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Simple Summary: Epigenetic mechanisms, that are modifications of the genome without the pres-
ence of mutations, are known to play a crucial role in central nervous system (CNS) tumors during
childhood. Two well-known epigenetic regulatory mechanisms include methylation and miRNA reg-
ulatory mechanisms. Therefore, in the present study we have investigated the presence of methylated
genes in childhood CNS tumors, along with miRNA expression. We have searched for correlations
between gene methylation and miRNA expression. In addition, we have investigated mRNA ex-
pression in order to search for possible miRNA targets. Such approaches could prove useful for the
improvement of CNS tumor prognosis, as well as for the discovery of new therapeutic targets.

Abstract: Epigenetic modifications are considered of utmost significance for tumor ontogenesis and
progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a
significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors
from children were used for further analysis. DNA methylation was identified with methylation-
specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6,
GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well
as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most
frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested
significant results with respect to tumor staging, tumor type, and the differentiation of tumor and
control samples. There was no significant dependence observed with the methylation of one gene
promoter, rather with the simultaneous presence of all detected methylated genes’ promoters. miRNA
expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of
major importance in tumor progression and pathophysiology, making it an imperative field of study.

Keywords: methylation; childhood CNS tumors; miRNA; mRNA; microarray

1. Introduction

Cancer is one of the leading fatal diseases in the western world. Tumors of the central
nervous system (CNS), are considered to be a complex, heterogeneous disease that is often
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fatal. Scientific knowledge gained through intense research, have not yet been translated
into similar improvements in tumor patients. CNS tumors still remain a critical health
condition, challenging both the patient as well as the health professionals. CNS tumors
are a pathological condition of unknown etiology that lead to the formation of solid mass
growing uncontrollably. They are characterized by abnormalities and disorders in the
proliferation, differentiation, and gene expression of a particular cell population, which
usually results in abnormal cell function. Although the etiology of CNS tumors is not
fully understood, there are specific factors that increase the risk of developing the disease.
Some of them include the exposure to radiation, genomic factors, exposure to mutagenic
chemicals, and infection by specific viruses.

Tumors in the central nervous system (CNS) during childhood, are the second most
frequent tumor types and are considered to be the most fatal of all neoplasms. CNS tumors,
are almost unique due to their anatomical position and the perils that such a location
includes. In particular, examples of CNS tumors include pilocytic astrocytomas (PA),
ependymomas (EP), medulloblastoma (MB), atypical teratoid/rhabdoid tumors (ATRT),
dysembryoplastic neuroepithelial tumors (DNETs), and others. The aforementioned tumors
are most frequent in children, where their clinical presentation not only concerns the
nervous tissue but can also “infiltrate” the cerebrospinal fluid (CSF) and the subarachnoid
space. The classification of CNS tumors has been extensively studied and the World Health
Organization (WHO) has produced an official report on the subject. The classification of
CNS tumors with respect to the “WHO Classification of Tumors of the Central Nerbous
System” has been described previously [1,2].

1.1. CNS Tumor Biomarkers

An important diagnostic tool for the determination and staging of CNS tumors is
still the investigation of protein biomarkers, which are detected by immunohistochemistry
(IHC) [3–5]. Numerous protein markers are used for the determination of tumor staging,
where some include glial fibrillary acidic protein (GFAP), P38, neuromicrofilaments (NF),
tumor protein p53 (p53), Bcl2 apoptosis regulator (BCL2), β-tubulin III (TUBB3), RNA
binding Fox-1 homolog 3 (Neu-N), β-catenin (CTNNB1), pre-mRNA-splicing factor ini1
(INI1), marker of proliferation Ki-67 (MKI67), keratin, mucin 1 cell surface associated
(MUC1 or EMA), epidermal growth factor receptor (EGFR), P27, S100 calcium binding
protein (S100), actin, desmin (DES), myelin (MBP), and others. Immunohistochemistry
consists of an invaluable tool for the differential diagnostic process and the accurate deter-
mination of tumors of the CNS [6]. Out of the numerous immunohistochemical biomarkers
available, several have been highlighted as “independent prognostic markers” [7,8]. For
example, the ki-67 is an antigen whose expression is related to the tumors’ aggressiveness
in the malignancies of the CNS [7,8]. The biological properties of ki-67 made it a signif-
icant biomarker in terms of tumor prognosis. Currently, the most prevalent therapeutic
approach concerns the craniospinal irradiation, which is administered for both the local
and metastatic disease in children older than three years of age [9]. Yet, disease prognosis
is still poor and CNS tumors of the childhood are, unfortunately, still manifesting high
mortality rates and therapy resistance. Thus it is possible that improved treatments will
come from the in-depth understanding of the tumor’s molecular machinery.

1.2. Gene Expression in CNS Tumors

There is overwhelming evidence on the role of gene expression and regulation in
CNS tumors, both those of adults, as well of the children. miRNAs and mRNAs, have
been studied thoroughly in the literature, where each has an abundant portion of literature
dedicated to CNS tumors. A search in the principal literature databases returns more the
6000 articles on the topic of both miRNAs and mRNAs in CNS tumors.
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1.3. Epigenetic Mechanisms in CNS Tumors

A very significant factor that has to be considered is the basic understanding of tumor
biological mechanisms. In that sense, a very significant part of tumor mechanics is the
epigenetic modification of the genome. Epigenetic mechanisms include the regulation
of gene expression through methylation of genes or post-transcriptional modifications.
Epigenetic mechanisms of biological systems has been neglected throughout time. Yet, it
has been shown that they consist of a very significant regulatory mechanism.

1.3.1. DNA Methylation and Cancer

The role of DNA methylation in cancer has been the topic of intensive study during the
recent years. Since the discovery of DNA methylation mechanisms, a large part of the litera-
ture has reported that DNA methyltransferase aberrant activity is present in tumors [10–15].
It has been found that malignant cells often manifest increased total DNA methyltrasferase
activity, significantly extensive loss of methylation, from otherwise physiologically methy-
lated promoters, but also hypermethylation of normally unmethlylated DNA sites [16–20].
Several studies have reported the significance of gene promoter methylation. For example,
the genes SPARC, UCHL1, NPTX2, PENK, and PDAC were investigated in pancreatic can-
cer, where they were found to be hypermethylated in patients with pancreatic cancer [21].
Similarly, studies have reported the presence of hypermethylated tumor suppressor gene’s
promoters in lung cancer [22,23], gastric cancer [24], and breast cancer [25].

1.3.2. DNA Methylation and CNS Tumors

Recent findings have highlighted the role of methylation on CNS tumors. In particular,
several reports have shown that mutations of the isocitrate dehydrogenase 1 (IDH1) and
IDH2, and H3 histone family member 3A, are strongly associated with DNA and histone
methylation, with a frequent methylation aberration being the O6-methylguanine-DNA
methyltransferase promoter in human diffuse gliomas [26]. Similarly, the promoter of
MGMT has been shown to be hypermethylated in non-malignant tumors of the CNS [27].
In addition, a recent report showed that in glioblastomas the promoter of GBX2, PDGFRA,
and GLI2 were hypermethylated and also linked to poor prognosis and resistance to
chemotherapy [28]. In a recent study, the methylation of RASSF1 and CASP8 were reported
as significant markers for the separation between childhood ependymoma and choroid
plexus papilloma [29].

1.4. Patient Administration and Stratification Based on New Biomarkers

One very important and interesting aspect that arises from studies as the one presented
here, is the potential use of molecular factors that could be used for patient prognosis,
diagnosis, and most of all therapy. A quick search in the literature up-to-date, shows
that there is a great interest in the scientific community for the role of miRNAs in CNS
tumors. For example, in a very recent study it has been reported that the signatures of a
miRNA set, was able to distinguish between primary CNS and non-malignant tumors. The
highlight of this study, was that the distinction could be facilitated by miRNAs detected
in the cerebrospinal fluid (CSF) [30]. The great advantage of miRNAs (but limited to) is
that besides their role in tumor tissue biology, they are also found in circulation, being
able to be detected more easily. Another interesting issue, outlined in the literature (on
which we also agree) is that clinical advantages (prognosis, diagnosis, therapy) are not
derived from a single miRNA, but rather from a cohort or repertoire of miRNAs. This
brings about another very important aspect in tumor biology, which is its multi-factorial
and therefore complex nature [31]. On the other hand, the most important aspect that has
being discussed recently, is the possibility of therapeutic interventions using epigenetic
mechanisms, such as miRNAs. Currently, there are no known miRNA therapies for human
brain tumors. Yet, several studies have highlighted the use of these molecules in animal
models. In particular, miR-370-3p [32], miR-142-3p [33], miR-181 [34], miR-124, miR-128,
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and miR-137 [35] are molecules that, when used in animal models, manifested potential
anti-tumor and chemotherapy-enhancement properties.

Another interesting aspect is the type of approach in the study of CNS biology and
the role of epigenetic regulatory mechanisms that would be whether investigate the tumor
on the tissue level or plasma level. Both approaches are significant and provide significant
information on the tumor’s biology. The investigation of miRNA levels in plasma/blood
(thus circulating) could provide information for the prognostic and diagnostic course of
the disease, while the investigation of epigenetic mechanisms on the tissue level provides
information on the tumor’s biology along with the diagnostic and therapy-related knowl-
edge. A quick search on the bibliographic databases shows that most studies are concerned
with biology of the disease on the tumor’s site, while a smaller part is concerned with the
circulating miRNA molecules. Yet, both approaches still remain quite significant for our
understanding of the disease. From that perspective, we have chosen to investigate the
biology of the tumors from the tissue approach, as we attempted to identify those miRNAs
and epigenetic mechanisms that are common to the investigated tumors irrespective of
their stratification and diversity.

1.5. Design and Aim of the Present Study

The current study, was performed on four levels; the first level included the diagnosis
and staging of childhood CNS tumors through microscopy and immunohistochemical
methods, the second level included the determination of miRNA expression levels using
high throughput methodologies, the third level included the determination of mRNA levels
using high throughput methodologies and the fourth level included the determination
of the methylation status on specific genes. Our strategy consisted of two approaches;
the first was to examine the relation of clinical variables and differential expressed genes
and the second was to examine those miRNAs and mRNAs that were globally up- or
down-regulated in all tumor samples. The present work is summarized in the flow chart of
Figure S1.

Therefore, based on the aforementioned strategy, we aimed at determining the differ-
ential and common signatures of miRNA, mRNA expression and methylation in different
childhood CNS tumors, in order to discover common regulatory mechanisms.

2. Materials and Methods
2.1. Patients and Tumor Samples

Overall, 49 surgically resected brain tumors from children diagnosed with a central
nervous system (CNS) malignancy, were studied. In particular, tumors included: (a) pi-
locytic astrocytomas (PA) (n = 20); (b) ependymomas (EP) (n = 7); (c) medulloblastoma
(n = 16); (d) atypical teratoid/rhabdoid tumors (ATRT) (n = 4); and (e) cortical dysplasia
(CD) (n = 2); which were diagnosed according to the 2007 and 2016 WHO criteria [1,2,36,37].
As reference, healthy samples were used, obtained from deceased children (n = 13) as well
as the “First-Choice Human Brain Reference RNA” (n = 1) (Ambion, Austin, TX, USA). The
control group consisted of thirteen samples, who were dissected from deceased children,
underwent autopsy and were diagnosed with no brain aberrancies. The specific anatomic
sites obtained, included: cerebellum (n = 3), medulla oblongata (n = 3), parietal lobe (n = 3),
and temporal lobe (n = 3), as previously described [3,4]. All tissues were immediately
snap-frozen or processed after resection and stored a −80 ◦C until further processing.
Patient characteristics are summarized in Table 1.

