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Abstract

Throughout the COVID-19 pandemic, control of transmission has been repeatedly thwarted by the emergence of variants of concern
(VOC) and their geographic spread. Key questions remain regarding effective means of minimizing the impact of VOC, in particular
the feasibility of containing them at source, in light of global interconnectedness. By analysing a stochastic transmission model of
COVID-19, we identify the appropriate monitoring requirements that make containment at source feasible. Specifically, precise risk
assessment informed primarily by epidemiological indicators (e.g. accumulated hospitalization or mortality reports), is unlikely prior
to VOC escape. Consequently, decision makers will need to make containment decisions without confident severity estimates. In
contrast, successfully identifying and containing variants via genomic surveillance is realistic, provided sequence processing and
dissemination is prompt.
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Significance Statement:

As SARS-CoV-2 continues to circulate, the stochastic emergence of novel variants will pose a threat for the foreseeable future.
Minimizing their impact requires identifying and containing each variant at source to halt onward circulation. Our results highlight
that, due to the lag between exposure and death, identifying a novel variant using mortality data is unlikely before substantial
spatial spread. On the other hand, our results suggest that by the start of 2022 multiple countries were sequencing sufficient
infections to make successfully identifying and containing variants via genomic surveillance realistic, contingent on fast sequence
processing, dissemination, and analysis times. As a consequence, while genomic surveillance makes early variant identification
possible, it is not feasible to precisely quantify the threat posed before a proportionate containment response is needed.

Introduction
The SARS-CoV-2 pandemic has been prolonged and exacerbated
by the repeated emergence and global establishment of highly
transmissible novel variants of concern (VOCs), including the Al-
pha, Delta, and Omicron variants. The continued societal impact
of SARS-CoV-2 depends crucially on the frequency with which
new variants emerge, their transmissibility, disease severity, and
capacity to evade immunity, and our ability for early detection
and prevention of geographic spread (1–5). The recent Omicron
emergence and spread has highlighted the key bottlenecks in the
containment of VOCs at source: the need for early detection and
risk assessment of a novel virus via surveillance and diagnos-
tics (including epidemiological, serological, and sequencing) and
timely and proportionate public health efforts to cordon off the
affected regions through coordinated travel restrictions (6, 7). Ul-
timately, the failure to prevent the subsequent spread of Omicron
raises important questions regarding the effectiveness of early

detection and travel restrictions at containing any future VOCs
at source.

To motivate the proceeding research, we describe successive
waves of new emerging variants. Over the course of 2021, suc-
cessive waves of Alpha (8–10), Delta (11, 12), and Omicron (13,
14) had swept across the world, triggering large outbreaks that
many countries struggled to foresee and contain. In the United
States, the spread of these and other variants exhibited clear
spatio-temporal patterns (Fig. 1A), with successive waves of emer-
gent variants replacing the previous. While the Delta and Omi-
cron variants received much publicity on account of concerns re-
garding their increased transmissibility (14, 15) and potential for
immune evasion (13, 16), other variants had previously emerged
in the United States with contrasting spatio-temporal trajectories
(Fig. 1). The Epsilon variant, first identified amidst a surge of cases
in southern California in late 2020 October (17), briefly became
the dominant variant in western states (Fig. 1A). Similarly, the
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Fig. 1. Uneven spatial spread of variants across the contiguous United States. (A to C) Prior to the Delta variant there was clear spatial variation in the
frequency of different viral variants. The peak frequency of the Epsilon variant (first identified in California) was highest in western states (panel A),
whereas the Iota variant (first identified in New York) was highest in the northeast. The invasive Alpha variant, which entered the United States after
the emergence of both Epsilon and Iota, had the highest peak frequency in geographically central states in the south and mid-west. (D to F) The time
variation in variant frequency for select states (one from each grouping identified above) illustrate these patterns in more depth. Both Epsilon and Iota
appear to have enhanced transmissibility over pre-2021 variants (panels D and E). The higher frequency of these variants in west and east states
reduced the competitive advantage of the Alpha variant and thereby slowed the Alpha wave. The subsequent invasion of Delta resulted in a selective
sweep with near-total elimination of preexisting viral diversity in all states, preventing the eventual dominance of Alpha. Emerging in late November
2021, Omicron also completed a selective sweep and replaced Delta as the dominant strain.

Iota variant, which likely emerged in New York state around 2020
November (18), peaked highest primarily in northeastern states
(Fig. 1B). For both variants, this geographic restriction suggests lo-
calized diffusion (to neighboring states) rather than long-range
spread.

