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Abstract 17 

The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms 18 

by which actin regulates tendon homeostasis are not entirely known. This study examined the 19 

regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-20 

binding transcription factor, myocardin-related transcription factor-a (MRTF).  We determined 21 

that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear 22 

MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable 23 

alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-24 

actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. 25 

To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated 26 

tenocytes with cytochalasin D. Similar to latrunculin A treatment, exposure of cells to cytochalasin 27 

D increases the proportion of G-actin in tenocytes. However, unlike latrunculin A treatment, 28 

cytochalasin D increases nuclear MRTF. Compared to latrunculin A treatment, cytochalasin D led 29 

to opposing effects on the expression of a subset of genes. The differential regulation of genes by 30 

latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific 31 

subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify 32 

that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in 33 

tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the 34 

modulation of several downstream pathways, including MRTF. Understanding the regulation of 35 

tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, 36 

such as tendinosis.    37 
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Introduction 38 

Reorganization of the actin cytoskeleton is a critical regulator of musculoskeletal cell 39 

behavior, and may mediate both biomechanical and biochemical signals in tissues such as tendons. 40 

Tendons are connective tissues that enable movement by passive force transfer from muscle onto 41 

bone. To allow force transfer and to resist high levels of tensile loading, tendons are rich in 42 

extracellular matrix, predominantly type I collagen (Col1) (Screen, Berk, Kadler, Ramirez, & 43 

Young, 2015). The resident fibroblastic tenocytes are elongated and have a specialized filamentous 44 

(F-)actin cytoskeleton that orients longitudinally along collagen fibers (Ralphs, Waggett, & 45 

Benjamin, 2002). Healthy tenocytes express alpha-smooth muscle actin (αsma), a highly 46 

contractile isoform of actin (Ippolito, Natali, Postacchini, Accinni, & De Martino, 1977; M. 47 

Spector, 2001). αsma is thought to enable cell shape recovery following tissue elongation. Thus, 48 

tendon matrix and cells are specially equipped to transmit and withstand mechanical loading (Dede 49 

Eren, Vermeulen, Schmitz, Foolen, & de Boer, 2023).  50 

Tenocytes are mechanosensitive, and in response to changes in the mechanical 51 

environment, tenocytes can adapt by shifting tendon homeostasis. For instance, an increased 52 

mechanical load (physiological overloading) causes an anabolic shift in tendon homeostasis. 53 

Overloading releases active transforming growth factor beta (TGFβ) from the extracellular matrix 54 

(T. Maeda et al., 2011). The resultant increase in TGFβ signaling increases the expression of 55 

scleraxis (Scx), a transcription factor considered to be a master regulator of tenogenic 56 

differentiation. The upregulation of Scx elevates the expression of Col1, but also Tenascin-C (Tnc) 57 

levels (Chiovaro, Chiquet-Ehrismann, & Chiquet, 2015; Espira et al., 2009; Lejard et al., 2007),  a 58 

glycoprotein that is necessary for proper extracellular matrix organization (Kannus, 2000; Mehr, 59 

Pardubsky, Martin, & Buckwalter, 2000). This anabolic response leads to tendon growth to 60 
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withstand the elevated load. In contrast to physiological overloading, stress deprivation causes a 61 

catabolic shift in tendon homeostasis. Stress deprivation reduces the expression of Col1, Tnc, Scx, 62 

and αsma and increases in chondrogenic molecules (SRY-Box Transcription Factor; Sox9) and 63 

matrix degradative (matrix metalloproteinases; Mmps) expression (Arnoczky, Lavagnino, 64 

Egerbacher, Caballero, & Gardner, 2007; Egerbacher et al., 2022; Gardner, Arnoczky, Caballero, 65 

& Lavagnino, 2008; Inguito et al., 2022; Mousavizadeh, West, Inguito, Elliott, & Parreno, 2023; 66 

Wunderli et al., 2020). This catabolic shift in expression leads to tendon degeneration and is 67 

consistent with a tendinosis-like phenotype.   68 

Reorganization of F-actin may play a critical role in regulating tendon homeostasis by 69 

tenocytes. In support of the critical role that F-actin may play, the catabolic shift in tenocytes 70 

coincides with a loss of F-actin (Inguito et al., 2022; Lavagnino & Arnoczky, 2005). Additionally, 71 

perturbation of actin networks in cultured tenogenic cells induces tendinosis-like molecular 72 

expression. In mesenchymal cells, exposure to latrunculin A to depolymerize actin results in the 73 

repression of tenogenic molecules, type I collagen (Col1), and scleraxis (Scx) (Maharam et al., 74 

2015). Similarly, preventing myosin binding along F-actin by exposing cells to blebbistatin 75 

represses the tenogenic phenotype by reducing Col1 and Scx in mesenchymal cells (Maharam et 76 

al., 2015). Blebbistatin also lowers αsma and increases tenocyte expression of Mmp-1, -3, -14  77 

(Jones et al., 2023; E. Maeda, Sugimoto, & Ohashi, 2013). Furthermore, we determined that 78 

inhibition of F-actin stabilization molecule, tropomyosin 3.1, leads to actin depolymerization 79 

resulting in the downregulation of tenogenic (Col1, Tnc, Scx, αsma) mRNA levels and increase 80 

in both chondrogenic (Acan, Sox9) and protease (Mmp-3, Mmp13) mRNA levels consistent with 81 

tendinosis gene changes (Inguito et al., 2022). While these studies highlight the importance of 82 
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intact F-actin networks in tenocytes, the complete mechanisms by which dysregulation of F-actin 83 

networks promotes catabolic expression by tenocytes remains unclear. 84 

Actin polymerization is known to regulate molecule expression through interactions with 85 

actin-binding transcription factors (Delve et al., 2020; Delve et al., 2018; Gonzalez-Nolde et al., 86 

2024; Mgrditchian et al., 2023; Nalluri, O'Connor, & Gomez, 2015; Parreno et al., 2014). 87 