Table 1. Demographic and clinical characteristics of the study population (Legend: StDev: Standard deviation, ATRT:
Atypical teratoid rhabdoid tumor, CR: Clinical remission).

Total Population (n = 62)

Mean ± StDev Median Min Max

Age at Diagnosis
(years) 6.20 ± 4.33 6.20 0.03 16.06

Time of Curation 1051.05 ± 5295.79 248.75 175.00 38,112.00

Survival (years) 8.48 ± 3.65 7.93 0.78 17.98
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Table 1. Cont.

Total Population (n = 62)

With Respect to Gender

Males (n = 39) Females (n = 25)

Mean ± StDev Median Min Max Mean ± StDev Median Min Max

Age at Diagnosis
(years) 6.59 ± 4.59 4.92 0.03 16.06 5.72 ± 4.04 6.69 0.26 13.52

Time of Curation
(Days) 321.64 ± 188.57 248.75 175.00 1051.05 1871.63 ± 7720.16 246.50 177.17 38,112.00

Survival (years) 8.49 ± 3.38 7.94 1.39 17.98 8.46 ± 4.13 7.70 0.78 17.93

With Respect to Diagnosis

ASTROCYTOMA
(n = 20)

Mean ± StDev
Median (Min-Max)

EPENDYMOMA
(n = 7)

Mean ± StDev
Median (Min-Max)

MEDULLOBLASTOMA
(n = 16)

Mean ± StDev
Median (Min-Max)

ATRT (n = 4)
Mean ± StDev

Median (Min-Max)

CORTICAL
DYSPLASIA (n = 2)

Mean ± StDev
Median (Min-Max)

CONTROL (n = 13)
Mean ± StDev

Median (Min-Max)

Age at
Diagnosis (years)

5.86 ± 3.42
3.42 (0.92–13.05)

5.13 ± 5.40
5.40 (1.44–16.01)

6.92 ± 4.70
4.70 (0.74–16.06)

2.46 ± 3.54
3.54 (0.03–7.61)

10.77 ± 3.87
10.77 (8.04, 13.51)

6.20 ± 0.00
0.00 (6.20–6.20)

Time of
Curation (Days)

2263.75 ± 8681.67
8681.67 (177.17–

38,112.00)

289.54 ± 133.32
133.32 (175.00–542.17)

342.54 ± 143.61
143.61 (201.67–553.42)

292.25 ± 121.79
121.79 (200.67–

471.58)

240.79 ± 19.97
240.79 (226.66,

254.91)

1051.05 ± 0.00
0.00 (1051.05–1051.05)

Survival (years) 8.69 ± 2.74
2.74 (6.22–17.75)

8.28 ± 2.72
2.72 (5.75–12.86)

9.99 ± 5.74
5.74 (1.39–17.98)

5.10 ± 3.80
3.80 (0.78–7.93)

7.91 ± 0.65
7.91 (7.45, 8.38)

8.48 ± 0.00
0.00 (8.48–8.48)

With Respect to Tumor Grade

Grade I (n = 16)
Mean ± StDev

Median (Min-Max)

Grade II (n = 9)
Mean ± StDev

Median (Min-Max)

Grade III (n = 3)
Mean ± StDev

Median (Min-Max)

Grade IV (n = 18)
Mean ± StDev

Median (Min-Max)

CONTROL (n = 15)
Mean ± StDev

Median (Min-Max)

Age at
Diagnosis (years)

6.47 ± 3.37
6.62 (1.99–13.05)

5.94 ± 5.31
4.47 (0.26–16.01)

1.75 ± 0.33
1.72 (1.44–2.10)

6.33 ± 4.70
7.06 (0.03–16.06)

9.25 ± 3.80
8.04 (6.20–13.52)

Time of
Curation (Days)

276.98 ± 111.93
241.46 (189.17–

553.42)

4041.37 ± 11,971.66
238.96 (177.17–

38,112.00)

281.33 ± 108.08
277.92 (175.00–391.08)

337.28 ± 140.07
254.42 (200.67–

553.42)

501.93 ± 475.76
241.50 (213.25–

1051.05)

Survival (years) 8.58 ± 2.79
7.94 (6.22–17.75)

7.75 ± 1.31
7.93 (6.25–9.99)

9.31 ± 5.02
9.31 (5.75–12.86)

8.84 ± 5.88
7.04 (0.78–17.98)

7.81 ± 0.74
7.94 (7.01–8.48)

With Respect to Clinical Outcome

CR (n = 36)
Mean ± StDev

Median (Min-Max)

RELAPSE (n = 12)
Mean ± StDev

Median (Min-Max)

CONTROL (13)
Mean ± StDev

Median (Min-Max)

Age at Diagnosis
(years)

6.33 ± 4.31
6.62 (0.03–16.01)

6.22 ± 4.81
5.76 (0.74–16.06)

6.20 ± 0.00
6.20 (6.20–6.20)

Time of Curation
(Days)

1350.27 ± 6397.47
241.25 (175.00–38,112.00)

386.45 ± 140.85
407.71 (204.42–553.42)

1051.05 ± 0.00
1051.05 (1051.05–

1051.05)

Survival (years) 8.60 ± 3.09
7.92 (5.75–17.98)

7.68 ± 7.03
8.33 (0.78–17.93)

8.48 ± 0.00
8.48 (8.48–8.48)

2.2. Diagnosis and Immunohistochemistry
2.2.1. Diagnosis and Clinical Evaluation

Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) for sev-
eral markers, were performed for all brain tumor specimens, as we have previously re-
ported [3–5]. All samples were snap-frozen after surgical resection and stored a −80 ◦C
until use. Clinicopathologic information, such as age, tumor location, disease progression
and survival for each specimen were collected by retrospective medical record review.

2.2.2. Immunohistochemistry

Haematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) has been
previously reported [3–5]. In brief, dissected samples were tested for the expression
of several markers, which included glial fibrillary acidic protein (GFAP) (n = 62), P38
(n = 52), neuromicrofilaments (NF) (n = 51), tumor protein p53 (p53) (n = 54), Bcl2 apoptosis
regulator (BCL2) (n = 50), β-tubulin III (TUBB3) (n = 25), RNA binding Fox-1 homolog
3 (Neu-N) (n = 33), β-catenin (CTNNB1) (n = 16), pre-mRNA-splicing factor ini1 (INI1)
(n = 21), marker of proliferation Ki-67 (MKI67) (n = 55), keratin (n = 34), mucin 1 cell
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surface associated (MUC1 or EMA) (n = 50), epidermal growth factor receptor (EGFR)
(n = 16), P27 (n = 17), S100 calcium binding protein (S100) (n = 13), actin (n = 14), desmin
(DES) (n = 15), and myelin (MBP) (n = 13). Each slide was individually evaluated and
scored by two independent observers blinded to all clinical data. Discrepancies in scoring
between the observers were resolved by additional review of the slides under a double
headed microscope until a consensus was reached. For the evaluation we used a Nikon
light microscope. The whole section was initially reviewed and representative areas were
selected at low magnification (×100). Cell count was performed at high magnification
(×400). The number of positive stained cells along with the total number of cells were
counted in 10 different, non-overlapping fields per section. Then, the average of the cells
was taken and the percentage of positive stained cells for each section was calculated
(positive stained cells (%)). Clinicopathologic information such as age, tumor location,
disease progression, and survival for each specimen were collected by retrospective medical
record review.

2.3. RNA Extraction

Samples (n = 61) were processed for both total RNA, as well as miRNA extraction. In
brief, total RNA and miRNAs were extracted using the Trizol standard protocol (Invitrogen,
Carlsbad, CA, USA) and the mirVANA miRNA isolation kit (Ambion, Austin, TX, USA).
The RNA quantity and quality were evaluated using a spectrophotometer (NanoDrop®

ND-1000 UV–vis, Nanogen Inc., San Diego, CA, USA), as previously described [3–5].

2.4. Microarray Profiling
2.4.1. miRNA Profiling

MicroRNA profiling has been described previously in detail [3–5], which we repro-
duce in quotes as follows: “In brief, total RNA and miRNAs were extracted using the
Trizol standard protocol (Invitrogen, Carlsbad, CA, USA) and the mirVANA miRNA
isolation kit (Ambion, Austin, TX, USA). Labelling and hybridization were performed
using the LabelIT miRNA labelling kit (Mirus Bio LLC, Madison, WI, USA) according to
manufacturer’s instructions. Samples were hybridized to Applied MicroArrays (miRlink
Bioarray 300054-3PK) platform. This array contained 1211 human miRNAs. Hybridization
was performed at 37 ◦C with rotation at 145 rpm for 16 h. Images were scanned using
Agilent Microarray Scanner (G2565CA) controlled by Agilent Scan Control 7.0 software.
The total gene signals were extracted using the Imagene 6.0 software (Biodiscovery Inc.,
El Segundo, CA, USA) that contains summarized signal intensities for each miRNA by
combining intensities of replicate probes and background subtraction” [3–5]. In total,
49 CNS tumor samples (the complete cohort described in Section 2.1.) and 13 control
samples were investigated for their miRNA expressional profile. All microarray data are
MIAME compliant.

2.4.2. cRNA Profiling

Oligos microarray chips (~57k genes) were obtained from GE HealthCare (Chicago,
IL, USA) and Applied Microarrays (Tempe, AZ, USA) (formerly Amersham Biosciences,
Buckinghamshire, UK) (CodeLink 57k Human Whole Genome) [38–40]. Hybridization
was performed with the CodeLink RNA amplification and labeling kit as described by the
manufacturer, utilizing the Cy5 fluorescent dye. Slides were scanned with a microarray
scanner (ScanArray 4000XL, Northville, MI, USA). Images were generated with ScanArray
microarray acquisition software (GSI Lumonics, Northville, MI, USA). cRNAs from three
experimental setups were used in single experiments with internal spikes as controls.
The scanned images were further processed with the CodeLink Expression Analysis Soft-
ware v5.0 from Amersham Biosciences (presently GE Health Care Inc., Chicago, IL, USA).
The experimental setup was analyzed based on the reference-design, as described previ-
ously [41–43]. Gene expression values of tumor samples were compared against the mean
value of the control samples. In total, 4 CNS tumor samples (one PA, one MB, one EP, and
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one ATRT) and 3 control samples were investigated for their mRNA expressional profile.
All microarray data are MIAME compliant. This type of experimentation was performed
in order to be used as a reference population for the applied ontological annotations in the
present study. In other words, each ontological annotation analysis, requires a reference
population of genes to be used, which can be used the complete genome or a certain gene
cohort. In our case, we have used the DE genes detected from mRNA expression analysis
as the reference gene cohort and this was used for any further bioinformatics analyses.