Conversely, the emergence of Alpha, Delta, and Omicron vari-
ants (all with external origins) was near-simultaneous across the
country (e.g. Fig. 1C), suggesting a pivotal role for long-range
spread. For instance, the increase in the frequency of Delta de-
tections and subsequent near-fixation occurred synchronously
across the United States, regardless of preexisting viral diver-
sity (Fig. 1D to F). For each of these variants, increased surveil-
lance and genetic sequencing led to their rapid identification, yet
none were successfully contained either at source or at points
of introduction, leading to widespread transmission across the
United States.

To establish the conditions necessary for containing novel vari-
ants at source, mathematical models of emerging infectious dis-
eases are insightful, as previously demonstrated in response to
the 2003 SARS pandemic (19–27), among others. We formulate a
spatial model of SARS-CoV-2 transmission that can accommodate

the emergence of novel variants as well as multiple approaches
to monitoring. Our model is a continuous-time Markov jump pro-
cess (28, 29) that captures the competition between variant ex-
portation and detection (e.g. via random case sequencing) as its
incidence in the source population grows. We derive analytical ex-
pressions for the probability of identifying the variant before it is
exported. If control measures are then rapidly implemented, the
novel variant could in principle be locally contained.

Results
We first focus on the dynamics of epidemic spread in the ab-
sence of surveillance. Using our stochastic transmission model,
we demonstrate how the speed of spatial variant escape is de-
termined by the underlying epidemiological factors, including the
variant reproductive number, R0, the mean infectious period, 1/γ ,
and the average immune protection in the destination (popula-
tion j) against infection with the variant, φj. Critically, the speed of
variant spread is also determined by ci, j, which is the probability
of contact between an infectious individual from the origin i and
an individual in the destination j. This quantity can be estimated
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Fig. 2. Probability and timings of exported variant infections. (A) The probability that at least n variant infections have been exported, for n = 1 to 5
from an exponentially growing outbreak in the origin location. The mean timing (in days postemergence, i.e. when Ii(0) = 1) of the nth exported
infection is indicated by τ n (see Supplementary Material Section S2, Eq. S23 for mathematical details). (B) Dependence of the mean day of the first
exported infection, τ 1, on the variant reproductive number, R0 and the inter-location contact probability, ci, j. For a given R0, τ 1 has a roughly log-linear
relationship with contact probability (see right inset). (C and D) At high reproductive numbers, successive importations rapidly follow the first (results
shown for ci, j = 0.01). (E and F) Strikingly, the average interarrival time of successive importations, τ n − τ n − 1, is largely independent of the contact
probability: while reducing it delays the first infection, it does not ameliorate the wave of subsequent introductions (results shown for R0 = 1.8).
Consequently, if one importation is detected more will likely rapidly follow (cf. panel D). (G) Reconstruction of time between successive successful
importations of the Alpha variant to the United States. Each importation sparked a unique chain of transmission large enough to be detected in a
SARS-CoV-2 sequence data (30). We fitted our TIPP model to the estimated timing of Alpha variant importations, assuming they arrived from the
United Kingdom (see the “Methods” section and Section S2 of Supplementary Material). For the results shown in panels A to F, we assumed φi = φj = 0,
i.e. there is no prior immunity to the variant. Prior immunity in the origin (φi > 0) translates into a smaller αi, whereas prior immunity in the
destination (φj > 0) is dynamically equivalent to a smaller ci, j.

as the product of the per capita daily travel volume and the mean
infectious period (see Section S2 of Supplementary Material).

Although our derivations hold more generally, we focus on the
scenario where the incidence of the variant in the source popula-
tion is growing exponentially at a rate αi, such that Ii(t) = Ii(0)eαit .
Under these conditions, the number of imported cases in the des-
tination, Qj(t), is a time-inhomogeneous Poisson process (TIPP),
from which we derive expressions for (i) the expected time of the
nth importation in j, τ

( j)
n , and (ii) the expected interarrival times

between successive introductions, τ
( j)
n − τ

( j)
n−1 (see Section S2 of

Supplementary Material). This allows us to quantify the speed at
which a novel variant spreads, and in particular how its spread is
impeded by travel restrictions, which serve to decrease the con-
tact probability, ci, j (Fig. 2). As variant incidence in the origin rises,
so does the probability of imported infections in the destination
(Fig. 2A). More importantly, these derivations also explain why
travel restrictions have met with limited success (20–26). To illus-
trate this, we first point out that the variant reproductive num-
ber, R0, has a two-fold impact on the expected time to the first
imported infection, τ