Myocardin-related transcription factor-a (MRTF) (also known as megakaryocyte leukemia factor-88 

1; MKL1) is an actin-binding transcription factor known to regulate the expression of several 89 

molecules associated with healthy tenocytes. To positively regulate gene expression, MRTF 90 

interacts with serum response factor (SRF), which binds to a 10-bp CArG box on the promoter 91 

region of genes to enhance expression (Sun et al., 2006). However, MRTF also has a high affinity 92 

for monomeric globular (G-)actin (Mouilleron, Langer, Guettler, McDonald, & Treisman, 2011). 93 

An increase in G-actin, caused by actin depolymerization, increases the binding of MRTF to G-94 

actin. The binding of MRTF to G-actin causes MRTF to be sequestered in the cytoplasm, leading 95 

to the downregulation of MRTF-regulated genes. In other cell types, MRTF inhibition 96 

downregulates the expression of matrix molecules, Col1 and Tnc (Asparuhova, Ferralli, Chiquet, 97 

& Chiquet-Ehrismann, 2011; Luchsinger, Patenaude, Smith, & Layne, 2011), and αsma (Parreno, 98 

Raju, Wu, & Kandel, 2017; Xie, Ning, Zhang, Ni, & Ye, 2022). Nevertheless, it remains unclear 99 

if MRTF regulates the expression of these genes in tenocytes. Furthermore, actin depolymerization 100 

in tenocytes has other profound effects, such as downregulation of Scx, upregulation of 101 

chondrogenic expression (Sox9), and upregulation of Mmps (Mmp3 and Mmp13) (Inguito et al., 102 

2022). The regulation of these genes by actin polymerization through MRTF is yet unclear.  103 

Understanding the role actin-based signaling plays in controlling tendon homeostasis 104 

through the regulation of tenocyte transcription will provide insight into tendon disease and repair.  105 
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In tendinosis, abnormal biomechanical and biochemical signals may converge on the F-actin 106 

cytoskeleton to regulate tissue homeostasis. While the understanding of the regulation of actin by 107 

biomechanical forces has been investigated, the regulation of actin by biochemical mediators is 108 

less clear. While TGFβ is associated with pro-anabolic effects and is regarded as the critical 109 

pathway for mammalian tendon formation and regeneration (Havis et al., 2016; Kaji, Howell, 110 

Balic, Hubmacher, & Huang, 2020; Kuo, Petersen, & Tuan, 2008; Pryce et al., 2009), the 111 

regulation of actin by TGFβ in tenocytes is not known. In other cell types, TGFβ is a known 112 

regulator of F-actin. Since TGFβ is capable of enhancing Col1 synthesis (Heinemeier, Langberg, 113 

Olesen, & Kjaer, 2003), promoting the expression of Scx (Brown, Galassi, Stoppato, Schiele, & 114 

Kuo, 2015), and suppressing matrix Mmp activity (Farhat et al., 2015), an understanding on the 115 

actin-based regulation of molecular may provide new insights into the stimulating tendon 116 

anabolism and regeneration.  117 

This study aims to examine the regulation of tenocyte phenotype by actin. We hypothesize 118 

that actin polymerization status is regulated biochemically by TGFβ and actin polymerization 119 

status regulates tendon homeostasis by mediating tenocyte gene expression partly through MRTF.  120 

 121 

 122 

  123 
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Materials and Methods 124 

Mice and tendon cell isolation 125 

Wild-type C57Bl6/J mice were obtained from The Jackson Laboratory (Bar Harbor, ME) 126 

and bred following approved animal protocols from the University of Delaware Institutional 127 

Animal Care and Use Committee (IACUC). Female and male mice aged 8-10 weeks were 128 

euthanized by CO2 inhalation and used for these studies. Tendon cells were isolated from both 129 

sexes. However, our studies indicated no sex differences in response to treatments. Therefore, data 130 

represents combined data obtained from experiments on cells from both sexes. 131 

Tendon cells were isolated as previously described (Inguito et al., 2022). Briefly, tendon 132 

fascicles were dissected from tails and placed in Dulbecco’s Modified Eagles’ Media (DMEM), 133 

consisting of 1% antimycotic/antibiotic. After 15 minutes, fascicles were transferred into 0.2% 134 

collagenase A (MilliporeSigma) and maintained at 37°C. Following overnight collagenase 135 

digestion, the digests were strained through a 100µm filter (GenClone; Genesee Scientific; San 136 

Diego, CA, USA). Cells were then pelleted at 800g for 8 minutes. Pellets were resuspended in 137 

DMEM consisting of 10% fetal bovine serum (FBS; GenClone) and 1% antimycotic/antibiotic 138 

(defined as complete media). Cells were seeded at a density of ~8.3 x 104 cells/cm2 in either a six-139 

well dish or on glass dishes. Media was replenished every three days with fresh, complete media.  140 

 141 

Treatment of cells with TGFβ1 or pharmacological inhibitors 142 

Once tenocytes reached ~50-70% confluency, complete media was replaced with DMEM media 143 

containing 0.5% FBS and 1% antimycotic/antibiotic (defined as serum starved media) +/- TGFβ1 144 

or inhibitors. We used a concentration of 20ng/mL TGFβ1 (#7666-MB-005/CF; ThermoFisher 145 

Scientific; Waltham, MA, USA). The concentration of pharmacological agents used in this study 146 
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was 2μM, 10uM, and 10uM for and Latrunculin A (#10010630; Cayman  Chemical Company; 147 

Ann Arbor, MI, USA), Cytochalasin D (#11330; Cayman), and CCG1423  (#10010350; Cayman), 148 

respectively.  149 

  150 

Cell morphology and area analysis 151 

Light microscopy images of cells on six-well dishes were captured using a Swiftcam camera 152 

