the dose received by the most heavily irradiated 5% volume of 
the organ9,15,16. The D2%, D5% and mean dose (Dmean) were used for evaluating the doses delivered to the OARs. 
The geometric parameters of the PTV and its geometric relationship with other structures, including the angle 
extended by the PTV with respect to the axis of BS/SC (Ang_BSSC) (Fig. 2), the minimum distance between PTV 
and BS/SC (Dist_Min) and the Vol_PTV were measured and their effects on the BS/SC sparing were investigated. 
In addition, monitor units (MUs) per fraction were recorded for all plans.

Statistical analysis. Statistical analyses were performed using the SPSS (version 19.0) software (SPSS, Inc., 
Chicago, IL). The comparison among the IS-RA, C-RA and RA-SGC plans were tested with two-sided Wilcoxon 
signed rank test. The effect of the geometric parameters of the PTV (Ang_BSSC, Dist_Min and Vol_PTV) on the 
BS/SC sparing was investigated using linear regression analysis. P-value of < 0.05 was considered to be statistically 
significant.

Results
A systematic approach referred to as IS-RA was established for the treatment of lrNPC. In most plans (33 out of 
45 plans), the V100% of PTV was equal to 95%. In the remaining 4 advanced cases (12 plans), the V100% of PTV 
was less than 95%, with the lowest value of 88.4%. The doses of all the OARs were limited to the tolerable levels.

Target coverage. Data of target coverage for all 45 plans is summarized in Table 2. No statistically significant 
difference was observed with regard to the dose-volume parameters of PTV between the IS-RA and C-RA plans. 
The RA-SGC plans demonstrated inferior HI, CI and D2%. Figure 3 shows the dose distributions of the three plans 
for a representative case.

OAR sparing and MUs. The IS-RA spared the BS and SC better than the C-RA and RA-SGC. As shown in 
Table 2 and Fig. 3, compared to C-RA and RA-SGC, the IS-RA reduced the D2%/D5%/Dmean of the (PRV of) BS 
by 3.3–3.8 Gy/3.5–3.7 Gy/2.4–2.6 Gy on average. The D2%/D5%/Dmean of the (PRV of) SC was reduced by 2.4–2.8 
Gy/2.2–2.5 Gy/0.9–1.1 Gy on average with IS-RA technique. These reductions of BS/SC doses were statistically 
significant (P <  0.05, as indicated in Table 2).

The relationship between the Ang_BSSC/Dist_Min/Vol_PTV and the dose reductions of the (PRVs of) BS/SC  
by IS-RA are demonstrated in Table 3 and Fig. 4, which displays the selected results of geometrical effects with 
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P <  0.05. With the Ang_BSSC increasing or the Dist_Min decreasing, the advantage of the proposed IS-RA in 
sparing the (PRV of) BS became more obvious. However, the level of SC sparing decreased with minor reduction 
of D2%/D5% of the PRV-SC as the Ang_BSSC increased or as the Dist_Min decreased. In the present case (Figs 1, 3 
and 4), in which the PTV abut the BS (Dist_Min =  0 mm) with the Ang_BSSC of 186°, the dose of BS was reduced 
by up to 9 Gy with IS-RA. Besides, Table 3 shows that the Vol_PTV was not a statistically significant impact factor 
on sparing BS/SC by IS-RA (P >  0.05).

Figure 1. Geometry of the isocentrically shielded RapidArc (IS-RA) technique for a locally recurrent 
nasopharyngeal cancer (lrNPC) case in Stage rT4N0M0, with the volume of planning target volume (Vol_PTV)  
of 180 cm3, the angle extended by the PTV with respect to the axis of brainstem/spinal cord (Ang_BSSC) 
of 186° and the minimum distance between PTV and BS/SC (Dist_Min) of 0 mm. (a,b) Isocenter location 
and four partial arcs within two gantry rotations on an axial CT image; (c,d) the beam’s eye views (BEVs) in two 
partial arcs within one gantry rotation.
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It is also noticed that IS-RA exhibited slightly superior sparing of the optic structures, by up to 1.26 Gy in 
terms of D2% when compared to C-RA. IS-RA also reduced Dmean to the normal tissue by up to 0.16 Gy compared 
to both C-RA and RA-SGC (P <  0.05). The doses to most other OARs were comparable among the three plans.