( j)
1 , compared with the contact probability. A

higher R0 (i) results in a faster accumulation of infections in the
origin (i.e. a larger αi), each of which may spillover to the destina-
tion, and (ii) raises the spatial reproductive number, Ri, j (see the
“Methods” section). Of the two effects, the first dominates the sec-
ond with τ n roughly proportional to 1/αi and only logarithmically
dependent on Ri, j: τ

( j)
n ∼ 1

αi
ln(1 + bαin/Ri, j ), where b is a constant

determined by the epidemiological parameters (see Section S2
of Supplementary Material; Fig. 2B). In addition, because Ri, j∝ci, j,
there is also a log-linear relationship between contact probability
and the mean time to the first imported infection (n = 1; Fig. 2B
right insert).

To assess the prospects for containing a variant, it is also im-
portant to consider the expected interarrival time (Fig. 2C to F).
This gives a measure of how extensive the public health response
should be upon detection of an importation, e.g. whether other
imported infections are likely to be missed. Decreasing αi not only
increases the time until the first imported infection, it also length-
ens the expected time between each imported infection (Fig. 2C
and D). Conversely, while decreasing contact probability increases
the time to the first imported infection (Fig. 2E), it has little impact
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Fig. 3. Impact of infection sequencing ratio and sequence processing delays on variant identification. (A) Sample realization of the variant emergence
model. The observation delay (shaded region) is the lag between exposure (light blue) and sequencing results (dark blue). Once sufficient evidence
exists via sequenced cases the variant is identified. Illustrative results shown here assume 10 sequences are necessary for identification, 1% of all
infections are sequenced and the sequencing delay is 14 days. With a doubling time of 7 days, the variant is identified before any infections are
exported. (B) For a variant with a 3-day doubling time, four infections are exported before the variant is identified. (C) As the ratio of sequencing delay
to doubling time increases, it is necessary to sequence a greater proportion of infections to have the same probability of identifying the variant before
exportation, P0. (D) A corollary is that reducing the number of days between exposure and sequencing results can have an impact comparable to
substantial increases in sequencing. If the variant has a 3-day doubling time, then a 33% reduction in sequencing delay (e.g. from 3 to 2 weeks) has the
same impact as a five fold-increase in infection sequencing probability. For all results shown in this figure, we used a contact probability ci, j = 10−4,
assumed 10 sequences were necessary for variant identification, and that there was no prior immunity to the variant (φi = φj = 0).

on the time between successive importations (Fig. 2F). This means
that once the first infection is imported, the time between succes-
sive infections is predominantly determined by the growth rate in
the origin rather than the contact probability. For instance, if αi =
0.8 (equivalent to a 6-day doubling time), the twentieth imported
infection will occur within one month of the first, regardless of the
contact probability.

While previous modeling studies have focused on the difficulty
in preventing any imported infections of a novel pathogen (19–
27), our results highlight the practical difficulties in trying to pre-
vent subsequent establishment of a pathogen, e.g. through con-
tact tracing (31).

We compare our mathematical model with published results
from a phylogenetic study, which estimated the number and tim-
ing of Alpha variant importations to the United States in winter
2020 to 2021 (30) (Fig. 2G). Each detected importation sparked a
transmission chain sufficiently large to be detected in a data set
of positive SARS-CoV-2 samples. Given uneven surveillance, the
number of detected importations likely represents an underes-
timate (30). Using likelihood-based inference (see Section S2 of
Supplementary Material), we fitted our TIPP model to the me-
dian estimated importation time for each lineage detected in the
phylogenetic study (blue line), assuming that they were exported
from the United Kingdom (the Alpha variant population of origin)
(Fig. 2G). Comparing these inference results with theoretical pre-
dictions derived from our model (Fig. 2F), we see in both cases a

rapid early drop in the interarrival time, suggesting observed im-
ports in the United States are consistent with exponential growth
in the incidence of the variant in the United Kingdom. Our find-
ings are robust to the estimated uncertainty in the timing of each
Alpha importation (see Fig. S1 of Supplementary Material ).

The results presented in Fig. 2 show that an incomplete cessa-
tion of travel leads to a modest delay in the spread of a variant.
Here, we demonstrate that such a delay can provide a crucial win-
dow for identification of a VOC and containment at source (see
Section S3 of Supplementary Material). By incorporating surveil-
lance into our transmission model, we predict the outcome of the
race between two competing processes: (i) successful detection of
the variant in the origin, and (ii) the exportation of the virus to
other regions.