2.5. DNA Extraction

DNA was extracted from tumor samples, using the DNEasy Blood and Tissue kit
(QIAGEN, Hilden, DE, Cat. Nr. 69504). PCR product was purified using the QIAquick
Purification kit (QIAGEN, Hilden, DE, Cat. Nr. 28104).

2.6. Methylation

From the total patient cohort, children diagnosed with pilocytic astrocytomas (PA)
(n = 13), ependymomas (EP) (n = 2), medulloblastoma (MB) (n = 8), and atypical teratoid
rhabdoid tumor (ATRT) (n = 1) were evaluated for the possible methylation on specific
genes. Twelve non-tumor brain samples were used (n = 12) as controls, as described in the
previous section.

2.6.1. Methylation-Specific MLPA (MS-MLPA)

Methylation-specific multiplex ligation-dependent probe amplification (MLPA) (MS-
MLPA) is a semi-quantitative method for methylation profiling. In this study we used
two MS-MLPA probe mixes (ME001-D1 tumor suppressor mix 1 and ME002-C1 tumor
suppressor mix 2, MRC Holland (Amsterdam, NL) (www.mlpa.com, accessed 15 September
2021)) that contain methylation specific probes for 37 different tumor suppressor (TS) genes.
Using the MS-MLPA technique we can distinguish the TS genes that keep the methylated
status and therefore are silenced [44].

2.6.2. Methylation-Specific PCR

For the validation of methylated genes, a methylation-specific PCR (MS-PCR) protocol
was designed [45]. In particular, samples underwent complete bisulfate conversion using
the EZ DNA Methylation-LightningTM kit (Zymo Research, Irvine, CA, USA) before being
used in the MS-PCR according to the manufacturer’s instructions. The MS-PCR primers
were designed using the MethPrimer software [46] and the PCR was performed at 55 ◦C.
In particular, primers were designed for RASSF1 and CASP8 genes, in order to test more
samples. Primer sets are summarized in Table 2.

2.7. Data Analysis
2.7.1. Statistical Analysis

Continuous variables are expressed as mean ± standard deviation, unless indicated
differently. Variable differences and association with clinical variables were conducted with
the Kruskal–Wallis test. Patient’s characteristics are presented with absolute and relative
frequencies (%). Chi-square test of independence was used to evaluate the association
between having multiple methylated genes or aberrations and patients’ characteristics. The
characteristics that were found statistically significant were entered in a logistic regression
model in order to evaluate the probability of having multiple positive reactions. The level
of statistical significance was set to a = 5%. For comparisons between groups, Student’s
t-test and one-way analysis of variance (ANOVA) were performed for the continuous
variables and Chi-square tests were used for the categorical variables. Post hoc comparisons
(adjusted with Bonferroni criterion) were also performed when significant differences
(p < 0.05) of the variables in ANOVA tests were identified. The characteristics that were
found statistically significant were entered in a logistic regression model in order to evaluate
the probability of having multiple positive reactions. The modeling of a quantitative

www.mlpa.com
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variable based on one or more qualitative and quantitative parameters, was performed
through linear regression. Multiple logistic regression was performed in order to evaluate
the probability of having multiple positive reactions. The relative risk (RR), odds ratio
(OR), absolute risk (AR) were calculated.

Table 2. Primer design for methylated and unmethylated RASSF1 and CASP8 genes.

Primers for MS-PCR for RASSF1 Promoter

Primer Sequence

Methylated

Left RASSF1 F primer GTAAAGTTGGTTTTTAGAAATACGG

Right RASSF1 R primer AAAAAAAACTAAAAAAAACCGCG

Product size: 212, Tm: 69.30

Unmethylated

Left RASSF1 F primer GTAAAGTTGGTTTTTAGAAATATGG

Right RASSF1 R primer AAAAAAAACTAAAAAAAACCACACA

Product size: 212, Tm: 69.30

Primers for MS-PCR for CASP8 Promoter

Primer Sequence

Methylated

Left CASP8 F primer TGGGAGTAAGGTAGAGTTAGAGGTC

Right CASP8 R primer AATTTCAAATCCCAAATTATTTCG

Product size: 142, Tm: 66.90

Unmethylated

Left CASP8 F primer GGGAGTAAGGTAGAGTTAGAGGTTG

Right CASP8 R primer AAATTTCAAATCCCAAATTATTTCA

Product size: 142, Tm: 66.90

Methylation analysis and copy number variation (CNV) was performed with the Coff-
alyzer software (MRC Holland (www.mlpa.com, accessed 15 September 2021)). Indicative
analysis results are presented in Figure S2. Statistical analysis has been performed with the
Matlab® computational environment (The Mathworks, Inc., The Natick, MA, USA).

2.7.2. Microarray Data Analysis
Microarray Data Pre-Processing

The extracted microarray data were entered into a Microsoft Excel® file.

Microarray Data Post-Processing

Microarray data were initially background-corrected using the multiplicative back-
ground correction (MBC) approach [47]. In particular, MBC subtracts the logarithmic
estimates of the background intensity from the logarithmic foreground intensity. After
background correction, negative values were removed and replaced with “NaN” values.
Our intention was to find miRNA and mRNA expression, even those of low expression
values. It is possible that not only those values that are of great difference are of importance,
but also those that have very low expression values could be of biological importance.
Microarray data post-processing has been performed with the Matlab® computational
environment (The Mathworks, Inc., The Natick, MA USA)

www.mlpa.com
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Microarray Data Normalization

Microarray data normalization was then performed using three algorithms; (a) Loess [48],
(b) rank invariant, and (c) quantile algorithm. To account for differences across series we
used the log2-transformed ratio:

Ri,j = log2

( xi,j

xtotal

)
Xi,j = 2Ri.j (1)

where, Ri,j is the global mean-transformed ratio, xi,j is the expression value of gene i and
sample j, Xi,j is the restructured value of the ith gene and jth sample.

The three algorithms were compared for their efficiencies. In general, the quantile
algorithm performed better as comparted to the other two. Microarray data normalization
has been performed with the Matlab® computational environment (The Mathworks, Inc.,
The Natick, MA, USA).

Elimination of Duplicate Transcripts

To reduce the complexity of the dataset, we followed the replicate averaging approach
proposed by Uzman et al. [49]. Calculations of duplicate genes was performed with the
Matlab® computational environment (The Mathworks, Inc., The Natick, MA, USA).

Detection of Differentially Expressed Genes (DEGs)

We used the Student’s t-test [50] to identify the differentially expressed miRNA and
mRNA genes (DE miRNAs, DE mRNAs) across all tumor samples and compared them
to all control samples. The false discovery rate (FDR) was calculated, as previously de-
scribed [51–53]. The DE miRNA and mRNA genes per experiment were identified at a
confidence level of 95%. DE miRNAs and mRNAs were treated in two different ways. Data
were further processed and analyzed as “ratios”, i.e., as gene expression values calculated
as the log2-transformed ratio of each tumor sample over the mean of all control samples,
using the following formula:

E = log2

(
FTumor,i,j

FControls,j

)
(2)

where E is the expression value, FTumor,i,j is the expression value of tumor sample i and
miRNA/mRNA j, FControls,j is the mean expression value of all controls and miRNA/mRNA j.
In addition, data were also analyzed as “naturals”, meaning DEGs that are non-log2-
transformed and thus including the control and tumor samples separately. DEGs have
been estimated with the Matlab® computational environment (The Mathworks, Inc., The
Natick, MA, USA).

Unsupervised Classification Methods

DEGs were further analyzed for common expression patterns using classification
methods. To gain further insight into the gene expression data, we used unsupervised
hierarchical clustering (HCL) and k-means classification [54,55]. HCL with dendrogram,
was used and correlations were calculated with Euclidean distance. K-means classifica-
tion [54,55] was recently reported as one of the best performing clustering approaches for
microarray class discovery studies [56]. We applied the squared Euclidean as a distance
measure, since it is generally considered to be a more appropriate measure for use with
k-means and found to outperform for ratio-based measurements [57]. We used 100 iter-
ations and the optimal cluster number for the k-means algorithm was estimated using
the Calinski–Harabasz criterion. Complete k-means clusters, centroids, and sorted cen-
troids [58] were utilized. The DE miRNAs/mRNAs, were also classified based on their
diagnosis categorical variable. In particular, the mean values of all samples with respect to
the diagnosis was estimated and the resulting descriptive statistical measure was utilized
for further k-means classification. Gene expression was also analyzed with respect to the
chromosomal distribution of the DE miRNAs/mRNAs. We explored the mean expression
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per chromosome and heat-maps of chromosomal-related expression. Unsupervised classifi-
cation methods have been performed with the Matlab® computational environment (The
Mathworks, Inc., The Natick, MA, USA).

Unsupervised Classification Methods: Descriptive K-Means

In order to further investigate the expression patterns of DE miRNAs, we have used a
variation of the k-means algorithm, where instead of using the complete sample cohort,
i.e., each sample separately, we used the categorical properties of the sample cohort. In
the classical k-means algorithm a matrix of m × n is used, where m is the number of
genes/miRNAs and n is the number of samples. In our variation, a new matrix is formed
with dimensions m × q, where q is the number of unique values of a categorical variable. For
example, in the present cohort 49 tumor samples were utilized and could be divided into
five distinct diagnostic categories (e.g., ependymoma, astrocytoma, medulloblastoma etc.)
and, hence, q = 5. K-means clustering was implemented with the same parameterization as
the aforementioned typical k-means approach.

Common Expression Patterns in DE miRNAs/mRNAs

DE miRNAs/mRNAs were examined for possible common expression patterns, i.e.,
miRNAs/mRNAs that were either down- or up-regulated in all CNS tumor samples,
irrespective of the tumor diagnosis. The clusters revealed by unsupervised classification
were examined separately. Each miRNA was counted for its occurrences for up- or down-
regulation in all samples and the result was divided by the total number of samples, giving
the percentage of up- or down-regulated samples of the respective miRNA/mRNA. We
have looked for miRNAs/mRNAs that were either up or down-regulated in all samples
(100%), in 90–99% of all samples, 80–89% of all samples, and 75–80% of all samples.

Gene Ontology (GO) Enrichment Analysis

We performed GO enrichment analysis using the gprofiler [59], and WebGestalt web-
tools [60]. Relations of the differentially expressed genes and the transcription factor
binding motifs were further investigated using the Pubgene Ontology Database (www.
pubgene.org, accessed 12 May 2020). Gene definitions and functions were based on
the National Institute of Health databases (http://www.ncbi.nlm.nih.gov/sites/entrez/,
accessed 27 September 2020).

Pathway Analysis

Pathway analysis was performed using the gprofiler [59] and WebGestalt web-tools [60].

miRNA Enrichment Analysis

Enriched miRNA targets were identified using the miTEA web-tool [61,62], as well as
for miRNA enrichment analysis the MiEEA [63], and TAM 2.0 [64,65], web-tools were used.