(Swiftcam Technologies, Hong Kong) mounted on an Axiovert 25 inverted phase-contrast 153 

microscope (Zeiss, Jena, Germany) or a Zeiss Primovert Microscope (Zeiss). Cell morphology and 154 

area were then analyzed by tracing cells using FIJI software as previously described (Schofield et 155 

al., 2024). Circularity (C) was defined as C = 4π(cell area/cell perimeter2) ranging from 0 156 

(elongated ellipse) to 1 (perfect circle). Cell area and circularity data from each set were combined 157 

and plotted using violin plots in Prism software (Graphpad; Boston, MA, USA).  158 

 159 

Confocal microscopy 160 

Tendon cells on glass dishes were fixed by incubating cells in 4% paraformaldehyde at room 161 

temperature. After 15 minutes, cells were washed three times in phosphate-buffered saline (PBS; 162 

potassium phosphate, sodium chloride, sodium phosphate dibasic; GenClone). Cells were then 163 

permeabilized using permeabilization/blocking solution (3% Goat serum, 3% BSA, and 0.3% 164 

Triton) for 30 minutes.  165 

To visualize G- and F-actin, tenocytes were stained with vitamin D binding protein 166 

conjugated to Alexa 488 (VitDBP-488; 1:100; RayBiotech; Peachtree Corners, GA, USA) and 167 

rhodamine-phalloidin (1:50; Biotium; Fremont, CA), respectively.  168 
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To visualize MRTF, tenocytes were incubated in permeabilization/blocking buffer 169 

consisting of anti-MRTF rabbit monoclonal IgG primary antibody (1:200; Cell Signaling 170 

Techology; Danvers, MA, USA). After an overnight incubation at 4oC, cells were washed in PBS, 171 

three times for 5 minutes per wash. Cells were then incubated in secondary antibody solution which 172 

contained anti-rabbit CF488 secondary antibody (1:100; Biotium), rhodamine phalloidin (1:50; 173 

Biotium), and Hoechst 33342 (1:500; Biotium). After a 1-hour incubation at room temperature, 174 

cells were washed in PBS three times for 5 minutes per wash.   175 

Stained cells were coverslip mounted with antifade mounting medium (Drop-n-Stain 176 

Everbrite; Biotium) and then visualized using a Zeiss 880 microscope with a 40x objective (NA = 177 

1.3 oil objective; z-stacks with a step size of 0.3μm). ZEN (Black Edition; Zeiss) was used to 178 

process images.  179 

 180 

Analysis and quantification of Fluorescent Microscopy Images 181 

Ratiometric analysis of G/F-actin in cells was determined on maximum intensity projections of 182 

images on FIJI using a previously described protocol (Schofield et al., 2024). Cell boundaries were 183 

traced using phalloidin staining of F-actin as an indicator of cell borders. Fluorescence intensities 184 

were measured in each channel, and G/F-actin ratios were calculated by dividing the measured 185 

intensities of G-actin-stained VitDBP-488 by F-actin-stained rhodamine-phalloidin. The derived 186 

G/F-actin fluorescent intensities of cells were normalized to control averages within each set. 187 

Combined data from sets were used for statistical analysis and are presented in dot-plots showing 188 

averages ± standard deviation.  189 
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Ratiometric analysis of nuclear to cytoplasmic MRTF was performed on maximum 190 

intensity projections of confocal images using FIJI. Cell boundaries were traced using phalloidin 191 

staining of F-actin as an indicator of cell borders. Nuclear boundaries were traced using Hoechst 192 

staining as an indicator of nuclear borders. The nuclear to cytoplasmic ratio was calculated by 193 

dividing the mean fluorescent intensity of nuclei by the calculated mean fluorescent intensity of 194 

the cytoplasm. The derived nuclear-to-cytoplasmic ratios were normalized to control averages 195 

within each set. Combined data from sets were used for statistical analysis and are presented in 196 

dot-plots showing averages ± standard deviation. 197 

 198 

RNA isolation  199 

Cells on six-well dishes were washed in PBS and then placed in TRIzol reagent (Sigma-Aldrich) 200 

to harvest RNA. RNA was isolated by phase separation in chloroform and then mixed with 100% 201 

ethanol. RNA purification was performed using RNA Clean and Concentrator-5 kit (Zymo 202 

Research; Irvine, CA, USA) as per the manufacturer’s instructions.  203 

 Relative real-time RT-PCR was performed on equal concentrations of cDNA using 204 

qPCRBio SyGreen Blue Mix (PCR Biosystems; London, UK) with previously validated primers 205 

(Inguito et al., 2022). The ΔΔCT method was used to calculate mRNA levels using 18S for 206 

normalization (Schmittgen & Livak, 2008).  The derived mRNA levels were normalized to 207 

control averages within each set. Combined data from sets were used for statistical analysis and 208 

are presented in dot plots showing averages ± standard error. 209 

 210 

Triton fractionation and protein extraction  211 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.609684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609684
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Triton insoluble and soluble fractions were extracted from cultured tenocytes as previously 212 

described (Schofield et al., 2024). Briefly, Triton soluble fractions (containing G-actin) were 213 

extracted from cells by incubating cells in cytoskeletal buffer (100mM NaCl, 3mM MgCl2, 300 214 

mM Sucrose, 1mM EGTA, 10mM PIPES) consisting of 0.2% Triton at room temperature for 2 215 

minutes. This Triton soluble fraction was collected, and radioimmunoprecipitation assay (RIPA) 216 

lysis concentrate (10x RIPA; Millipore Sigma) was added to each sample to obtain a final 1x RIPA 217 

buffer concentration. The insoluble fraction (containing F-actin) was collected by scraping the 218 

remaining cellular contents on the dish into cytoskeletal buffer consisting of 0.2% triton and 1x 219 

RIPA. Samples were kept at -80oC.  220 

To extract total protein contents from cells, cells on dishes were briefly washed in PBS. 221 

Cells were then placed in 1xRIPA in PBS containing protease inhibitor and scraped from dishes. 222 