We first examine the efficacy of variant identification based
on the detection of atypical genetic sequences, before including
epidemiological surveillance based on clusters of excess mortal-
ity. We assume that a proportion of infections are randomly se-
quenced, and that identification requires a threshold number of
anomalous variant sequences (Fig. 3A and B). Whether the vari-
ant is identified before infections are exported depends on a range
of factors, in particular the sequencing probability, the delay be-
tween exposure and sequencing results [for context, the median
time to deposition on Global Initiative on Sharing All Influenza
Data (GISAID) in December 2021 for SARS-CoV-2 sequences
from the United States was around 21 days (32)], the contact
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Fig. 4. Prospects for containing a novel variant given a 2-week postexposure sequencing delay. (A to C) Heat maps showing the dependence of the
probability of no infections are exported before the variant is identified on the variant R0 and the contact probability, assuming the variant is able to
evade all immunity against infection in the population. Panels show three different countries, Russia (panel A), South Africa (panel B), and Denmark
(panel C), selected based on the percentage of reported cases whose sequences were contributed to GISAID (32). (D to F) Same results as shown in
panels A to C, but assuming the average population immunity against infection (through a combination of infection history and vaccination) is 50% in
both populations. To provide a comparison across variant immune evasion, we present results in terms of the variant basic reproductive number, R0.
Evaluating our results in the presence of nonpharmaceutical interventions amounts to scaling the x-axis. As in Fig. 3, we assumed 10 sequences were
necessary for variant identification.

probability, and the doubling time of variant infections in the ori-
gin (determined in turn by the reproductive number and serial in-
terval). We find that the probability that no infections are exported
before identification, P0, is acutely sensitive to the ratio of the se-
quencing delay to the doubling time (Fig. 3C). When the source
epidemic is growing exponentially, the sequencing delay has the
net effect of exponentially reducing the sampling probability, with
the magnitude of reduction determined by the doubling time to
sequencing delay ratio. This phenomenon is illustrated in Fig. 3D,
highlighting that with our parameterization, a 1-week reduction
in the delay between exposure and the dissemination of sequenc-
ing results has an identical impact on P0 to a five-fold increase in
sequencing probability. In contexts where testing is constrained
or costly, improvements in sequencing protocols can be decisive.

At the start of 2022, the proportion of reported cases whose se-
quences were disseminated publicly varied between countries by
several orders of magnitude (32). While, due to infection under-
reporting, these numbers represent an overestimate of the se-
quencing probability of an infection, they provide some indication
of the prospects for identifying a variant emerging in each country.
For instance, assuming a 2-week sequencing delay, containment
of a novel variant capable of evading all immunity against infec-
tion, which emerged in Russia (with an estimated 0.1% case se-
quencing on GISAID) is practically impossible, even at low R0 and
contact probability (Fig. 4A). Despite its higher sequencing prob-
ability, containment of such a variant in South Africa (0.8% case
sequencing) is similarly unlikely (Fig. 4B). In contrast, in Denmark
(41.6% case sequencing; Fig. 4C), identification before exportation
is likely if the variant reproductive number is less than 3.5 and
the contact probability is less than around 10−4 (comparable, for
instance, to the average flux between London Heathrow and New

York JFK in 2022 January; see Section S1 of Supplementary Mate-
rial). If the average immunity in the population provides a 50% re-
duction to the probability of infection with the variant, prospects
for containment in South Africa and Denmark improve markedly
(Fig. 4E and F). Containment in Russia remains unlikely unless the
variant possesses a basic reproductive number less than currently
circulating variants (Fig. 4D).

To assess the relative reliability of detection methods that com-
bine multiple data streams, we refined our model to account for
variant identification via clusters of excess deaths alone (Fig. 5A)
and together in combination with sequencing (Fig. 5B and C),
and via vaccine breakthrough mortality (Fig. S2 of Supplementary
Material).

To achieve this, we define a threshold number of variant-
induced deaths (dM) and a threshold number of novel sequences
(dS). We then derive (see Section S4 of Supplementary Material
for details) an expression for the probability that a variant is first
identified in mortality data, i.e. before: (i) any infections have been
exported and (ii) dS infections are sequenced,