2.7.3. Receiver Operating Characteristic (ROC) Analysis

ROC curves and naïve-Bayes classification were used to investigate the diagnostic
ability of the co-deregulated miRNAs/mRNAs between CNS tumors and control sam-
ples. In the case of naïve-Bayes classification, the algorithm used the Bayes theorem, and
(naïvely) assumes that the predictors are conditionally independent, given a class. Naïve
Bayes classifiers assign observations to the most probable class (in other words, the max-
imum a posteriori decision rule). ROC analysis has been performed with the Matlab®

computational environment (The Mathworks, Inc., The Natick, MA, USA).

2.8. Ethics Statements

All experiments were conducted in compliance with the international biomedical
studies stipulations, with reference to the Declaration of Helsinki of the World Medical
Association. No personal data of patients were kept, while it was impossible to trace back

www.pubgene.org
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Cancers 2021, 13, 5491 11 of 39

any personal data from the data collected for the present study. Informed written consent
was obtained from the parents of all children included in the study. The present study was
conducted with the approval of “Aghia Sophia” Children’s Hospital Ethics Committee
(Protocol No. 35/19.16/09/13).

3. Results

In the present study, we have analyzed a cohort of pediatric patients suffering
from different types of CNS tumors, including ependymoma, medulloblastoma, ATRT,
and astrocytoma.

3.1. Patients and Tumor Samples

Our patient cohort included 39 males and 25 females with ages mean 6.59 ± 4.59 years,
median 6.20 (min 0.03, max 16.06 years). The mean age of PA patients was 5.86 ± 3.42 years
with a male–female ratio of 1:1, the median age for the EP patients was 5.13 ± 5.40 years
with a male–female ratio of 6:1, the mean age for the MB patients was 6.92 ± 4.70 years
with a male–female ratio of 1:1, the ATRT mean age was 2.46 ± 3.54, while the non-
malignant cohort was 9 years consisted of males only (Table 1). Among the patients’ cohort,
24 patients (85.7%) remained in complete remission (after therapy); 17 PA, 5 EP patients,
and 2 CD patients, and 4 patients (14.3%) succumbed from the disease; 2 PA patients
and 2 EP patients. The laboratory and clinical parameters of all patients were examined
in relation to the miRNA/mRNA profiles obtained. For part of the patient cohort, the
information concerning the time of death was not known and, thus, it was not possible to
calculate the overall survival for all patients.

3.2. miRNA and mRNA Expression

miRNA expression levels of all samples (n = 61) were estimated and were sorted
in ascending order in order to identify expression patterns of DE miRNAs. In total,
75 miRNAs were detected as DEGs, with a FDR < 0.05 at p < 0.05 (Table S1). In addition,
869 mRNAs were detected as DEGs with a FDR < 0.01 at p < 0.05. DE mRNAs were used
further on, in the present analysis, in order to identify miRNA targets with relation to the
mRNA expression profile. Mean miRNA DEGs naturals in tumor and control samples
separately are presented in Figure 1A, while miRNA ratios of tumors over controls are
presented in Figure 1B.

3.3. miRNA Differential Expression with Respect to Clinical Parameters
3.3.1. miRNA Expression Profiling with Respect to Gender

Four miRNAs were found to be DE with respect to gender. In particular DE miRNAs
included miR-128 (p = 0.03) (Figure 2A), miR-135a* (p = 0.014) (Figure 2B), miR-3202
(p = 0.04) (Figure 2C), miR-4251 (p = 0.04) (Figure 2D), miR-4270 (p = 0.03) (Figure 2E),
and miR-491-3p (p = 0.04) (Figure 2F). Interestingly, all six miRNAs were found to be
up-regulated in female patients as compared to male patients. In the case of gender, we
have estimated the ratios of gene expression and not the “natural” values due to the fact
that gender “natural” values included both control and tumor values.

3.3.2. miRNA Expression Profiling with Respect to Gender

In the investigation of diagnosis, we have used both the “natural” values, as well as
ratios of gene expression. Significant differences were observed between cortical dysplasia
and ependymoma (p = 0.00066), as well as controls and ependymomas (p = 0.0055) with
respect to miR-1234 (Figure A). In addition, significant differences were observed between
controls and ependymoma (p = 0.00003), as well as medulloblastoma and ependymomas
(p = 0.0018) with respect to miR-183 (Figure B). Similarly, significant differences were
observed between controls and cortical dysplasias (p = 0.0044) with respect to miR-25*
(Figure C). Significant differences were observed between cortical dysplasia and pilocytic
astrocytomas (p = 0.001), as well as cortical dysplasias and medulloblastomas (p = 0.002)
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with respect to miR-3675-5p (Figure D), whereas miRNA expression manifested also a
descending pattern from cortical dysplasias to ATRT (Figure D). Further on, significant
differences were observed between controls and cortical dysplasias (p = 0.0004) with respect
to miR-612 (Figure E) with a similar descending pattern as in the case of miR-3675-5p. By
including control samples and calculating the expression ratios, significant differences
were observed between medulloblastomas and ependymomas (p = 0.007) with respect
to miR-122* (Figure F), between cortical dysplasia and ATRT (p = 0.004) with respect to
miR-130b (Figure G), ependymomas and ATRTs (p = 0.0009) with respect to miR-2909
(Figure H). Interestingly, significant differences were observed between cortical dysplasias
and ependymomas (p = 0.001) with respect to miR-302b (Figure I), with an ascending
pattern as we move from cortical dysplasias to ATRTs, indicating a possible relation
to tumor aggressiveness. Subsequently, significant differences were observed between
pilocytic astrocytomas and ependymomas (p = 0.004) with respect to miR-4251 (Figure J),
between medulloblastomas and ependymomas (p = 0.009) with respect to miR-576-5p
(Figure K), between medulloblastomas and ependymomas (p = 0.004) with respect to miR-
600 (Figure L), and, finally, between cortical dysplasias and ATRT (p = 0.0003) with respect
to miR-96* (Figure M).

3.3.3. miRNA Expression Profiling with Respect to Tumor Grade

Six miRNAs were found to be DE with respect to tumor grade. In particular, miR-
1182 was found to be DE between controls and grade I tumors (p = 0.009) (Figure 4A).
Significant differences were also observed between controls and grade II tumors (p = 0.002),
between controls and grade III tumors (p = 0.002), between grade I and grade III tumors
(p = 0.004), between grade II and grade IV tumors (p = 0.005), as well as between grade III
and grade IV tumors (p = 0.005) with respect to miR-183 (Figure 4B), as well as significant
differences were observed between controls and grade III tumors (p = 0.006) with respect
to miR-194* (Figure 4C). miR-3202 manifested a descending pattern from controls to grade
IV tumors with significant differences between grade II and grade III tumors (p = 0.008)
(Figure 4D). Further on, significant differences were observed between grade I and grade
II tumors (p = 0.008), as well as between grade II and grade IV tumors (p = 0.009) with
respect to miR-4251 (Figure 4E) and between controls and grade II tumors (p = 0.006)
with respect to miR-592 (Figure 4F). Finally, when including control samples, calculating
the expression ratios significant differences were observed between grade I and grade III
tumors (p = 0.0003), between grade II and grade III tumors (p = 0.007), as well as between
grade III and grade IV tumors (p = 0.005) with respect to miR-4251 (Figure 4G).

3.3.4. miRNA Expression Profiling with Respect to Protein Markers

Several miRNAs were identified to present significant differences with respect to
the presence of protein markers in tumors. In particular, we have found that miR-3191,
miR-520a-3p and miR-643 were significantly different with respect to GFAP expression
(Figure 5A). Similarly, miR-3123, miR-34a, miR-3655, miR-3942, miR-4270, miR-514b-5p,
and miR-600 manifested significant differences with respect to P38 expression (Figure
5B). Further on, miR-1182, miR-1226, miR-194*, miR-3942, and miR-656 showed signifi-
cantly different expression levels with respect to NF expression (Figure 5C). Interestingly,
miR-135a*, miR-3202, and miR-4330 were significantly down-regulated in TP53 negative
tumors as compared to TP53 positive tumors (Figure 5D). In the case of BCL2, miR-3618
manifested higher expression levels in BCL2 positive levels as compared to BCL2 negative
tumors (Figure 5E). Further on, miR-122*, miR-1234, miR-4261, miR-4330, and miR-526b*
manifested significant differences in TUBB3 positive and negative tumors (Figure 5F). The
relation of NeuN expression manifested the largest number of miRNAs with significant
differences. In particular, mIR-106b*, miR-122*, miR-25*, miR-34a, miR-4317, miR-491-3p,
miR-5143-5p, miR-600 and miR-765 presented significant differences with respect to TUBB3
expression (Figure 5G). As in the case of BCL2, only one miRNA manifested significant
difference with respect to Ki-67 expression. In particular, miR-25* manifested higher expres-
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sion levels in Ki-67 negative tumors as compared to Ki-67 positive levels (Figure 5H). In
the case of keratin, miR-122*, miR-194* and miR-4307 manifested higher expression levels
in keratin-positive tumors as compared to keratin-negative tumors (Figure 5I). Finally,
miR-122*, miR-194*, miR-576-5p, miR-592 and miR-606 were differentially expressed in
MUC1-positive tumors as compared to MUC1-negative tumors (Figure 5J).

3.4. Methylation

Part of our analysis included the investigation of the promoter methylation of a
set of tumor suppressor and apoptotic genes. The gene repertoire examined included
the promoters of CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, CADM1, and
RB1 genes.