Total protein was quantified using a bicinchoninic acid (BCA) protein assay (Prometheus; Genesee 223 

Scientific).  224 

 225 

WES capillary electrophoresis 226 

Protein quantification in samples were determined using WES capillary electrophoresis, as 227 

previously described (Parreno et al., 2022). For quantification of pan-actin in Triton fractionated 228 

samples, samples were first sonicated (Model Q55, Qsonica; Newton, CT, USA) and then equal 229 

volumes of Triton soluble and insoluble lysates were prepared according to the manufacturer’s 230 

instructions and separated using a 12-230 kDa Separation module kit (Protein Simple, San Jose, 231 

CA, USA).  Actin in each sample was quantified by probing using a rabbit anti–pan-actin (1:100; 232 

#4968; Cell Signaling) antibody. Secondary labeling of proteins was performed using anti-rabbit 233 

HRP-conjugate (Protein Simple). The proportion of actin in the Triton-soluble portion was 234 
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quantified by dividing the amount of Triton-soluble actin by total actin (sum of actin in Triton-235 

soluble and -insoluble fractions). Combined data from sets were used for statistical analysis and 236 

are presented in dot plots showing averages ± standard deviation. 237 

To determine COL1α1 and αSMA protein expression in protein lysates, 0.5μg/mL of 238 

sonicated lysates were loaded per well and separated using either a 12-230 kDa Separation module 239 

kit or a 66-440kDA Separation module kit and probed with an αSMA antibody (1:50, Abcam; 240 

ab7817) or COL1α1 antibody (1:200; Novus; NBP1-300543), respectively. Total protein values 241 

were determined using a Chemiluminescent WES Simple Western Size-Based Total Protein Assay 242 

(Protein Simple). The COL1α1 and αSMA protein levels were determined by normalization to the 243 

total protein amount for each sample. The data from individual sets were expressed as a percentage 244 

of control averages. Combined data from sets were used for statistical analysis and are presented 245 

in dot plots showing averages ± standard deviation. 246 

 247 

Statistical analysis 248 

Experiments were replicated at least three times on separate occasions. Graphpad prism was used 249 

for statistical analysis. Pooled data from sets were examined for outliers using the  ROUT method, 250 

which uses robust nonlinear regression and identifies outliers from nonlinear curve fits with 251 

reasonable power and few false positives. The maximum false discover rate was set at 1% 252 

(Motulsky & Brown, 2006). Unpaired T-tests were used to detect differences between two groups 253 

of data.  254 

  255 
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Results 256 

The anabolic affects of TGFβ on gene expression coincides with actin polymerization and nuclear 257 

MRTF 258 

TGFβ is pro-anabolic and is critical for tendon formation as well as regeneration (Brown 259 

et al., 2015; Farhat et al., 2015; Havis et al., 2016; Heinemeier et al., 2003; Kaji et al., 2020; Kuo 260 

et al., 2008; T. Maeda et al., 2011; Pryce et al., 2009). In other cell types TGFβ has been shown to 261 

increase polymerization and nuclear import of MRTF causing alterations in gene expression 262 

(Crider, Risinger, Haaksma, Howard, & Tomasek, 2011; Gupta, Korol, & West-Mays, 2013; 263 

Johnson et al., 2014; Korol, Taiyab, & West-Mays, 2016; Kumawat et al., 2016; Speight, Kofler, 264 

Szaszi, & Kapus, 2016). Here, we test the hypothesis that TGFβ1 regulation of gene expression 265 

coincides with enhancement of F-actin polymerization and nuclear MRTF localization. 266 

To confirm the gene regulatory effects of TGFβ1, we exposed isolated tenocytes to TGFβ1 267 

and performed real-time RT-PCR. After one day of treatment, we found that TGFβ1 upregulates 268 

tenogenic molecules (Col1, Tnc, Scx) and contractile isoform of actin, αsma (Figure 1). TGFβ1 269 

did not alter Acan mRNA levels; however, TGFβ1 reduces Sox9 mRNA levels. Furthermore, 270 

TGFβ1 reduces Mmp3 and Mmp13 mRNA levels.  271 
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In addition to the effects on gene expression, we also examined the impact of TGFβ1 on 272 

cell morphology (Figure 2A), actin organization (Figure 2B), and MRTF localization (Figure 2C). 273 

We found that TGFβ1 increases cell area (Figure 2A, D) and decreases circularity (Figure 2A, E). 274 

TGFβ1 also increases stress fibers in tenocytes (Figure 2B) and increases the proportion of F-actin 275 

in cells, as ratiometric analysis indicates that TGFβ1 decreases G/F-actin fluorescent staining 276 

intensity (Figure 2B, F).   277 

 

Figure 1. TGFβ1 treatment induces anabolic changes to tenocyte gene expression. Relative 
real-time PCR of tenocytes exposed to 20ng/mL TGFβ1 for 1day as compared to untreated 
control (Con) demonstrating an increase in tenogenic and asma mRNA levels, and a reduction 
in Sox9 as well as protease mRNA levels. Mean ± SEM is indicated on dot plots. *, p < 0.05; 
**, p < 0.01; ***, p < 0.001 as compared to Con. 
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G-actin binds MRTF and sequesters it in the cytoplasm of cells (Mouilleron et al., 2011). 278 

We performed image quantification to determine the relative proportion of MRTF within the 279 

nucleus and cytoplasm of cells treated with TGFβ1 and determined that it enhances the proportion 280 

of nuclear MRTF in tenocytes (Figure 2C, G).  281 

Overall, TGFβ1 treatment results in an anabolic shift in the tenocyte phenotype. The 282 

coinciding increase in the proportion of F-actin and nuclear MRTF leads us to the hypothesis that 283 

actin polymerization regulates tenocyte phenotype through MRTF. 284 

 