PM =
(

κM

κM + κE

)dM dS−1∑
z=0

f
(

z; dM,
κS

κM + κS + κE

)
, (1)

where f(z; n, p) is the probability mass function of the negative bi-
nomial distribution and κM, κS, and κE are the rates at which infec-
tions are fatal, sequenced, and exported, respectively. Both κM and
κS have the same functional structure, κM = pMmM(αi)Ri, i and κS =
pSmS(αi)Ri, i, where pM and pS are the probabilities an infection is
included in mortality data and sequenced data respectively, while
κE = Ri, j. The two discounting factors, mM(αi) and mS(αi), are deter-
mined by the epidemic growth rate and the lags between exposure
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Fig. 5. Challenges to detection of novel variants in mortality data. (A)
Given the typically substantial lag between SARS-CoV-2 exposure and
mortality, identification of a novel variant before it spreads to another
population (connected with contact probability ci, j = 10−4) is unlikely
unless the variant is identified after a small number of deaths (less than
about 10) and the doubling time is greater than about 7 days. These
findings hold even if the variant is capable of substantial mortality
[results shown for infection fatality rate of 1%, comparable to early
estimates of the original SARS-CoV-2 variant (33)]. (B) Our analytical
results allow us to calculate the probability that the variant is first
identified via monitoring of mortality data or sequence data. For both
mortality and sequence monitoring we assume 10 observations (deaths
and sequences, respectively) and a 2-week sequencing delay. For a
doubling time of 4 days, with the same contact probability as panel A,
the variant is more likely to be identified in sequence data first, if the
probability of sequencing is greater than about 0.5%. (C) Sequencing
probability necessary for a 50% chance of successfully identifying the
variant (using either detection method) before any infections are
exported. Results shown assume no prior immunity to the variant (φi =
φj = 0).

and mortality and between exposure and sequencing results, re-
spectively (see Section S4 and Eq. S38 for details of Supplemen-
tary Material). The mathematical structure of Eq. (1) stems from
PM being a product of two probabilities: (i) a geometric distribution(

κM
κM+κE

)dM

that corresponds to the probability the variant is iden-

tified in mortality data before any infections are exported, and (ii)
the probability that the variant is not first identified in sequence
data,

∑dS−1
z=0 f (z; n, p). The probability that the variant is first iden-

tified in sequencing data, PS, is found by exchanging the subscripts
M and S in Eq. (1). The total probability that the variant is identified
before any cases are exported is given by P0 = PM + PS.

Analysis of Eq. (1) reveals that identification of a new variant
before infections are exported based exclusively on mortality data
is only plausible if the doubling time is at least 1 week, and the
threshold number of deaths necessary for identification is less
than around 20 (Fig. 5A). These constraints stem from the sub-
stantial delay between symptom onset and mortality, which is
∼26 days for COVID-19 (34).

Eq. (1) also reveals that, in general, variant identification oc-
curs first in sequence data, unless sequencing efforts are sparse
(Fig. 5B). For instance, assuming variant identification requires (i)
either 10 deaths or the detection of 10 anomalous sequences, (ii)
a 4-day doubling time, and (iii) a 2-week sequencing delay then
identification is only more likely to occur first through mortal-
ity data if fewer than 0.5% of infections are sequenced. Estimates
of sequencing efforts from early 2022 indicate that a number of
countries have exceeded this threshold (Fig. 5B). Thus, taken in
combination, our results (Figs. 3 to 5) overwhelmingly favor us-
ing sequencing as the monitoring strategy if the aim is to con-
tain the spread of novel variants. Further, our findings have rele-
vance to decisions on the necessary epidemiologic and genomic
surveillance for a given risk-tolerance of missing an emerging
VOC. Specifically, we calculated the threshold sequencing effort
necessary for VOC containment at source for a given risk of iden-
tification failure (Eq. S46 in Section S3 of Supplementary Mate-
rial; Fig. 5C). For instance, with its sequencing probability at time
of writing, Denmark will identify the VOC with greater than 50%
chance of success before spread even with a high sequence count
threshold, provided the ratio of sequencing delay to doubling time
is less than around 6 (for an Omicron-like variant with a 3- day
doubling time, this corresponds to an 18-day sequencing delay).

Finally, using vaccine breakthrough deaths to identify a novel
variant presents additional challenges (see Section S3 of Supple-
mentary Material). As shown in Fig. S2 of Supplementary Mate-
rial, incomplete vaccine coverage results in a pool of unvaccinated
who are unobservable by the monitoring protocol. Transmission
in this group can lead to substantial incidence and elevated ex-
portation risk, without increasing detection prospects (Fig. S2D of
Supplementary Material). Therefore, although such a monitoring
scheme is tailored to identify the most high-risk variants, it stands
the least chance of success.