Figure 2. Definition of the angle extended by the PTV with respect to the axis of brainstem/spinal cord 
(Ang_BSSC). 

Parameter IS-RA C-RA RA-SGC

P-value

IS-RA vs. 
C-RA

IS-RA vs. 
RA-SGC

C-RA vs. 
RA-SGC

PTV

D2% (%) 106.4 ±  1.3 106.5 ±  1.1 107.8 ±  1.4 0.530 0.002 0.001

D98% (%) 92.4 ±  14.6 92.5 ±  13.3 92.6 ±  12.3 0.307 0.090 0.020

D50% (%) 103.4 ±  0.9 103.4 ±  0.8 104.8 ±  0.9 0.776 0.001 0.001

V100% (%) 94.1 ±  1.9 94.1 ±  1.9 94.1 ±  1.9 0.317 0.317 0.317

HI 0.136 ±  0.144 0.135 ±  0.132 0.144 ±  0.125 0.496 0.027 0.008

CI 0.818 ±  0.035 0.821 ±  0.032 0.813 ±  0.040 0.191 0.532 0.047

BS

D2% (Gy) 7.45 ±  2.82 11.09 ±  2.04 11.27 ±  2.90 0.001 0.001 0.650

D5% (Gy) 6.55 ±  2.58 10.14 ±  2.45 10.27 ±  3.29 0.001 0.001 0.955

Dmean (Gy) 3.52 ±  1.39 6.10 ±  2.56 6.03 ±  2.82 0.001 0.001 0.691

PRV-BS

D2% (Gy) 13.26 ±  5.13 16.53 ±  3.95 17.10 ±  4.45 0.001 0.001 0.020

D5% (Gy) 10.57 ±  4.63 14.02 ±  3.81 14.22 ±  4.40 0.001 0.001 0.532

Dmean (Gy) 4.32 ±  1.88 6.74 ±  2.83 6.67 ±  3.09 0.001 0.001 0.733

SC

D2% (Gy) 4.67 ±  1.74 7.06 ±  1.44 7.16 ±  1.50 0.001 0.001 0.307

D5% (Gy) 4.24 ±  1.75 6.50 ±  1.67 6.46 ±  1.89 0.001 0.001 0.910

Dmean (Gy) 2.07 ±  1.62 3.13 ±  2.28 2.94 ±  2.13 0.001 0.001 0.006

PRV-SC

D2% (Gy) 6.71 ±  2.83 9.34 ±  2.27 9.51 ±  2.29 0.001 0.001 0.088

D5% (Gy) 5.49 ±  2.66 7.91 ±  2.48 7.97 ±  2.58 0.001 0.001 0.712

Dmean (Gy) 2.26 ±  1.82 3.37 ±  2.52 3.18 ±  2.38 0.001 0.001 0.006

Left optic nerve D2% (Gy) 4.97 ±  4.97 5.49 ±  4.56 5.03 ±  4.54 0.020 0.977 0.057

Right optic nerve D2% (Gy) 4.40 ±  3.34 5.19 ±  3.65 4.90 ±  4.06 0.001 0.065 0.211

Optic chiasm D2% (Gy) 6.47 ±  5.17 7.73 ±  5.45 7.50 ±  6.48 0.003 0.069 0.140

Left lens D2% (Gy) 2.11 ±  1.40 2.39 ±  1.39 2.25 ±  1.46 0.007 0.140 0.090

Right lens D2% (Gy) 1.98 ±  1.19 2.19 ±  1.31 2.19 ±  1.40 0.029 0.096 0.394

Left T-M joint D2% (Gy) 29.89 ±  9.14 30.29 ±  9.89 31.07 ±  10.14 0.733 0.173 0.650

Right T-M joint D2% (Gy) 31.68 ±  14.45 30.09 ±  14.66 32.43 ±  14.63 0.609 0.334 0.009

Oral cavity Dmean (Gy) 16.47 ±  9.44 16.15 ±  8.77 15.87 ±  8.66 0.910 0.650 0.691

Left parotid Dmean (Gy) 23.38 ±  12.33 23.99 ±  13.15 24.29 ±  13.22 0.776 0.650 0.191

Right parotid Dmean (Gy) 20.76 ±  10.01 21.24 ±  10.04 22.50 ±  10.35 0.609 0.053 0.061