Figure 2. TGFβ1 alters cell morphology, actin organization/polymerization status, and 
MRTF localization. (A) Light and (B, C) confocal microscopy images of cells exposed to 
20ng/mL TGFβ1 for 1 day. Quantification of light microscopy images in ‘A’ indicates, by 
violin plots, (D) an increase in cell area and a (E) reduction in circularity. Quantification of G-
actin (Green; Vitamin D binding protein – Alexa 488) and F-actin (Red; Rhodamine-
Phalloidin) fluorescence in ‘B’ demonstrates a (F) decrease in G/F-actin fluorescence. 
Quantification of MRTF (Green) nuclear and cytoplasmic mean fluorescence intensity in ‘C’ 
demonstrates an (G) increase in the proportion of nuclear MRTF. Cells are counterstained with 
Hoechst for visualization of Nuclei. *, p < 0.05; ***, p < 0.001 as compared to Control. 
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Latrunculin A abrogates stress fibers and increases G/F-actin and MRTF, leading to unfavorable 285 

alterations in tenocyte homeostasis 286 

To determine the effect of F-actin depolymerization on tenocytes, we directly perturbed 287 

actin in isolated tenocytes by exposing cells to latrunculin A. Latrunculin A binds to monomeric 288 

G-actin preventing polymerization into F-actin (Coue, Brenner, Spector, & Korn, 1987; I. Spector, 289 

Shochet, Kashman, & Groweiss, 1983). In other cells, treatment with latrunculin causes cell 290 

rounding, abrogates stress fibers, increases G/F-actin, and reduces nuclear MRTF (Kuwahara, 291 

Barrientos, Pipes, Li, & Olson, 2005; Miralles, Posern, Zaromytidou, & Treisman, 2003; Parreno 292 

et al., 2014; Parreno et al., 2017).  293 

We found that latrunculin A treatment alters tenocyte morphology by reducing cell area 294 

(Figure 3A, B) and increasing circularity (Figure 3A, C), leading to round cells. We confirm that 295 

latrunculin A abrogates stress fiber organization in isolated tenocytes, causing an increase in G/F-296 

actin (Figure 3D, E). 297 

We next sought to determine if latrunculin A-induced actin depolymerization causes a 298 

reduction in nuclear localization of the G-actin binding transcription factor, MRTF. By staining 299 

for MRTF in fixed cells, we determined that latrunculin A reduces the proportion of nuclear MRTF 300 

(Figure 3F, G). 301 

  302 
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Figure 3. Latrunculin A induces cell rounding, an increase in G/F-actin, and a 
reduction in nuclear MRTF. (A) Light microcopy images and quantification, as shown by 
violin plots, for (B) area and (C) circularity of cells treated with 2µM latrunculin A for 1 day; 
latrunculin A induced cell rounding. (D) Confocal microscopy images of cells stained for F-
actin (Red; Rhodamine-Phalloidin), G-actin (Green; Vitamin D binding protein – Alexa 
488), and nuclei (Blue; Hoechst). (E) Quantification of G- and F-actin fluorescence 
demonstrates an increase in the proportion of G-actin. (F) Confocal microscopy images of 
cells stained for F-actin (Red; Rhodamine-Phalloidin), MRTF (Green), and Nuclei (Blue; 
Hoechst). Middle and right panels are zoomed in images of region marked by dotted yellow 
box in ‘F’. Right panel shows separated MRTF staining in gray, pink dash outlines represent 
nuclear borders. (G) Quantification of MRTF nuclear and cytoplasmic mean fluorescence 
intensity demonstrates a decrease in the proportion of nuclear MRTF.  ***, p < 0.001 as 
compared to DMSO. 
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Finally, we examined the effect of Latrunculin A on tenocyte mRNA levels. Latrunculin 304 

A reduces Col1, Tnc, Scx, and αsma mRNA levels (Figure 4). Exposure of tenocytes to latrunculin 305 

A does not affect the mRNA levels of the cartilage matrix gene, Acan. However, latrunculin A 306 

increases the expression of the chondrogenic transcription factor, Sox9. Furthermore, latrunculin 307 

A treatment increases Mmp-3 and Mmp-13 mRNA levels.  308 

Overall, the effects of latrunculin A treatment contrast the effects of TGFβ1 (Figure 1 and 309 

2), promoting a catabolic shift in tenocyte phenotype. The coinciding increase in cytoplasmic 310 

MRTF localization by latrunculin-induced actin depolymerization led us to ask: does MRTF 311 

regulate gene expression in tenocytes?  312 

 

Figure 4. Latrunculin A treatment induces tendinosis-like gene expression changes. 
Relative real-time PCR of tenocytes exposed to 2µM latrunculin for 1day as compared to 
DMSO treated vehicle control demonstrating a reduction in tenogenic and αsma mRNA levels, 
and an increase in Sox9 as well as protease mRNA levels. Mean ± SEM is indicated on dot 
plots. *, p < 0.05; **, p < 0.01; ***, p < 0.001 as compared to DMSO. 
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Cytochalasin D represses stress fibers, causing an increase in G/F-actin but also an increase in 313 

nuclear MRTF 314 

To further elucidate the regulation of tenocyte phenotype by actin depolymerization and 315 

MRTF, we next exposed tenocytes to cytochalasin D, which also depolymerizes actin. The 316 

mechanism of action of cytochalasin D differs from that of latrunculin. Cytochalasin D attaches to 317 

the barbed end of F-actin, preventing barbed end monomer addition, whereas latrunculin 318 

sequesters G-actin to prevent polymerization (Carlier, Criquet, Pantaloni, & Korn, 1986; Cooper, 319 

1987).  First, we examined the effect of cytochalasin D on cell morphology (Figure 5A) and actin 320 

organization (Figure 5B-D). Similar to latrunculin treatment (Figure 3A-C), cytochalasin D 321 

decreases cell area (Figure 5A, E) and increases circularity leading to cellular rounding (Figure 322 

5A, F). Cytochalasin D abrogates stress fibers (Figure 5B) and increases G/F actin fluorescence 323 