Discussion
Given that eradication of SARS-CoV-2 is unlikely, the sporadic
emergence of novel variants (Fig. 1) will pose a threat for the
foreseeable future (35). The spectre of a repeating cycle of vari-
ant emergence and subsequent disruptive public health measures
has proven to be disheartening and exacerbated pandemic fa-
tigue (36). While early variant detection is clearly an ambitious
goal, the benefits—in terms of reducing loss of life as well as so-
cial and economic disruption—are enormous. Minimizing the im-
pacts of a variant requires identifying and containing it at source
as early as possible to halt onward circulation. As demonstrated
by the response to the emergence of Omicron, knee-jerk and in-
consistent travel restrictions (as imposed by multiple countries)
do little to curtail global spread (37).

Travel restrictions employed by various countries were suc-
cessful in the early stages of the pandemic. In particular, nations
such as China, New Zealand, and Australia imposed severe travel
restrictions, seeking to effectively epidemiologically decouple
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themselves from the rest of the world and thereby prevent viral in-
troductions (38). For countries attempting to halt all endogenous
disease transmission, popularly called a “zero COVID” strategy,
questions remain regarding whether and how long such isolation
policies must be maintained, the degree to which travel restric-
tions can be relaxed while remaining successful, and their viabil-
ity in the face of emerging highly transmissible variants (39). Our
results reinforce the conclusion that any reductions in travel short
of quarantining all arrivals until they are confirmed uninfected
is unlikely to prevent importation (Fig. 2)—consistent with stud-
ies carried out in response to the 2003 SARS-CoV-1 outbreak (20–
26). Mathematically, this results from a log-linear relationship be-
tween the reduction in travel and the expected time of the first im-
ported infection (40) (see Section S2 of Supplementary Material)
such that a 90% reduction in travel flow may delay the first im-
ported infection by 2 weeks, while a 99% reduction might only de-
lay it by 4 weeks. In addition, our results highlight a key challenge
highly transmissible variants pose to containment efforts: The
shorter the origin doubling time, the shorter the expected time
between successive importations in the destination (Fig. 2F and
G; see Section S2 of Supplementary Material). Consequently, reac-
tive travel restrictions imposed after the first detected imported
case will be too late.

The crucial quantity in determining the prospects of containing
a variant is the ratio of detection delay to variant doubling time
(Fig. 3). Indeed, increases in the timeliness of sequence dissemina-
tion can result in comparable gains to substantial improvements
in sequencing coverage (Fig. 3D). This provides information for pri-
oritizing surveillance efforts and protocols given constrained re-
sources. Given the dependence of the ability to identify variants
before exportation on key epidemiological parameters (see Sec-
tion S3 of Supplementary Material), we have demonstrated that
increasing coverage with vaccines that provide at least partial
protection against variant infection will always slow their spread
(Fig. S2 of Supplemenatry Materials). Furthermore, vaccination in
the source population has a substantially greater impact than
vaccination in the recipient population, due to the reduction in
the ratio of detection delay to doubling time (see Fig. 3C).

Perhaps counter-intuitively, our results suggest that it might be
easier to contain a variant that emerges within a closely mon-
itored country than to prevent the importation and subsequent
spread of one which emerges in another country with poor moni-
toring. If monitoring efforts are both comprehensive and highly
spatially resolved, then the detection of the variant is likely to
precede substantial spread beyond highly connected immediately
neighboring communities (as shown in Fig. 4F). On the other hand,
if the variant emerges in a country with poor monitoring then ex-
portation is likely prior to detection. Due to exponential growth
in the origin, outbreaks will likely be seeded by travelers across
the destination country before travel restrictions can be imposed,
as witnessed by the spread of Alpha, Delta, and Omicron in the
United States (shown in Fig. 1) and globally.

Throughout our analysis, we focused on the probability of iden-
tifying a variant before any infections are imported—a conserva-
tive measure of the prospects of containing a variant given that
the transmission chain of an imported infection might terminate
early on due to stochastic effects. Individual variation in transmis-
sion rates (“superspreading”) have been shown to play a key role
in whether an imported infection sparks widespread transmission
(the “invasion probability”), with more overdispersed offspring dis-
tributions resulting in lower invasion probabilities (41). The exact
extent of overdispersion for SARS-CoV-2 is uncertain, and is likely
context-dependent, with estimates of the dispersion parameter, k,

ranging from 0.1 to 0.58 (42). To account for the potential impact
of superspreading, our modeling approach can readily be adapted
by conditioning only on successful invasion. To achieve this, we
would multiply κE in Eqs. (1) and (11) by the invasion probability
corresponding to the values of R0 and k.