Figure 1. Mean expression of DE miRNAs in ascending order. The miRNAs naturals presented are
in the following order (from 1 to 75): hsa-miR-3655, hsa-miR-128, hsa-miR-520a-3p, hsa-miR-3180-3p,
hsa-miR-214, hsa-miR-1182, hsa-miR-580, hsa-miR-1204, hsa-miR-3622b-5p, hsa-miR-9*, hsa-miR-
491-3p, hsa-miR-770-5p, hsa-miR-490-3p, hsa-miR-183, hsa-miR-34c-3p, hsa-miR-4276, hsa-miR-2909,
hsa-miR-194*, hsa-miR-3191, hsa-miR-30e*, hsa-miR-135a*, hsa-miR-3672, hsa-miR-25*, hsa-miR-489,
hsa-miR-188-5p, hsa-miR-34a, hsa-miR-606, hsa-miR-612, hsa-miR-514b-5p, hsa-miR-600, hsa-miR-
765, hsa-miR-320e, hsa-miR-3675-5p, hsa-miR-876-5p, hsa-miR-643, hsa-miR-4261, hsa-miR-410,
hsa-miR-548y, hsa-miR-4307, hsa-miR-526b*, hsa-miR-19b, hsa-miR-3614-5p, hsa-miR-4251, hsa-miR-
3618, hsa-miR-106b*, hsa-miR-4270, hsa-miR-542-3p, hsa-miR-96*, hsa-miR-4317, hsa-miR-576-5p,
hsa-miR-4267, hsa-miR-3202, hsa-miR-584, hsa-miR-645, hsa-miR-592, hsa-miR-226, hsa-miR-4329,
hsa-miR-656, hsa-miR-3616-3p, hsa-miR-1246, hsa-miR-214*, hsa-miR-3942, hsa-miR-1234, hsa-miR-
302b, hsa-miR-149*, hsa-miR-23b, hsa-miR-125b, hsa-miR-147, hsa-miR-3123, hsa-miR-122*, hsa-miR-
4330, hsa-miR-95, hsa-miR-582-5p, hsa-miR-130b, hsa-miR-649 (A). The miRNAs ratios presented
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are in the following order (from 1 to 75): hsa-miR-649, hsa-miR-130b, hsa-miR-4330, hsa-miR-95,
hsa-miR-122*, hsa-miR-3123, hsa-miR-582-5p, hsa-miR-23b, hsa-miR-147, hsa-miR-302b, hsa-miR-
214*, hsa-miR-125b, hsa-miR-3942, hsa-miR-656, hsa-miR-3616-3p, hsa-miR-1234, hsa-miR-1226,
hsa-miR-4329, hsa-miR-645, hsa-miR-592, hsa-miR-3202, hsa-miR-1246, hsa-miR-584, hsa-miR-576-5p,
hsa-miR-4267, hsa-miR-4317, hsa-miR-542-3p, hsa-miR-96*, hsa-miR-3618, hsa-miR-4270, hsa-miR-
149*, hsa-miR-106b*, hsa-miR-4251, hsa-miR-548y, hsa-miR-4307, hsa-miR-19b, hsa-miR-3675-5p,
hsa-miR-876-5p, hsa-miR-410, hsa-miR-643, hsa-miR-4261, hsa-miR-526b*, hsa-miR-600, hsa-miR-606,
hsa-miR-612, hsa-miR-135a*, hsa-miR-514b-5p, hsa-miR-4276, hsa-miR-765, hsa-miR-194*, hsa-miR-
3180-3p, hsa-miR-25*, hsa-miR-1204, hsa-miR-3672, hsa-miR-34c-3p, hsa-miR-9*, hsa-miR-3622b-5p,
hsa-miR-489, hsa-miR-491-3p, hsa-miR-770-5p, hsa-miR-128, hsa-miR-3655, hsa-miR-520a-3p, hsa-
miR-214, hsa-miR-183, hsa-miR-580, hsa-miR-1182, hsa-miR-320e, hsa-miR-3191, hsa-miR-2909,
hsa-miR-490-3p, hsa-miR-188-5p, hsa-miR-30e*, hsa-miR-34a (B).

Figure 2. DE miRNAs with respect to gender (nmales = 39, nfemales = 25). DE miRNAs included miR-128 (A), miR-135a*
(B), miR-3202 (C), miR-4251 (D), miR-4270 (E), miR-491-3p (F). All miRNAs presented include those that are significantly
different between male and female children (Legend: DE: Differentially expressed, R: Relative expression, where R = Etumors

Econtrols

and E is the expression levels of controls and tumors respectively, M: Male, F: Female).

3.4.1. Descriptive and Association Statistics of Tumors
Relations to Methylation

Tumor samples manifested a methylation pattern. In particular, methylated apoptotic
genes included CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, CADM1, and RB1.
Methylation was detected in one target gene, yet in some cases more than one genes were
found to be simultaneously methylated. More specifically, it appeared that apoptotic gene
methylation was significantly dependent on the samples’ status that is if the sample was
a neoplasm or a control (χ2 = 16.19, p = 0.040). Similar dependence was observed with
respect to malignant, benign tumors and controls (χ2 = 30.90, p = 0.014), as well as with
respect to MB, PA, ATRT, EP, and control samples (χ2 = 65.86, p = 0.0004). Further on,
similar dependence was manifested for tumor grade (χ2 = 55.55, p = 0.0061). Interestingly, it
appeared that there was no significant dependence observed with a particular methylated
gene, but rather with the simultaneous presence of all detected methylated genes. The
results of this analysis are summarized in Table 3.

Relations to Methylation

As in the case of gene methylation we have examined dependence of clinical param-
eters with respect to CNV. There were no significance dependence observed with any of
the observed CNVs, which included duplication of CD27, deletion of CD6, deletion of
CD6/CDKN2A/GATA5, and CD44 duplication. The results are summarized in Table 4.
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3.4.2. Statistics of Total Number of Methylated Genes

Deceased patients (meaning that the patient did not survive at the time of the study)
had significantly more methylated genes as compared to living patients, as well as deceased
patients has more methylated genes as compared to control samples (Figure 6A). The
aforementioned observations were confirmed by the finding that there was a significant
difference in the total number of methylated genes with respect to the tumor type that is if
the tumor was malignant or benign and control samples. In particular, it appeared that
malignant tumor types had significantly more methylated genes as compared to benign
tumor types (Figure 6B). No significance was observed between malignant tumors and
control samples.

3.4.3. Methylation-Specific PCR

Since the most significant signal was obtained for the genes CASP8 and RASSF1 in or-
der to test more samples, a methylation specific PCR (MS-PCR) protocol was designed [45].
The MS-PCR primers were designed using the MethPrimer software [46], and the PCR was
performed at 55 ◦C. Representative results are shown in Figure 7.

Figure 3. DE miRNAs with respect to diagnosis. Significant differences were estimated using ANOVA with Bonferroni
correction. Significant differences were observed between cortical dysplasia (n = 2) and ependymoma (n = 7), as well as
controls (n = 13) and ependymomas (n = 7) with respect to miR-1234 (A). Significant differences were observed between
controls and ependymoma (n = 7), as well as medulloblastoma (n = 16) and ependymomas (n = 7) with respect to miR-183
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(B). Significant differences were observed between controls (n = 13) and cortical dysplasias (n = 2) with respect to miR-25*
(C). Significant differences were observed between cortical dysplasia (n = 2) and pilocytic astrocytomas (n = 20), as well
as cortical dysplasias (n = 2) and medulloblastomas (n = 16) with respect to miR-3675-5p (D). Significant differences were
observed between controls and cortical dysplasias (n = 2) with respect to miR-612 (E). When including control samples,
calculating the expression ratios significant differences were observed between medulloblastomas and ependymomas
(n = 7) with respect to miR-122* (F). Significant differences were observed between cortical dysplasia (n = 2) and ATRT
(n = 4) with respect to miR-130b (G). Significant differences were observed between ependymomas (n = 7) and ATRTs (n = 4)
with respect to miR-2909 (H). Significant differences were observed between cortical dysplasias (n = 2) and ependymomas
(n = 7) with respect to miR-302b (I). Significant differences were observed between pilocytic astrocytomas (n = 20) and
ependymomas (n = 7) with respect to miR-4251 (J). Significant differences were observed between medulloblastomas (n = 16)
and ependymomas with respect to miR-576-5p (K). Significant differences were observed between medulloblastomas
(n = 16) and ependymomas (n = 7) with respect to miR-600 (L) and finally significant differences were observed between
cortical dysplasias and ATRT with respect to miR-96* (M) (Legend: DE: Differentially expressed, R: Relative expression,
where R = Etumors

Econtrols
and E is the expression levels of controls and tumors respectively, C: Controls, CD: Cortical dysplasia,

PA: Pilocytic astrocytoma, MB: Medulloblastoma, EP: Ependymoma, ATRT: Atypical teratoid rhabdoid tumor).

Figure 4. DE miRNAs with respect to tumor grade. Significant differences were estimated using ANOVA with Bonferroni
correction. Significant differences were observed between controls and grade I (n = 16) tumors (p = 0.009) with respect
to miR-1182 (A). Significant differences were observed between controls and grade II tumors (n = 9) (p = 0.002), between
controls and grade III tumors (n = 3) (p = 0.002), between grade I (n = 16) and grade III (n = 3) tumors (p = 0.004), between
grade II (n = 9) and grade IV (n = 18) tumors (p = 0.005), as well as between grade III (n = 3) and grade IV (n = 18) tumors
(p = 0.005) with respect to miR-183 (B). Significant differences were observed between controls and grade III (n = 3) tumors
(p = 0.006) with respect to miR-194* (C). Significant differences were observed between grade II (n = 9) and grade III (n = 3)
tumors (p = 0.008) with respect to miR-3202 (D). Significant differences were observed between grade I (n = 16) and grade
II tumors (n = 9) (p = 0.008), as well as between grade II (n = 9) and grade IV (n = 18) tumors (p = 0.009) with respect to
miR-4251 (E). Significant differences were observed between controls and grade II (n = 9) tumors (p = 0.006) with respect to
miR-592 (F). Finally, when including control samples, calculating the expression ratios significant differences were observed
between grade I (n = 16) and grade III tumors (n = 3) (p = 0.0003), between grade II (n = 9) and grade III (n = 3) tumors
(p = 0.007), as well as between grade III (n = 3) and grade IV (n = 18) tumors (p = 0.005) with respect to miR-4251 (G) (Legend:
R: Relative expression, where R = Etumors

Econtrols
and E is the expression levels of controls and tumors, respectively, C: Controls).
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3.4.4. miRNA Differential Expression with Respect to Methylated Genes

Differential expression was also examined with respect to gene methylation. In
particular, we have tested the presence of significant differences with respect to the methy-
lation status of CASP8 and RASFF1 genes. In particular, miR-128, miR-183, miR-3202,
miR-302e, miR-4307, miR-4330, and miR-491-5p manifested significant differences with re-
spect to CASP8 methylation (Figure 8A). Similarly, miR-128, miR-3202, miR-4251, miR-4307,
and miR-576-5p manifested significant differences with respect to RASFF1 methylation
(Figure 8B).

Figure 5. DE miRNAs with respect to protein markers. Significant differences were observed between tumor samples with
positive or negative protein markers. In particular, significant differences were observed with respect to glial fibrillary
acidic protein (GFAP) (A), P38 (B), Neuromicrofilaments (NF) (C), Tumor protein p53 (TP53) (D), Bcl2 apoptosis regulator
(BCL2) (E), β-tubulin III (TUBB3) (F), RNA binding Fox-1 homolog 3 (NeuN) (G), Marker of proliferation Ki-67 (Ki-67) (H),
Keratin (I), and Mucin 1 cell surface associated (MUC1) (J) (Legend: R: Relative expression, where R = Etumors

Econtrols
and E is the

expression levels of controls and tumors, respectively).
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Table 3. Relations of methylated genes with respect to sampling. The data represents the number (n) of samples found to be
methylated in each subcategory (genes separated with ‘/’ imply the simultaneous methylation of all genes). In particular,
we have investigated the relation of methylation with respect to diagnosis and tumor grading. The table depicts the number
of samples found to have their promoter methylated with respect to their diagnosis, i.e., between (a) neoplasms and controls;
(b) malignant, benign, and control tissues; (c) medulloblastoma, astrocytoma, ATRT, ependymoma, and controls; and
(d) tumor staging.