(Figure 5B, G). We determined that cytochalasin D treatment increases the proportion of actin in 324 

the Triton-soluble versus Triton-insoluble fraction of cells (Figure 5C, D, H). The increase in actin 325 

in the Triton-soluble fraction is consistent with an increase in G-actin within the cytoplasm of 326 

cells.  327 

 328 
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Figure 5. Cytochalasin D induces cell rounding, an increase in G/F-actin, and an increase 
in nuclear MRTF. (A) Light and (B) confocal microscopy images as well as capillary 
electrophoresis (C) spectropherograms and (D) pseudoblots for actin in triton-soluble ‘S’ and 
insoluble ‘I’ fractions of cells exposed to 10µM cytochalasin D. Quantification of (E) area and 
(F) circularity for cells treated with cytochalasin D for 1 day, by violin plots, in ‘A’ demonstrates 
that cytochalasin D induces cell rounding. (D, G) Quantification of F-actin (Red; Rhodamine-
Phalloidin) and G-actin (Green; Vitamin D binding protein – Alexa 488) fluorescence in ‘B’ 
demonstrates that 2 hours of exposure to cytochalasin D increases in the proportion of G-actin. 
(H) Dot-plot of WES Capillary electrophoresis collective data as exemplified by representative 
findings in ‘C’ and ‘D’ demonstrate an increase in the proportion of actin in the soluble fraction 
of cells by 2 hours of exposure to cytochalasin D. **, p < 0.01; ***, p < 0.001 as compared to 
DMSO. 
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In contrast to latrunculin, which causes nuclear export of MRTF to deactivate MRTF 330 

signaling, cytochalasin D interferes between the interaction of G-actin and MRTF, causing an 331 

increase in nuclear MRTF (Medjkane, Perez-Sanchez, Gaggioli, Sahai, & Treisman, 2009). We 332 

confirmed that in contrast to latrunculin A treatment (Figure 3F, G), cytochalasin D increases 333 

nuclear MRTF localization (Figure 6A, B). We used the differential effect of cytochalasin D and 334 

latrunculin on MRTF to elucidate specific gene regulation by MRTF. Since cytochalasin D 335 

activates MRTF, genes that MRTF highly regulates would be upregulated by cytochalasin D 336 

treatment despite an increase in G/F-actin. Like latrunculin A treatment (Figure 4), cytochalasin 337 

D reduces the Col1 mRNA levels (Figure 6C) and increases Mmp-3 and Mmp-13 mRNA levels. 338 

However, compared to latrunculin A treatment, which decreases Tnc, Scx, and αsma mRNA levels 339 

(Figure 4), cytochalasin D increases Tnc, Scx, and asma mRNA levels (Figure 6C). The 340 

contrasting effects of latrunculin and cytochalasin D on specific mRNA levels suggest that actin 341 

depolymerization regulates this subset of genes in a manner that is highly dependent on MRTF .  342 

  343 
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Figure 6. Cytochalasin D increases nuclear MRTF and differentially regulates gene 
expression. (A) Confocal microscopy images of cells treated with cytochalasin D for 4 hours. 
Cells were stained for F-actin (Red; Rhodamine-Phalloidin), MRTF (Green), and Nuclei (Blue; 
Hoechst). Middle and right panels are zoomed in images of region marked by dotted yellow box 
in left panel. Right panel shows separated MRTF channel in gray, pink dash outlines represent 
nuclear borders. (B) Quantification of MRTF nuclear and cytoplasmic mean fluorescence intensity 
demonstrates an increase in the proportion of nuclear MRTF.  Relative real-time PCR of tenocytes 
exposed to 10µM cytochalasin D for 1day demonstrating altered regulation of genes, with opposite 
effects to latrunculin A treatment (Figure 4) for a subset of genes (Tnc, Scx, asma). Mean ± SEM 
is indicated on dot plots. *, p < 0.05; **, p < 0.01; ***, p < 0.001 as compared to DMSO. 
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Pharmacological inhibition of MRTF reduces specific mRNA levels in tenocytes  345 

To further elucidate the regulation of genes via MRTF, we exposed tenocytes to the MRTF 346 

inhibitor CCG1423. CCG1423 is an MRTF signaling deactivator that binds to the RPEL regions 347 

of MRTF-A and prevents nuclear import of MRTF (Hayashi, Watanabe, Nakagawa, Minami, & 348 

Morita, 2014). Compared to the actin depolymerization agents, latrunculin A or cytochalasin D 349 

treatment, CCG1423 had a more subtle effect on cell morphology. CCG1423 reduces the average 350 

cell area 1.8-fold, and cells became more elongated, with an average circularity of 0.50 (Figure 351 

7A, E-F). In comparison, latrunculin A treatment reduces average cell area by 7.3-fold and causes 352 

cell rounding with an average circularity of 0.94 (Figure 3A-C). Furthermore, compared to 353 

latrunculin A treatment (Figure 3D), CCG1423 reduces but does not entirely abrogate, stress 354 

fibers. Furthermore, CCG1423 increased G/F-actin fluorescence intensity and soluble actin 355 

(Figure 7B-D, G-H). The degree of increase in G/F-actin fluorescence was much less than that of 356 

the latrunculin A treatment (1.3-fold versus 10.6-fold, respectively) (Figure 3D-E).  357 

 CCG1423 treatment affected a subset, but not all, of the genes altered by latrunculin A. 358 

Similar to latrunculin A (Figure 3F, G), CCG1423 treatment reduces nuclear MRTF levels (Figure 359 

8A, B). Also, in keeping with latrunculin A treatment, exposure of isolated tenocytes to CCG1423 360 

reduces mRNA levels for Col1, Tnc, Scx, and αsma (Figure 8C). The effect of CCG1423 on Tnc, 361 

Scx, and αsma mRNA levels contrasts with the effects of cytochalasin D on these genes (Figure 362 