In this paper, we have explored two different methods for iden-
tifying novel variants: by random sequencing of confirmed cases
and by monitoring mortality data. Other methods of identification
have been proposed, for instance by sequencing SARS-CoV-2 sam-
ples from wastewater (43). In principle, our modeling approach
could be adapted to wastewater monitoring, provided data exist
that can reasonably parameterize the per infection probability of
a sample being detected in wastewater, and the delay between ex-
posure and sample detection. A novel variant could also be identi-
fied through a sudden spike in SARS-CoV-2 incidence (unclassified
by strain), which we consider briefly in Section S5 of Supplemen-
tary Material. As the delay between exposure and case confirma-
tion of infection (e.g. via PCR testing) is typically shorter than the
delay before either sequencing results or mortality, it has an ad-
vantage as a variant identification method. We did not focus fur-
ther on this particular identification method due to its limitations,
in particular its lack of specificity; a spike in cases may be driven
by a range of mechanisms unrelated to variant emergence.

Our analytical results explain that, due to the lag between ex-
posure and death, the variant is most likely to be identified first
in sequence data (Fig. 5B). An important corollary is that it is not
feasible to quantify precisely the risk of a novel variant before a
proportionate response is needed (Fig. 5A). Given the humanitar-
ian, societal, and economic impacts, a public framework on how
to make containment decisions given incomplete epidemiological
information is urgently required. Without prior agreement, any
future variant emergence events will almost certainly pose the
same antagonisms and failures witnessed with Omicron.

Methods
Data
Data on the variant membership metadata for United States
and England for SARS-CoV-2 sequences were downloaded from
nextstrain.org on 2022 February 4 (44). Sequences were subsam-
pled for each state from the dataset generated by the CDC’s
SPHERES consortium (https://www.cdc.gov/coronavirus/2019-n
cov/covid-data/spheres.html). Variant membership data for se-
quences from England were also downloaded from nextstrain.org,
subsampled from the open dataset sourced from GenBank (45).
Epidemiological data for England (including time series of daily
confirmed cases) are collated and made publicly available by the
UK government (https://coronavirus.data.gov.uk/). Data for the
percentage of reported cases that were sequenced and shared in
the previous 90 days were downloaded from GISAID on 2021 De-
cember 16. Alpha variant incidence in the United Kingdom was
reconstructed by weighting the daily confirmed cases by the Eng-
land Alpha variant frequency estimate (see below).

Variant frequency estimates
Variant frequencies through time were estimated from the se-
quence metadata for each US state and England individually and
required two steps. First, for each variant a, the time-varying
scaled prevalence, Ka(t), was found using kernel density estima-
tion (KDE) on the time series of sequence sampling dates for all
sequences of the variant in the given location. Second, the vari-
ant frequency was calculated from the scaled prevalances, fa(t) =

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/spheres.html
https://coronavirus.data.gov.uk/
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waKa(t)/
∑

awaKa(t), where wa is the total number of samples for
variant a from the location.

Stochastic transmission model
At the core of our analysis is a stochastic spatial Susceptible–
Exposed–Infected–Recovered–Vaccinated (SEIRV) model that
models the spread of a variant from its point of origin to other
locations. To account for demographic stochasticity (crucially
important during the early stages of the emergence of a novel
variant), we formulated our model as a continuous-time discrete-
state space Markov jump process. Following the standard SEIR
model scheme (46), the population at each spatial location
j is subdivided into five compartments, with Sj, Ej, Ij, Rj, and
Vj denoting the number of individuals who are susceptible,
exposed, infected, recovered, and unexposed vaccinated, respec-
tively. Throughout this paper, we assumed a short latent period
1/σ = 2 days [see (47)] and infectious period 1/γ = 7 days [see
(48)]. We assumed that the protection against infection with the
variant conferred by vaccination and prior infection is εV and εR,
respectively. Following Kurtz (49), the dynamics can be encoded
in a system of stochastic equations. In the interests of space, the
full stochastic model is given in Section S1 of Supplementary
Material. If the incidence of the variant is high in location j, then
the stochastic dynamics can be approximated by a system of
ordinary differential equations (49),

dSj

dt
= −λ j (t)Sj, (2)

dEj

dt
= λ j (t)(1 − φ j (t))Nj − σEj, (3)

dIj

dt
= σEj − γ I j, (4)

dRj

dt
= −(1 − εR )λ j (t)Rj + γ I j, (5)

dVj

dt
= −(1 − εV )λ j (t)Vj, (6)

where λj(t) is force of infection experienced by susceptible individ-
uals in location j, given by