Diagnosis vs.
Methylated Genes NONE CASP8/

RASSF1 (n)
MGMT

(n)

CASP8/
RASSF1/CD44

(n)

CASP8
(n)

MSH6
(n)

CASP8/GATA5/
MGMT/ATM1/

TP53 (n)

CASP8/RASSF1/
CD44/CADM1/

RB1 (n)

RASS1
(n) SUM

NEOPLASMS (n) 15 12 2 1 1 1 0 1 2 35

CONTROLS (n) 7 0 0 0 3 0 1 0 0 11

SUM 22 12 2 1 4 1 1 1 2 46

Chi-square 16.19

p-value 0.040

Diagnosis vs.
Methylated Genes NONE CASP8/

RASSF1 MGMT CASP8/
RASSF1/CD44 CASP8 MSH6

CASP8/GATA5/
MGMT/ATM1/

TP53

CASP8/RASSF1/
CD44/CADM1/

RB1
RASSF1 SUM

MALIGNANCY 4 8 1 1 0 1 0 1 2 18

BENIGN 11 4 1 0 1 0 0 0 0 17

CONTROL 7 1 0 0 3 0 1 0 0 12

SUM 22 13 2 1 4 1 1 1 2 47

Chi-square 30.90

p-value 0.014

Diagnosis vs.
Methylated Genes NONE CASP8/RASSF1 MGMT CASP8/

RASSF1/CD44 CASP8 MSH6
CASP8/GATA5/
MGMT/ATM1/

TP53

CASP8/RASSF1/
CD44/CADM1/

RB1
RASSF1 SUM

MEDULLOBLASTOMA 4 8 0 1 0 0 0 1 1 15

ASTROCYTOMA 11 4 1 0 1 0 0 0 0 17

ATRT 0 0 1 0 0 0 0 0 0 1

CONTROL 7 1 0 0 3 0 1 0 0 12

EPENDYMOMA 0 0 0 0 0 1 0 0 1 2

SUM 22 13 2 1 4 1 1 1 2 47

Chi-square 65.86

p-value 0.0004

Grade vs.
Methylated Genes NONE CASP8/RASSF1 MGMT CASP8/

RASSF1/CD44 CASP8 MSH6
CASP8/GATA5/
MGMT/ATM1/

TP53

CASP8/RASSF1/
CD44/CADM1/

RB1
RASSF1 SUM

IV 4 7 1 1 0 0 0 1 1 15

I 9 1 0 0 1 0 0 0 0 11

II 2 3 1 0 0 1 0 0 0 7

CONTROL 7 1 0 0 3 0 1 0 0 12

III 0 0 0 0 0 0 0 0 1 1

SUM 22 12 2 1 4 1 1 1 2 46

Chi-square 55.55

p-value 0.0061



Cancers 2021, 13, 5491 19 of 39

Table 4. Relations of copy number variations (CNV) with respect to sampling. The data represent the number (n) of samples
found with CNV in each subcategory (CNVs separated with ‘/’ imply the simultaneous presence of those). In particular,
we have investigated the relation of gene aberrations with respect to diagnosis and tumor grading. In particular, we have
investigated the relation of gene aberrations with respect to diagnosis and tumor grading. The table depicts the number
of samples found to manifest a gene aberration with respect to their diagnosis, i.e., between (a) neoplasms and controls;
(b) malignant, benign, and control tissues; (c) medulloblastoma, astrocytoma, ATRT, ependymoma, and controls; and
(d) tumor staging.

Diagnosis vs.
Aberrations NONE CD27 DUPLICATION

(n)
CD6 DELETION

(n)
CD6/CDKN2A/GATA5

DELETION (n)
CD44 DUPLICATION

(n) SUM

NEOPLASM (n) 33 1 1 1 0 36

CONTROL (n) 10 0 0 0 1 11

SUM 43 1 1 1 1 47

Chi-square 4.18

p-value 0.38

Diagnosis vs.
Aberrations NONE CD27 DUPLICATION CD6 DELETION CD6/CDKN2A/GATA5

DELETION CD44 DUPLICATION SUM

MALIGNANCY 18 0 0 0 0 18

BENIGN 14 1 1 1 0 17

CONTROL 11 0 0 0 1 12

SUM 43 1 1 1 1 47

Chi-square 7.97

p-value 0.44

Diagnosis vs.
Aberrations NONE CD27 DUPLICATION CD6 DELETION CD6/CDKN2A/GATA5

DELETION CD44 DUPLICATION SUM

MEDULLOBLASTOMA 15 0 0 0 0 15

ASTROCYTOMA 14 1 1 1 0 17

ATRT 1 0 0 0 0 1

CONTROL 11 0 0 0 1 12

EPENDYMOMA 2 0 0 0 0 2

SUM 43 1 1 1 1 47

Chi-square 8.51

p-value 0.93

Diagnosis vs.
Aberrations NONE CD27 DUPLICATION CD6 DELETION CD6/CDKN2A/GATA5

DELETION CD44 DUPLICATION SUM

IV 15 0 0 0 0 15

I 8 1 1 1 0 11

II 7 0 0 0 0 7

CONTROL 11 0 0 0 1 12

III 1 0 0 0 0 1

SUM 42 1 1 1 1 46

Chi-square 12.98

p-value 0.67
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Figure 6. Number of methylated genes with respect to survival (A) and diagnosis (B). Analysis of the correlation of gene
methylation to clinical characteristics patients have. In particular, it appeared that there is a significant difference in the
number of methylated genes between deceased patients and control samples, as well as alive patients and control samples
(A) and between malignant and benign tumors (B).

Figure 7. Methylation-specific PCR. In the case of RASSF1, all samples show both methylated and unmethylated alleles (A).
Similarly, for CASP8, samples 1, 3, and 4 showed both methylated and unmethylated alleles (B). Samples 2 and 5 were
100% unmethylated and sample 6 was 100% methylated (Samples: in (A) 1: PA; 2: PA; 3: PA; 4: MB; 5: PA; 6: PA; 7: PA;
8: PA. Samples: in (B) 1: PA; 2: PA; 3: PA; 4: PA; 5: MB; 6: PA; 7: negative control) (Note: the samples presented in the gels
presenting the methylated and unmethylated genes are not the same. For example, sample 1 in the RASSF1 unmethylated
gel is not the same with sample 1 in the RASSF1 methylated gel as they correspond to two different patients, although they
are both PA. The same holds true for the samples investigated for the CASP8 gene. Legend: PA: Pilocytic astrocytoma,
MB: Medulloblastoma. Note: Samples in (A) were electrophoresed on the same agarose gel).

3.5. Hierarchical Clustering (HCL)

Unsupervised two-way hierarchical clustering (HCL) with Euclidian distance did not
discriminate accurately between all tumor types and the normal control group, as well as
between PAs and controls or EPs and controls (Figure 9).
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Figure 8. DE miRNAs with respect to gene methylation. Significant differences were observed between tumor samples
with methylated and un-methylated genes. In particular, miR-128, miR-183, miR-3202, miR-302e, miR-4307, miR-4330,
and miR-491-5p manifested significant differences with respect to CASP8 methylation (A). Similarly, miR-128, miR-3202,
miR-4251, miR-4307, and miR-576-5p manifested significant differences with respect to RASFF1 methylation (B) (Legend: R:
Relative expression, where R = Etumors

Econtrols
and E is the expression levels of controls and tumors, respectively, YES: methylated

gene, NO: un-methylated gene).

Figure 9. Hierarchical clustering (HCL) of miRNA expression with respect to diagnosis (Legend: PA: Pilocytic Astrocytoma,
MB: Medulloblastoma, EP: Ependymoma, CD: Cortical Dysplasia, ATRT: atypical teratoid/rhabdoid tumors).

3.6. Chromosomal Distribution of DE miRNAs

The first step in gene expression investigation, was the estimation of chromosomal
distributions. In particular, we have investigated miRNA expression using the “natural”
values, as well as mRNA ratios. It appeared that the most active chromosome was chro-
mosome 22 (Figure 10A) and, in particular, location 22q11.21 (Figure 10B). It appeared
also that the highest expression was mostly attributed to control samples (Figure 10C,D).
When accounting for miRNA ratios, chromosome 22 (Figure 10E) and location 22q11.21
(Figure 10F) were still the most active chromosome and location, respectively. Interestingly,
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miRNA expression appeared to be relatively equally distributed across all chromosomes
(Figure 10G,H).
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Figure 10. Chromosomal distribution of miRNA expression. miRNA expression, including control
samples (“naturals”) was mostly active on chromosome 22 (A) and in particular, on the 22q11.21
location (B). When investigating the participation of samples, we have found that control samples
contributed mostly to the miRNA expression on chromosome 22 (C) and location 22q11.21 (D). When
calculating the miRNA ratios, chromosome 22 (E) and location 22q11.21 (F) were the most active
locations. In the case of miRNA expression ratios, it appeared that all tumor samples contributed
equally to chromosome 22 (G) and 22q11.21 (H).
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3.7. K-Means Clustering

K-means clustering manifested four clusters (Figure 11A), which is presented with
the respective centroids (Figure 11B) and sorted centroids (Figure 11C). K-means clusters
did not manifest any distinct patterns of expression, as well as sorted centroids did not
manifest a certain pattern of expression.

Figure 11. K-means clustering of DE miRNAs. K-means clustering manifested four clusters (A), which is presented with the
respective centroids (B), and sorted centroids (C). K-means clusters did not manifest any distinct patterns of expression.

3.8. Functional Annotations of DE miRNAs
Gene Ontology of DE miRNAs

Functional annotation included gene ontology (GO) annotation of DE miRNAs, which
manifested major functions, such as angiogenesis, vasculature development, and develop-
mental processes, such as tube morphogenesis and development (Figure 12). No significant
pathways were found for the annotated miRNAs and their gene targets.

Figure 12. Gene ontology annotation of DE miRNAs. Major functions revealed, included angiogenesis, vasculature
development, and developmental processes, such as tube morphogenesis and development (Legend: MF: Molecular
function; BP: Biological process; CC: Cellular component; KEGG: KEGG pathway database; REAC: Reactome pathway
database; WP: WikiPathways; TF: Transcription factor binding motifs; MIRNA: miRNA targets; HPA: The human protein
atlas; CORUM: The comprehensive resource of mammalian protein complexes; HP: Human phenotype ontology).
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3.9. Descriptive K-Means

Descriptive k-means were described in the Section 2. In search of a specific motif
or pattern, we have clustered miRNAs with respect to tumor grade (Figure 13A,B) and
we have observed that DE miRNAs manifested in all cases a specific pattern, i.e., grade
IV tumors manifested lower levels of expression, followed by and ascending order from
grade I to III and cortical dysplasia manifesting the highest expression values (Figure 13C).
This observation involves probably a trigger mechanism, where DE miRNAs express to
similar levels with control samples in near-control tissues (such as cortical dysplasias)
and if down-regulated they are connected to aggressive tumor types (IV). The “trigger”
mechanism arises probably from the fact that tumor grades I to III manifest an ascending
pattern, indicating that those miRNAs operate with certain thresholds.

Figure 13. Descriptive k-means of tumor staging (tumor grade). Tumor samples were clustered with respect to the clinical
(categorical variables) parameters of tumor grade (A,B). The first representation concerns the k-means classification of the
miRNA expression data (A), whereas it is followed by the k-means centroids (B). The centroids in (B) represent the mean
values of the k-means clusters depicted in (A). Those centroids (depicted in (B)) were sorted in an ascending order, in an
attempt to find patterns related to tumor staging (C). Indeed, an interesting pattern was revealed with respect to tumor
grade, where k-mean sorted centroids (C), showed a descending pattern from grade I to III, as well as an ascending pattern
from grade III to I (C) (Legend: I: grade I (n = 16); II: grade II (n = 9); III: grade III (n = 3); IV: grade IV (n = 18); CD: Cortical
dysplasia (n = 2)).