6C). In contrast to latrunculin and cytochalasin D, CCG1423 did not affect Sox9, Mmp3, or 363 

Mmp13 mRNA levels (Figure 8C).  364 
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Figure 7. CCG1424 induces cell rounding, an increase in G/F-actin, and a decrease in 
nuclear MRTF. (A) Light and (B) confocal microscopy images as well as capillary 
electrophoresis (C) spectropherograms and (D) pseudoblots for actin in triton-soluble ‘S’ and 
insoluble ‘I’ fractions of cells exposed to 10µM CCG1423 for 1 day. Quantification of (E) area 
and (F) circularity for cells treated with CCG1423 in ‘A’ demonstrates cell rounding. (D, G) 
Quantification of F-actin (Red; Rhodamine-Phalloidin) and G-actin (Green; Vitamin D binding 
protein – Alexa 488) fluorescence in ‘B’ demonstrates that CCG1423 increases in the proportion 
of G-actin. (H) Dot-plot of WES Capillary electrophoresis collective data as exemplified by 
representative findings in ‘C’ and ‘D’ demonstrate an increase in the proportion of actin in the 
soluble fraction of cells by exposure of cells to CCG1423. *, p < 0.05; **, p < 0.01; ***, p < 0.001 
as compared to DMSO. 
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Figure 8. CCG1423 reduces nuclear MRTF and downregulates tenogenic and αsma mRNA 
levels. (A) Confocal microscopy images of cells treated with cytochalasin D for 1 day. Cells were 
stained for F-actin (Red; Rhodamine-Phalloidin), MRTF (Green), and Nuclei (Blue; Hoechst). (B) 
Quantification of MRTF nuclear and cytoplasmic mean fluorescence intensity demonstrates a 
decrease in the proportion of nuclear MRTF. (C) Relative real-time PCR of tenocytes exposed to 
CCG1423 demonstrates altered regulation of a subset of genes (Col1, Tnc, Scx, asma). Mean ± 
SEM is indicated on dot plots. *, p < 0.05; **, p < 0.01; ***, p < 0.001 as compared to DMSO. 
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Finally, we confirmed the effect of MRTF inhibition on select molecules at the protein 367 

level (Figure 9). Using WES capillary electrophoresis, we determined that CCG1423 reduces the 368 

expression of COL1 and aSMA protein. Collectively, our data shows that MRTF inhibition 369 

modestly affects cell morphology and F-actin. While alterations in molecular expression by 370 

CCG1423 treatment suggest a catabolic shift, MRTF regulates the expression of only a subset of 371 

actin-regulated molecules. 372 

   373 

374 

 

Figure 9. Modulation of select protein levels by exposure of tenocytes to 10µM CCG1423 for 
2 days of treatment. Representative WES capillary electrophoresis. (A) pseudoblots and (B) 
electropherograms for COL1α1 and αSMA. (C) Dot-plots of COL1α1 and αSMA protein levels 
after normalization to total protein (example of total protein pseudoblot shown in ‘A’). ***, p < 
0.001 as compared to DMSO treated cells.   
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Discussion 375 

This study reveals new mechanistic insights into regulating tenocyte homeostasis by actin. Our 376 

data supports the hypothesis that TGFβ1 can regulate F-actin, and that alterations in actin 377 

polymerization can regulate tenocyte molecule expression partly through MRTF (Figure 10). We 378 

found evidence that positive alterations to the tenocyte phenotype, through treatment with TGFβ1, 379 

coincide with elevated proportions of F-actin and nuclear MRTF. Therefore, we elucidated the 380 

regulation of tenocyte phenotype by actin through direct actin perturbation using latrunculin A as 381 

well as cytochalasin D. While latrunculin A and cytochalasin D treatment led to similar effects on 382 

morphology and actin organization, the varying effects on mRNA level regulation by the 383 

 

Figure 10. The proposed mechanism by which actin depolymerization regulates tenocyte 
phenotype through MRTF. Actin polymerization is a potent regulator of tenocyte phenotype 
through regulation of cell morphology and gene expression. Actin polymerization uses several 
mechanisms to regulate phenotype, including MRTF. The depolymerization of actin reduces 
nuclear MRTF, sequestering it in the cytoplasm, to downregulate a subset of genes associated 
with the tenogenic phenotype. Actin depolymerization also regulates genes in an MRTF 
independent fashion.     
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treatments could be attributed to differential regulation of MRTF. We confirmed the regulation of 384 

tenocyte phenotype by MRTF using CCG1423. CCG1423 had more subtle effects on morphology 385 

and F-actin than latrunculin A and downregulated a subset of genes. Thus, actin polymerization 386 

regulates tenocyte homeostasis in both an MRTF-independent and dependent manner (Figure 10). 387 

MRTF signaling alters tendon homeostasis by regulating the expression of specific 388 

molecules associated with anabolism (Figure 10). This study is the first to examine tenocyte gene 389 

regulation by actin polymerization through MRTF. The specificity of MRTF gene regulation was 390 

evident as MRTF inhibition downregulated Col1, Tnc, Scx, and αsma but did not alter Sox9, Mmp-391 

3, and Mmp-13. The regulation of Col1, Tnc, and αsma by MRTF is consistent with previous work 392 

in other cell types (Luchsinger et al., 2011; Parreno et al., 2022; Parreno et al., 2014; Parreno et 393 

al., 2017; Yokota et al., 2017). The regulation of Scx by MRTF is a novel finding. However, Scx 394 

has previously been shown to be regulated by MRTF’s binding partner, SRF, in mesenchymal cells 395 

(Vermeulen et al., 2020).  396 

MRTF inhibition also affected tendon cell morphology by reducing cell area and circularity 397 

and repressing stress fibers. These effects may be due to indirect/secondary effects. In support of 398 

this, MRTF inhibition had much subtler effects on tendon cells than the treatment of latrunculin 399 