Left temporal lobe Dmean (Gy) 13.95 ±  10.51 14.42 ±  10.35 14.28 ±  10.71 0.078 0.281 0.363

Right temporal lobe Dmean (Gy) 11.43 ±  7.93 12.28 ±  8.51 11.98 ±  8.39 0.021 0.363 0.256

Normal tissue Dmean (Gy) 5.81 ±  2.62 5.97 ±  2.69 5.89 ±  2.69 0.002 0.036 0.125

Monitor unit 965 ±  160 693 ±  95 715 ±  100 0.001 0.001 0.053

Table 2.  Dosimetric parameters of the IS-RA, C-RA and RA-SGC plans. Abbreviations: V100% =  % volume 
covered by 100% of the prescription dose; HI =  homogeneity index; CI =  conformity index; other abbreviations 
as in Table 1.
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Additionally, the IS-RA produced 40.1 ±  18.9% and 34.9 ±  20.1% more MUs than the C-RA and RA-SGC 
plans, respectively.

Discussion
The proposed IS-RA addresses an unmet need in treatment of lrNPC, as it substantially reduces the doses to the 
BS and SC while adequately covering the PTV. In general, the BS and SC are proximal to the locally recurrent 
lesions and their threshold doses have often been reached in the primary treatment course, making it challenging 
to irradiate the recurrent tumor(s) without exceeding the dose limit of the BS and SC. It is technically difficult to 

Figure 3. Dose distributions in the axial (a–c), coronal (d–f) and sagittal views (g–i) of the IS-RA, conventional 
RapidArc (C-RA) and the RapidArc with the same gantry and collimator angles as those of IS-RA (RA-SGC) 
plans in the same case of Fig. 1; the dose-volume histograms (DVHs) of the (planning organ-at-risk volumes 
(PRVs) of) BS and SC in this case (j–m).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:25959 | DOI: 10.1038/srep25959

reduce even 1-Gy dose to BS/SC, especially in the challenging cases. As compared to C-RA, the IS-RA produces a 
sharper dose gradient between the PTV and the BS/SC, leading to an improved BS/SC sparing of approximately 
1–4 Gy on average (up to 9 Gy in the challenging cases) with simultaneously improved or comparable dose to the 
PTV and other structures. The efficacy makes IS-RA a useful tool in clinical practice, because reducing the dose 
to BS and SC to the great extent (ideally 0 Gy) in re-irradiation course may reduce the life-threatening risk of BS 
necrosis and myelitis. It is noteworthy that the IS-RA technique also reduces the doses to the optic nerves, optic 
chiasm and lenses, which may be beneficial in reducing the risk of radiation-induced optic complications, such 
as blindness17.

By comparing with RA-SGC, we confirmed that the superior performance of the IS-RA in sparing the BS/SC 
is mainly attributed to the isocentrically-shielded effect of the OARs with the collimator, not the prolonged arc 
length or different collimator angles. In geometry, the IS-RA technique focused the beam-shielded projection on 
the isocentric region during the whole treatment, so the dose of isocentric region could be minimized. During 
the entire treatment process, the beams across the BS/SC in the isocentric region are avoided, which receives only 
the scattered radiation from the nearby areas within the open parts of beams18 and the negligible transmission 
through the jaws.

There are a few related techniques for lrNPC that are worth of mentioning. Liu et al.16 reported that proton 
beam therapy could achieve a better BS and SC sparing with D5% of 12.83 ±  1.72 Gy and 2.18 ±  1.17 Gy, respec-
tively, while the D5% of BS and SC in photon IMRT were 19.47 ±  1.01 Gy and 13.62 ±  2.17 Gy. The proton beam 
therapy owes its successful dose sparing to the Bragg peak. However, the proton accelerator is not widely avail-
able nowadays. In contrast, the IS-RA technique is capable of producing a comparable D5% of BS and SC using 
commonly used photon beams, as indicated in Table 2. An IMRT strategy similar to this work was implemented 
by Chen et al.19. Using the concept of central block, maximum dose of < 15 Gy to the BS and a maximum dose 
of < 10 Gy to the SC were achieved for a prescribed PTV dose of 66–70.2 Gy. The technique, however, required 
a large number of fields (18–31 fields) and significantly prolonged the treatment time (typically, the delivery 
took 25–45 minutes). The IS-RA offers similar or even more dosimetric benefits with little overhead in delivery. 
We also note that Jena et al.20 proposed a conformal rotation therapy technique with central axis beam block 
(CRT +  BB) for treatment of tumors around the SC. Using the technique, they produced similar SC DVH as com-
pared to IMRT, but at the cost of reduced PTV dose. Cotrutz et al.18 proposed a technique of intensity-modulated 
beam delivery that combined the features of the original intensity modulated arc therapy (IMAT) technique and 
the physical blocking of OAR(s). Lax and Brahme21 also utilized a filter to produce a sharp dose gradient between 
the target volume and the OARs. In those studies, the central “physical block” was applicable only for a cylindri-
cally shaped OAR, typically the SC, but not for the irregularly shaped BS. Furthermore, it takes time to design 
and fabricate a blocking device. In our IS-RA technique, the collimator jaw is employed for the purpose and thus 
provides a more practical solution.