λ j (t) =
∑

i

βci, j

Nj
Ii(t), (7)

with β denoting the transmissibility of the variant and ci, j the spa-
tial contact probability—the proportion of contacts infectious in-
dividuals in i have with individuals in j. For our two-population
network, the contact probability ci, i is given by ci, i = 1 − ci, j. This
parameterization ensures that the basic reproductive number of
the variant, R0, is R0 = β/γ regardless of ci, j. We have also intro-
duced φj(t), the average immune protection in population j to in-
fection with the variant:

φ j (t) = 1 − Sj (t) + (1 − εV )Vj (t) + (1 − εR )Rj (t)

Nj
. (8)

As our analysis depends only on the composite quantity φj, we do
not consider explicit values for the underlying model compart-
ments (Sj, Vj, and Rj) and protection strength parameters (εV and
εR).

Modeling spatial spread of variants
Starting from a spatial stochastic transmission model, we derived
analytical results for the statistics of successive viral exportation
events. Our focus is on the early stages of the spread of a variant
from its origin location, i. The cumulative number of imports in

the destination, Qj(t), is given by a counting process (29),

Qj (t) = YQ
j

(∫ t

0
γ R0ci, j (1 − φ j (s))Ii(s)ds

)
, (9)

where YQ
j (u) is a Poisson process and Ii(t) is the number of infec-

tious individuals in the origin at time t. To contextualize Eq. (9), the
expected cumulative number of imported infections, E[Qj (t)] =∫ t

0 γ R0ci, j (1 − φ j (s))Ii(s)ds, is equal to the integral of the first term
on the right-hand side of Eq. (3) when secondary transmission in
j is neglected. The expected number of importations in j caused
by an infectious individual in i, Ri, j, is given by Ri, j = R0ci, j(1 − φj).
Using Eq. (9), we derived probabilistic expressions for the timings
of imported cases, allowing us to (i) perform statistical inference
on importation data for arbitrary epidemic dynamics in the origin,
and (ii) calculate the expected interarrival time between imported
cases as a function of R0 and ci, j in the case of exponential growth
in variant incidence in the source population, Ii(t) = Ii(0)eαit with
rate αi ≈ γ (Ri, i − 1), where Ri, i = R0(1 − ci, j)(1 − φi) is the local
reproductive number in i (see Section S2 of Supplementary Mate-
rial for full mathematical details). For clarity, at places results are
presented in terms of the doubling time, t2 = ln (2)/αi.

Modeling the identification of variants
We derived a mathematical expression for the probability of mak-
ing d observations of the variant in the origin location before
it causes n imported infections in location j. After dO cases of
the variant are detected, the variant is identified and potentially
contained (see Section S3 of Supplementary Material). We first
present the derivation of our results for a general monitoring pro-
cess, and then consider two specific data streams: random infec-
tion sequencing data and mortality data.

We assume that the monitoring effort captures a fraction of
variant infections, pO. As with the number of exported infections,
the number of detected variant infections, Di(t), is given by a
counting process,

Di(t) = YD
i

[∫ t

0
ds

∫ s

0
ds′ pOγ Ri,iK(s − s′ )Ii(s′ )

]
, (10)

where YD
i (u) is a Poisson process, K(s − s′) is the distribution of lags

between infection and observation, and Ri, i is the local reproduc-
tive number defined above.

Using Eqs. (9) and (10), we derived expressions for the proba-
bility that the variant is identified before any infections are ex-
ported. If the incidence is growing exponentially in the origin,
Ii(t) = Ii(0)eαit , then the number of infections exported before the
variant is identified follows a negative binomial distribution with
probability mass function f(n; dO, q), where q is given by

q = κO

κO + κE
, (11)

with κO = pOm(αi)Ri, i and κE = Ri, j being the rates at which infec-
tions are detected and exported, respectively. The discounting fac-
tor m(αi) is determined by the detection delay distribution and the
origin epidemic growth rate, αi. The probability the variant is iden-
tified before any cases are exported is given by P0 = f (0; dO, q) =
qd

O. For details on the derivation and parameterization of the se-
quencing data and mortality data monitoring strategies consid-
ered in the paper (see Section S3 of Supplementary Material).

Simulation algorithm
Numerical simulations of the SARS-CoV-2 transmission model
were performed using the Euler Multinomial algorithm (50). The
algorithm simulates a discrete time approximation to the con-
tinuous time stochastic SEIR model (analogous to the Euler
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forward algorithm for solving ordinary differential equations), ap-
propriate for efficient simulation of stochastic dynamics in large
populations. Simulations were performed using a timestep of
0.01 weeks.
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