A. Unlike latrunculin A, which directly affects actin, the effects of MRTF inhibition on 400 

morphology and actin could be due to indirect/secondary effects. Of the 62 genes known to be 401 

SRF target genes, 45% are cytoskeletal (Sun et al., 2006). These include molecules known to 402 

associate with F-actin and promote stress fibers, such as transgelin (Matsui, Ishikawa, & Deguchi, 403 

2018; Shen et al., 2011), and tropomyosin (Inguito et al., 2022; Parreno, Amadeo, Kwon, & 404 

Fowler, 2020; Schofield et al., 2024; Tojkander et al., 2011). Indeed, the knockdown of SRF 405 

represses stress fiber organization in endothelial cells (Sun et al., 2006). This demonstrates a 406 
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potential positive feedback loop between MRTF and F-actin depolymerization; deactivation of 407 

MRTF signaling can result in actin depolymerization, which self-propagates to cause a further 408 

reduction in nuclear MRTF (Figure 10). Considering the potent effect of actin depolymerization 409 

on causing a tendinosis-like phenotype, this could suggest that dysregulation of MRTF contributes 410 

to tendon pathology. Thus, proper MRTF signaling may be essential for maintaining tendon 411 

homeostasis and warrants future studies to delineate the role of MRTF in vivo in the context of 412 

tendon pathology.  413 

F-actin polymerization status also regulates gene expression within tenocytes independent 414 

of MRTF. In keeping with previous studies (Inguito et al., 2022; Maharam et al., 2015), we showed 415 

that perturbation of F-actin networks causes a catabolic shift in the tenocyte phenotype. We 416 

determined that latrunculin A-induced depolymerization causes cell rounding, loss of F-actin stress 417 

fibers, decrease in tenogenic gene and αsma mRNA levels, as well as increases in chondrogenic 418 

(I.e., Sox9) and protease levels. Our data suggests that the regulation of Col1 may be both 419 

independent and dependent on MRTF (Figure 10), as CCG1423 and cytochalasin D led to a similar 420 

decrease in Col1 mRNA levels. The effects of cytochalasin D on Col1 contrast with what is 421 

expected if it were under a high degree of regulation by MRTF, as cytochalasin D is an MRTF 422 

activator. The effect of cytochalasin D on Col1 could be attributed to the signaling of other 423 

pathways downstream of actin polymerization, such as Yes-associated protein (YAP) and the 424 

transcriptional co-activator with PDZ-binding motif (TAZ). We previously have found support for 425 

regulating Col1 by YAP/TAZ in tenocytes (Inguito et al., 2022). We found the regulation of Sox9, 426 

Mmp3, and Mmp13 by actin depolymerization is likely independent of MRTF signaling as 427 

latrunculin and cytochalasin D had similar effects on these genes, and these genes were not affected 428 

by CCG1423 treatment. Actin depolymerization upregulates Sox9 via protein kinase A signaling 429 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.609684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.26.609684
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

(Kumar & Lassar, 2009). Furthermore, overexpression of YAP decreases Mmp3 and Mmp-13 430 

mRNA levels (Jones et al., 2023). In addition to YAP/TAZ signaling, actin may regulate Mmp 431 

expression through an F-actin binding transcription factor, cysteine-rich protein 2 (CRP2) 432 

(Mgrditchian et al., 2023). In the case of CRP2, F-actin depolymerization liberates it from F-actin, 433 

causing translocation into the nucleus whereby it may interact with Mmp promoter regions. Thus, 434 

there are multiple pathways downstream of F-actin, aside from MRTF, which may also affect gene 435 

expression. Additional studies to investigate the contribution of other mechanisms downstream of 436 

actin require further investigation. 437 

Actin may be at the nexus of biomechanical and biochemical signaling to regulate the 438 

tenocyte homeostasis. Previously, we determined that mechanical stress deprivation can reduce 439 

the proportion of G/F-actin in tenocytes (Inguito et al., 2022). In addition to biomechanical stimuli, 440 

in the present study, we found that exposure of tendon cells to TGFβ1 promotes F-actin 441 

polymerization and nuclear MRTF localization (Figure 10), which is consistent with other cell 442 

types (Crider et al., 2011; Gupta et al., 2013; Johnson et al., 2014; Korol et al., 2016; Kumawat et 443 

al., 2016; Speight et al., 2016). The regulation of tendon homeostasis by TGFβ has previously 444 

been attributed to canonical, Smad2/3-mediated signaling (Li et al., 2022; T. Maeda et al., 2011). 445 

Our results demonstrate that TGFβ1 also activates actin-based MRTF signaling. Thus, TGFβ may 446 

use both actin-dependent and independent pathways to regulate tenocyte homeostasis. 447 

Intriguingly, other biochemical modulators of tendon homeostasis, such as connective tissue 448 

growth factor, fibroblast growth factor-2, bone morphogenic protein, and insulin-like growth 449 

factor (Lin et al., 2023), have also been shown to regulate actin polymerization and/or MRTF 450 

signaling in other cell types (Guvakova & Surmacz, 1999; Hahn, Heusinger-Ribeiro, Lanz, Zenkel, 451 
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& Goppelt-Struebe, 2000; Junglas et al., 2012; Konstantinidis, Moustakas, & Stournaras, 2011; 452 

Muehlich et al., 2007). Therefore, F-actin may be at the node of many other biochemical signals.  453 

In conclusion, this study demonstrates that actin polymerization status regulates tenocyte 454 

expression of genes, partially through regulating the G-actin-binding transcription factor, MRTF. 455 

This work highlights that actin is a potent regulator of tendon homeostasis through regulating gene 456 

expression in tenocytes. Actin uses multiple mechanisms, including MRTF, to influence tendon 457 

homeostasis. Further understanding of the regulation of tendon homeostasis by actin and its 458 

downstream mediators during pathological processes such as tendinosis may lead to novel 459 

therapeutics to prevent disease progression and/or stimulate regeneration.  460 
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