Further on, we have also performed k-means clustering with respect to patient survival
(Figure 14A,B). Interestingly, all DE miRNAs manifested an ascending pattern when
moving from patients who achieved clinical remission, to relapse and deceased patients
(Figure 14C). This result indicated that the DE miRNA’s expression levels followed a motif
depending on the patient’s survival status.
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3.10. ROC Analysis

ROC classification manifested several factors that were able to discriminate between
clinical parameters. This type of analysis is able to manifest significant correlations between
two variables with respect to a classifier. Only significant classified variables are presented.
This type of analysis, basically can indicate that a variable can be distinguished between
the parameters of a classifier. As anticipated, Ki-67 expression manifested significant
classification potential by discriminating between alive and deceased patients (survival)
(Figure 15A), as well as between relapsed patients and patients in clinical remission (out-
come) (Figure 15B). Interestingly, miR-582 was also able to classify between outcome
(Figure 15C) and survival (Figure 15D). Similarly, miRNA expression was able to dis-
criminate the methylation status of specific genes and in particular miR-1246 (Figure 15E)
and miR-489 (Figure 15F) were able to classify this status for CASP8, as well as miR-1246
(Figure 15G) and miR-3614 (Figure 15H) were able to classify for the methylation status
of RASFF1.

3.11. Naïve-Bayes Analysis

Pairwise clustering of DE miRNAs was examined with a naïve-Bayes classification.
Pairs of DE miRNAs were tested for their classification potential and we found that miR-
130b and miR-3672 (Figure 16A), miR-106b and miR-130b (Figure 16B), and miR-147 and
miR-3672 (Figure 16C) were able to discriminate between CD, ATRT, and EP. Similarly,
miR-302b and miR-320e (Figure 16D), miR-147 and miR-183 (Figure 16E), and miR-516b
and miR-95 (Figure 16F) were able to discriminate between CD, tumor grade II, and tumor
grade III. Although, we have tested all possible combinations of DE miRNAs for all clinical
parameters, only few classifying miRNAs were obtained. Interestingly, the identified
miRNAs, could separate ATRT, CD, and EP, while MB and PA manifested similar clusters,
i.e., close expression values.

Figure 14. Descriptive k-means of patient survival. Tumor samples were clustered with respect to the patients’ survival
profile (A,B). The first representation concerns the k-means classification of the miRNA expression data (A), whereas it is
followed by the k-means centroids (B). The centroids in (B) represent the mean values of the k-means clusters depicted in
(A). Those centroids (depicted in (B)) were sorted in an ascending order, in an attempt to find patterns related to patient
survival (C). Similarly to tumor staging, an ascending miRNA expression pattern from clinical remission to deceased
patients was observed (C) (Legend: CR: Clinical remission (n = 36); RE: Relapse (n = 12); DC: Deceased (n = 1)).
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3.12. Common miRNA Signatures

DE miRNAs manifested a common pattern of expression. In particular, 31 miRNAs
were found to be globally down-regulated in all Timor samples (Figure 17A,B). miRNAs
included MIR649, MIR130B, MIR4330, MIR95, MIR1226, MIR3123, MIR582, MIR23B,
MIR147, MIR302B, MIR214, MIR3942, MIR656, MIR3616, MIR1234, MIR1226, MIR4329,
MIR645, MIR592, MIR3202, MIR1246, MIR584, MIR576, MIR4267, MIR4317, MIR542,
MIR96, MIR3618, MIR4270, MIR4251, and MIR4307. All miRNAs were down-regulated in
all tumor samples without exception (100%). On the other hand, up-regulated miRNAs
did not manifest total over-expression in all tumor samples, yet MIR34A appeared to be
up-regulated in the 70.83% of tumor samples (Figure 17C). MIR34A up-regulation was
followed by MIR320E with over-expression in 68.75% of all tumor samples (Figure 17D).
MIR34A is estimated to have approximately 900 mRNA targets. Out of these, 17 genes
were differentially expressed in our patient cohort. In particular, these genes were HYAL3,
KIAA1210, MYO1C, FAM162B, OPN4, TP53INP2, ZNF281, TTC19, CRHR1, RAD9B, PAX8,
JMJD1C, PPP1R11, PDGFRA, SCNN1G, SHKBP1, and ELMOD1. Similarly, MIR320E has
833 predicted mRNA targets, whereas six are differentially expressed in our patient co-
hort. More specifically, those genes included POLR1C, SIAH3, PLEKHA4, PTP4A1, TLL1,
and RCN2. We have further searched for functional annotations of those genes, but no
significant results were obtained, probably due to the fact that the gene sample size was
small.

Figure 15. ROC analysis. ROC analysis manifested significant classifiers with respect to clinical parameters. In particular, as expected
Ki-67 expression, appeared to classify significantly between alive and deceased patients (described here as survival) (A), while it was
also able to significantly classify between relapse and clinical remission (described here as outcome) (B). Further on, miR-582 appeared to
discriminate between clinical remission and relapse (C), as well as between alive and deceased patients (D). In addition, CASP8 methylation
status (i.e., if the gene is methylated or not), was significantly classified by miR-489, while in the case of RASFF1 methylation miR-1246 (G)
and miR-3614 (H) were able to classify between methylated and un-methylated RASFF1.
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Figure 16. Naïve-Bayes classification. Pairs of miRNAs were tested for their classification potential using naïve-Bayes
classifiers. miR-130b and miR-3672 (A), miR-106b and miR-130b (B), and miR-147 and miR-3672 (C) were able to discrim-
inate between CD, ATRT, and EP. Similarly, miR-302b and miR-320e (D), miR-147 and miR-183 (E), and miR-516b and
miR-95 (F) were able to discriminate between CD, tumor grade II, and tumor grade III (Legend: CD: Cortical dysplasia;
EP: Ependymoma; CD: Cortical dysplasia; PA: Pilocytic astrocytoma; MB: Medulloblastoma; ATRT: Atypical teratoid
rhabdoid tumor).

Figure 17. Globally down- and up-regulated miRNAs. 31 miRNAs were found to be globally down-regulated in all tumor
samples (A,B). On the other hand, one miRNA (miR-34a) was found to be globally up-regulated in ~70% of all tumors (C),
while miR-320e was the next miRNA with ~68% up-regulation in all tumors (D).
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4. Discussion

In the present study, we have performed high throughput experimentation, which
included miRNA microarrays, mRNA microarrays and methylation studies with MS-
MLPA. Our basic aim was to detect both differential, as well as common miRNA expression
patterns and connect them to the expressed mRNA patterns and in addition, find their
relations to specific gene methylation. Our analysis, revealed a total of 75 differentially
expressed miRNAs between all CNS tumors and the control cohort. Amongst them,
31 were globally down-regulated and two were globally up-regulated in >68% of all
tumors. More specifically, miR-34a and miR-320e were found up-regulated in ~68% of all
tumors when compared to the control group. The present observation was in agreement
with our previous report on embryonal tumors, where we also found that miR-34a is
probably globally up-regulated in tumors. MiR-34a is considered a tumor suppressor gene
that it is known to regulate SIRT1 expression (silent information regulator 1). SIRT1, is
known to be an oncogene, since it is a key-regulator of tumor suppressor proteins, such
as the transcription factor p53 [66–68]. Consequently, one might have expected that the
elevated expression levels of miR-34a observed in our study in both tumor types when
compared with the control group would result in suppression of the SIRT1 expression,
leading to apoptosis of cancer cells. A potential response for this came from Yamacuchi
et al. (2008), who previously proposed that overexpression of miR-34a does not entirely
suppress SIRT1 translation, possibly because it does not exactly match its SIRT1 binding
site [67]. MiR-34a overexpression has also been observed in childhood ependymomas [69],
pilocytic astrocytomas [70] and in low- and high-grade astrocytomas of childhood [71],
suggesting potential global oncogenic roles in pediatric brain malignancies. Similarly,
miR-34a regulates PDGFRA [72–74] and PAX8 [75], two genes which are known to be
involved in childhood CNS tumors, as especially PDGFRA has been studied for its role
in gliomas [72–74]. In general, there are still very few reports on the connection between
miR-34a and those two genes. This indicates that there is a large field of research still
open in order to comprehend CNS tumor biology. Yet, another interesting gene-target of
miR-34a is the TP53 gene. Although there are numerous reports on the role and correlation
between those two molecules, there is only one report concerning its role in the CNS. In
particular, it is reported that TP53 is a direct target of miR-34a participating in microglia
behavior and suppression of neuro-inflammation [76]. Hence, miR-320e and miR-34a
might afford potential biomarkers related to inferior prognosis or even suggest possible
global therapeutic targets.

Noteworthy, miR-34a overexpression observed in the present study is in agreement
with previous studies, such as the study of Costa et al. (2011) [69], who reported that miR-
34a was found to be highly overexpressed in ependymomas, however, in this study it was
proposed that miR-34a is linked to a more favorable prognosis. In addition, we have found
that miR-320e was significantly up-regulated in our patient population, highlighting a
potential for this gene. According to our findings it can be not only as a possible diagnostic
biomarker, but also a prognostic factor of a more favorable clinical outcome.

Through our analysis, using a ROC classifier, we have found a set of miRNAs that
could pose potential biomarkers for tumor outcome, i.e., clinical remission or relapse.
Interestingly, miR-582 was found to be differentially expressed between tumor samples
and controls and it appeared to be able to separate samples with respect to survival
and therapeutic outcome. The identification of miR-582 is described for the first time
for childhood CNS tumors, since there are no previous reports concerning that miRNA.
Moreover, we observed that miR-1246, miR-489, and miR-3614 could discriminate between
the methylation status of CASP8 and RASFF1.

In the same context, miR-649, miR-130B, miR-4330, miR-95, miR-1226, miR-3123,
miR-582, miR-23b, miR-147, miR-302b, miR-214, miR-3942, miR-656, miR-3616, miR-1234,
miR-1226, miR-4329, miR-645, mIR-592, miR-3202, miR-1246, miR-584, miR-576, miR-4267,
miR-4317, miR-542, miR-96, miR-3618, miR-4270, miR-4251, miR-4307, miR-720, miR-891a,
miR-522, miR-518c, miR-3665, miR-3620, miR-382, miR-452, and miR-122 and miR-147
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were found to be down-regulated in the patient group compared to control samples, thus
indicating that they might participate in the tumor machinery as tumor-suppressor genes.
There are some previous studies, reporting a potential link between the aforementioned
tumor-suppressor miRNAs with different types of malignancies. First of all, for miR-
649, miR-130B, miR-4330, miR-95, miR-1226, miR-3123, miR-147, miR-3942, miR-3616,
miR-1234, miR-1226, miR-4329, miR-645, miR-3202, miR-4267, miR-4317, miR-3618, miR-
4251, miR-4307, miR-720, miR-891a, miR-518c, miR-3665, miR-3620, and miR-147 there
are no previous reports for their role in childhood CNS tumors but also in CNS tumors
in general and, therefore, this is the first time they are referred as playing a role in CNS
tumor pathophysiology. On the other hand, reports on the remaining miRNAs have been
controversial for some. For example, miR-34a is reported to act as tumor suppressor
miRNA, while we have identified it as a possible oncogene. Further on, our study is in
agreement with respect to the role of miR-320e, where a previous report has highlighted
that it manifests oncogenic properties [77]. In order to obtain a more “panoramic” view of
the identified miRNAs we have summarized our common de-regulated miRNAs along
with the reported functions in the literature (Table 5).