One limitation of the proposed technique was the increased MUs, which may increase the risk of secondary 
cancers in theory due to leakage radiation to patients22. Moreover, it should be pointed out that the central axis 
of the BS/SC is not always parallel to the gantry rotation axis. It is thus difficult to completely shield the BS and 
SC, which are not regularly and cylindrically shaped, with the shielding jaw during the gantry rotation, leaving 
a portion of the OARs exposed to the field or only shielded by the multi-leaf collimator (MLC). The further the 
irradiated area is away from the isocenter, where the center of BS/SC may not be located on the gantry rotation 
axis, the more likely the BS/SC are incompletely shielded with the jaw. Therefore, as the isocenter was set at 
the center of BS in our 13 of 15 cases, the dose sparing of the SC was slightly compromised (Fig. 4). For IS-RA 
treatment of lrNPC, it is recommended that patients be set up in the position in which the axis of the BS and SC 
are approximately parallel to gantry rotation axis. We note that, the IS-RA lrNPC treatment would be further 

P-value

IS-RA vs. C-RA IS-RA vs. RA-SGC

Ang_BSSC Dist_Min Vol_PTV Ang_BSSC Dist_Min Vol_PTV

BS

D2% 0.054 0.090 0.108 0.745 0.596 0.986

D5% 0.448 0.519 0.510 0.182 0.128 0.459

Dmean 0.018 0.032 0.063 0.008 0.007 0.102

PRV-BS

D2% 0.091 0.207 0.171 0.411 0.704 0.350

D5% 0.144 0.276 0.184 0.712 0.941 0.509

Dmean 0.033 0.043 0.080 0.021 0.010 0.160

SC

D2% 0.197 0.073 0.217 0.491 0.407 0.663

D5% 0.291 0.045 0.355 0.880 0.387 0.971

Dmean 0.868 0.177 0.661 0.943 0.286 0.955

PRV-SC

D2% 0.018 0.059 0.055 0.022 0.072 0.062

D5% 0.030 0.021 0.076 0.180 0.083 0.273

Dmean 0.873 0.183 0.598 0.930 0.324 0.850

Table 3. Linear-regression analysis of the relationship between the geometric parameters of the cases and 
the dose reductions of the (PRVs of) BS/SC by IS-RA compared to C-RA/RA-SGC. Abbreviations: Ang_
BSSC =  the angle extended by the PTV with respect to the axis of BS/SC; Dist_Min =  the minimum distance 
between PTV and BS/SC; Vol_PTV =  the volume of PTV; other abbreviations as in Tables 1 and 2.
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improved if the jaw position and collimator angle could be optimized for each gantry angle. With the emergence 
of a new generation of digital linacs, a more general type of treatment planning and delivery techniques referred 
to as Station Parameter Optimized Radiation Therapy (SPORT)23–26, which optimizes the angular sampling of the 
control points of VMAT either in coplanar or noncoplanar space, may further improve the dosimetric character-
istics of IS-RA in the future.

Conclusions
The proposed isocentrically shielded RapidArc technique takes advantages of desirable features of rotational arc 
delivery and central sensitive structure blocking strategy and provides much better sparing of the pre-irradiated 
brainstem and spinal cord without compromising dosimetric requirements of other organs at risk and the PTV. 
The technique provides a viable choice for the re-irradiation of locally recurrent nasopharyngeal cancer.
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