Interestingly, out of the globally deregulated miRNAs, miR-3202, miR-4251, and
miR-4270, were found to be significantly different with respect to gender. To the best of our
knowledge, there are no reports concerning the role of miRNAs in gender-specific CNS
tumor ontogenesis and progression. Yet, few reports, which drew our attention, indicated
that there is a gender-specific tumorigenesis for gliomas. In particular, it has been reported
that females had a predominance in developing CNS tumors in case of previous cancer
familial history, indicating a possible hereditary gender-specific risk [142]. Another inter-
esting perspective of gender-specific visualization, has to do with the possible personalized
treatments for patients. In particular, it has been reported that the adenine-to-inosine
“inosinome” [143], is a potent gender-specific glioblastoma stratifier [144]. Although, there
are no previous reports on the role of miRNAs with respect to gender, this approach could
prove useful in towards a personalized treatment for CNS tumors.

Ki-67 protein is present during all active phases of the cell cycle making it an excellent
marker to predict cell proliferation [145]. In the current setting we investigated the potential
interactions between Ki-67 ‘positive’ and miRNA expression patterns, in order to unravel
and characterize the role of miRNAs underlying pediatric embryonal brain tumors. All
potential miRNA oncogenes and tumor-suppressive genes that emerged from previous
correlations between miRNA expression profiles and disease progression or patient clinical
outcome were yet again further demonstrated as elevated and decreased expression levels
were observed in the Ki-67 ‘positive’ group of patients versus control tissues, respectively.
In addition, identical findings were manifested regarding their putative prognostic role,
either favorable or inferior. Yet, again, our prediction regarding their prognostic significance
in pediatric embryonal CNS neoplasms was confirmed.

In the present work, we have also attempted to identify methylation and CNV patterns
in childhood CNS tumors. Since the first reports on the role of DNA methylation and its
significance in epigenetic regulation, numerous reports have highlighted its role in cancer.
In particular, several reports have outlined its significance in pediatric CNS tumors [146].
In the present work, we have found that methylation played a role with respect to its
number of methylated genes and not with respect to the individual methylated genes.
This finding, to the best of our knowledge, is reported for the first time and it implies that
epigenetic regulation is significant in tumor progression and it is probably the result of a
multifactorial process.

Previous reports have indicated that supratentorial primitive neuroectodermal tumors
(PNET), as well as ATRT manifest an aberrant RASSF1A methylation but not CASP8 [147].
In the present work, in a single ATRT sample, we have found methylation in the MGMT
gene. This finding was different from a previous retrospective observational study, where
it was found that most ATRT cases did not manifested a MGMT methylation [148].
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Table 5. Comparative table of the miRNAs identified in the present study and those reported in the literature with respect
to their expressional profiles and reported functions.

Inv. miRNA Expression
(Present Study)

Suspected Function
(Present Study)

Expression
(in the Literature)

Reported Function
(in the Literature)

Therapeutic
Target? References

1 miR-34a Up-regulated Oncogene Down-regulated Tumor suppressor Yes [78–91]

2 miR-320e Up-regulated Oncogene Up-regulated Oncogene Yes [77]

3 miR-649 Down-regulated Tumor suppressor Not known Not known Not known None available

4 miR-130B Down-regulated Tumor suppressor Not known Not known Not known None available

5 miR-4330 Down-regulated Tumor suppressor Not known Not known Not known None available

6 miR-95 Down-regulated Tumor suppressor Not known Not known Not known None available

7 miR-1226 Down-regulated Tumor suppressor Not known Not known Not known None available

8 miR-3123 Down-regulated Tumor suppressor Not known Not known Not known None available

9 miR-147 Down-regulated Tumor suppressor Not known Not known Not known None available

10 miR-3942 Down-regulated Tumor suppressor Not known Not known Not known None available

11 miR-3616 Down-regulated Tumor suppressor Not known Not known Not known None available

12 miR-1234 Down-regulated Tumor suppressor Not known Not known Not known None available

13 miR-1226 Down-regulated Tumor suppressor Not known Not known Not known None available

14 mIR-4329 Down-regulated Tumor suppressor Not known Not known Not known None available

15 miR-645 Down-regulated Tumor suppressor Not known Not known Not known None available

16 miR-3202 Down-regulated Tumor suppressor Not known Not known Not known None available

17 miR-4267 Down-regulated Tumor suppressor Not known Not known Not known None available

18 miR-4317 Down-regulated Tumor suppressor Not known Not known Not known None available

19 miR-3618 Down-regulated Tumor suppressor Not known Not known Not known None available

20 miR-4251 Down-regulated Tumor suppressor Not known Not known Not known None available

21 miR-4307 Down-regulated Tumor suppressor Not known Not known Not known None available

22 miR-720 Down-regulated Tumor suppressor Not known Not known Not known None available

23 miR-891a Down-regulated Tumor suppressor Not known Not known Not known None available

24 miR-518c Down-regulated Tumor suppressor Not known Not known Not known None available

25 miR-3665 Down-regulated Tumor suppressor Not known Not known Not known None available

26 miR-3620 Down-regulated Tumor suppressor Not known Not known Not known None available

27 miR-147 Down-regulated Tumor suppressor Not known Not known Not known None available

28 miR-582 Down-regulated Tumor suppressor Up-regulated 1 Oncogene Not known [92]

29 miR-23b Down-regulated Tumor suppressor Up-regulated Oncogene Not known [93–96]

30 miR-23b Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [97–99]

31 miR-302b Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [100]

32 miR-214 Down-regulated Tumor suppressor Up-regulated Oncogene Not known [101–105]

33 miR-214 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [106–111]

34 mIR-656 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [106–111]

35 miR-592 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [95,112,113]

36 miR-1246 Down-regulated Tumor suppressor Up-regulated Oncogene Not known [114]

37 miR-1246 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [115]

38 miR-584 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [116–121]

39 miR-576 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [122]

40 miR-576 Down-regulated Tumor suppressor Up-regulated Oncogene Not known [123]

41 miR-542 Down-regulated Tumor suppressor Up-regulated Oncogene Yes [124]

42 miR-96 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Yes [125–130]

43 miR-4270 Down-regulated Tumor suppressor Up-regulated Oncogene Not known [131]

44 miR-522 Down-regulated Tumor suppressor Up-regulated Oncogene Not known [132]

45 miR-382 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [133,134]

46 miR-452 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Not known [127]

47 miR-122 Down-regulated Tumor suppressor Down-regulated Tumor suppressor Yes [135–141]

1 miR-582 is reported to be up-regulated in pituitary adenomas, yet reports on other tumors refer to it as down-regulated and as a
tumor suppressor.
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In our work, we have found that five MBs manifested a CASP8 methylation while two
did not manifest any methylation. Our finding was in agreement with previous studies,
where CASP8 was also found to be methylated indicating a significant role of CASP8
in MB pathophysiology [149,150]. Epigenetic regulation of CASP8 signifies the role of
pro-apoptotic molecules in tumor progression. At the same time six samples were found
to be methylated in the RASSF1 gene, which is in agreement with previous studies which
indicated the significance of RASSF1 in MB pathology [151–153]. It appears that RASSF1
methylation leads to RASSF1 deactivation indicating a significant role of RASSF1 to MB
pathology [151].

In the case of PA tumors, most samples appeared to be unmethylated and only three
samples were found to be methylated in the CASP8, RASSF1, and MGMT genes. To the
best of our knowledge, there are no previous reports on gene methylation of pediatric
PA. This result was confirmed with the finding of our study that methylation status was
significantly related to tumor grade.

Similarly, the two EP tumors we investigated were found to possess a methylation on
MSH6 and RASSF1 genes. There are no previous reports concerning the methylation status
of pediatric EP tumors.

Interestingly, we have found that several miRNAs including miR-128, miR-183, miR-
3202, miR-302e, miR-4307, miR-4330, and miR-491-3p manifested significant differences
between the methylation status of CASP8 and RASSF1. Although these miRNAs were not
found to consist of a target for CASP8 and RASSF1, it was interesting to observe that those
differences were manifested irrespectively of tumor type. To the best of our knowledge
there are no previous reports on the correlation of those miRNAs to the methylation status
of CASP8 and RASSF1 in CNS tumors.

Our understanding of the exact miRNA mechanisms in childhood CNS tumors’ ma-
chinery is still limited. Thus, the comprehension of these mechanisms, regarding CNS
tumor pathogenesis, could reveal candidate therapeutic targets. Further on, miRNAs could
be used as possible biomarkers, for the prognosis, diagnosis, and treatment of childhood
CNS tumors, but their role still remains largely unexplored.

MicroRNAs offer insights to many processes of the human body and are fascinating
molecules to investigate. However, the study of miRNAs often involves hybridization-
based microarray technologies, a high-throughput technology, that may generate a large
opportunity for errors when used to test miRNAs. Due to these limitations, all experi-
ments must be regulated and controlled, to reduce the chances of error regarding the data
produced. In addition, other technologies must be implemented as a way to confirm the
results of the microarrays. A commonly used technique is RT-PCR, which amplifies specific
genes as a way to validate the microarrays.

5. Conclusions

In summary, the present study attempted to provide insight into the growing role of
several miRNA signatures in pediatric CNS neoplasms. We have found that miR-34a and
miR-320e were globally up-regulated in the majority of brain tumors, as well as miR-649,
miR-130B, miR-4330, miR-95, miR-1226, miR-3123, miR-582, miR-23b, miR-147, miR-302b,
miR-214, miR-3942, miR-656, miR-3616, miR-1234, miR-1226, mIR-4329, miR-645, mIR-
592, miR-3202, miR-1246, miR-584, miR-576, miR-4267, miR-4317, miR-542, miR-96, miR-
3618, miR-4270, miR-4251, miR-4307, miR-720, miR-891a, miR-522, miR-518c, miR-3665,
miR-3620, miR-382, miR-452 and miR-122, and miR-147 were globally down-regulated
in childhood brain tumors. Generally, there was good evidence that the aforementioned
miRNA signatures could serve as: (a) Oncogenic diagnostic molecules; (b) Indicators
of favorable prognosis when overexpressed; and inferior prognosis when up-regulated.
Overall, our findings suggested novel molecular biomarkers which might have a promising
potential in pediatric embryonal CNS malignancies. In the present work, we have also
investigated the methylation status of pediatric CNS tumors. We have found that CASP8,
RASSF1 were the most frequently methylated. Finally, MSH6 was found methylated in one
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EP sample. Epigenetic regulation appears to be of major importance in tumor progression
and pathophysiology, making it an imperative field of study.
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