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Abstract: The reinforced concrete structures that support transport, energy and urban networks
in developed countries are over half a century old, and are facing widespread deterioration.
Geopolymers are an affordable class of materials that have promising applications in concrete
structure coating, rehabilitation and sensing, due to their high chloride, sulphate, fire and freeze-thaw
resistances and electrolytic conductivity. Work to date has, however, mainly focused on geopolymers
that require curing at elevated temperatures, and this limits their ease of use in the field, particularly in
cooler climates. Here, we outline a design process for fabricating ambient-cured fly ash geopolymer
coatings for concrete substrates. Our technique is distinct from previous work as it requires no
additional manufacturing steps or additives, both of which can bear significant costs. Our coatings
were tested at varying humidities, and the impacts of mixing and application methods on coating
integrity were compared using a combination of calorimetry, x-ray diffraction and image-processing
techniques. This work could allow geopolymer coatings to become a more ubiquitous technique for
updating ageing concrete infrastructure so that it can meet modern expectations of safety, and shifting
requirements due to climate change.

Keywords: concrete repair; geopolymers; alkali-activated materials; coating thickness; ambient
curing; shrinkage; efflorescence; cracking; water transport

1. Introduction

Coating technologies are an effective means of protecting concrete structures from chemical attack
and rebar corrosion. Inorganic coatings in particular have been widely applied as anticorrosive
and decorative materials for concrete and steel structures [1–4]. These materials show a high
long-term durability even under acid and alkali attack and at elevated temperatures [5]. Emerging
solutions for concrete protection based on alkali-activated materials, here referred to as geopolymers,
show rapid setting and hardening, excellent bond strength and durability, low chloride permeability
and high freeze-thaw and chloride resistances [5–23]. Geopolymers also possess an electrolytic
conductivity, which can allow them to be simultaneously used as skin-sensors for structural health
monitoring [24–28].

Regardless of the application, a good coating will be free of cracks and defects. Integrity is
an ongoing issue regarding the development and practical application of geopolymer coatings.
Some common concerns include cracking due to shrinkage, changes to setting times and
efflorescence [8,29,30]. These issues are particularly acute when geopolymers are used in field
conditions which are at the extremes of humidity or moisture scales.
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In this work, we aimed to develop high-quality, ambient-temperature-cured fly ash geopolymer
coatings. We wished to achieve this with minimal additional processing steps (such as fly ash
grinding or the use of additives), so as to minimize manufacturing costs and complexity. This was
challenging: geopolymers are typically cured at elevated temperatures to accelerate geopolymerisaton,
as rapid curing allows coatings to achieve a higher early-age strength [12,31–34]. This can make
geopolymers inconvenient to apply in the field, particularly in cooler climates. For this reason,
researchers have been looking into ambient temperature curing of geopolymers [14,31,32,35–37].
In particular, Somna [31], Temuujin [14] and others [38–40] ground fly ash particles to improve their
reactivity and promote room-temperature curing. Some researchers have studied the effects of calcium
rich additives, such as slag, on curing in ambient conditions [36,41–46], while others have studied
the effects of moisture [32]. These previous works have studied the ambient temperature curing of
fly ash geopolymers cast in moulds. Their aim was to deliver geopolymers that serve a structural
function. As such, they demonstrate high compressive strength and enhanced hardening; however,
at the expense of reduced workability and increased drying shrinkage [14]. The work presented here
is distinct, as we developed fly ash geopolymer coatings; thus, high workability and low shrinkage
were key requirements, in addition to the performance requirements for non-structural repairs stated
in the standard BS EN 1504-3:2005. Our primary objective in this work was to develop a non-structural
repair material that can be later developed for use as a sensor, as in [24–28].

The notable contributions of this paper are four-fold: (i) we present an affordable process for
ambient-temperature geopolymer synthesis that does not require additives or grinding; (ii) we outline
the influence of prolonged mixing times on coating quality (previous studies use short mixing times
under 10 min [31,32,37,47]); (iii) we study the influence of concrete substrate age on geopolymer
coating quality (previous work has studied coatings on mature concretes only [8,48]), and (iv)
perhaps most importantly, this paper provides a frank discussion of the challenges faced during
geopolymer development—we hope that researchers, especially those new to the field, will find this
discourse useful.

This paper begins with a description of geopolymer synthesis and the factors that influence
coating integrity in Section 2. The materials and procedures used for geopolymer synthesis in this
work, the testing methods and the analysis conducted are outlined in Section 3. Finally, results and
further discussion are presented in Sections 4 and 5.

2. Theory

2.1. Geopolymer Fabrication

Geopolymers form as the result of several reactions between an alkaline activator and inorganic
materials which are rich in silicon (Si), aluminum (Al) and oxygen (O). For an excellent introduction
and description of geopolymer systems, readers are directed to [49]. Typical inorganic precursors for
geopolymer synthesis include blast furnace slag, metakaolin and fly ash [33,49–51]. Geopolymers
derived from fly ash, used in this work, offer a few key advantages over other geopolymer precursors,
including:

• Higher workability, durability and strength: this is due to the lubricating and re-enforcing effect
of unreacted fly ash particles [6,30].

• Low cost: as fly ash is a by-product of coal combustion, it is cheap and available in large
volumes around the world [30]. While there is a looming shortage of fly ash for use as a concrete
additive [52], the availability for geopolymer coatings (a low volume application) is still high,
as one billion tons of fly ash are still produced annually worldwide in coal-fired steam power
plants [53].

The alkaline activator solution (L) used in this work was rather typical: a combination of sodium
hydroxide (SH) and sodium silicate (SS) [54]. The chemistry and resulting wet/cured properties of the
fly ash powder (A) geopolymer were mainly defined by [33,55]:
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1. The mass ratio, L/A;
2. The mass ratio, SH/SS;
3. The molarity of the SH (which typically ranges from 8–14 M).

While molarity can, to some extent, be selected based on safety considerations, the ratios L/A
and SH/SS should be selected to match the chemical composition of the fly ash. This is a significant
drawback for fly ash geopolymers, as: (i) fly ash composition can vary significantly between coal
plant sources; and (ii) unlike with Portland cement systems, there are no simple numerical methods
for geopolymer mix design, particularly for fly ashes [6,56]. The ratios used in this work, outlined in
Section 3, were found through a process of trial and error over a testing matrix, and on the basis of
literature findings, according to [47].

2.2. Factors Affecting Geopolymer Coatings on Concrete Substrates

Repair works, including coatings, aim to preserve or restore concrete structures [57]. The series
of standards EN 1504 define the requirements for repair procedures and the properties of repair
materials [58,59]. Geopolymers are physically compatible with concrete substrates in most of these
regards [60]. However, there are technical issues that are particular to geopolymer coatings on concrete
substrates, particularly those cured at ambient temperatures. Note that the issues outlined in the
following subsections are common across most geopolymer systems, not just those made with fly
ash precursors.

2.2.1. Shrinkage and Curing

For geopolymer coatings cured on concrete at ambient temperatures, shrinkage is the most
significant issue [61]. Shrinkage is defined as a reduction in the volume of the geopolymer because
of a loss of water: this is predominantly due to drying, but it can also occur when water is used up
during geopolymerisation [62].

Drying shrinkage is the result of a loss of water from the geopolymer’s capillary pores. This loss
of moisture causes the tension in the capillary pores to increase, resulting in a volume reduction in
the specimen. When geopolymer coatings cure, they undergo this shrinkage while simultaneously
binding to the underlying concrete substrate. The resulting confinement allows shrinkage strains
to cause tensile and shear stresses. If significant shrinkage occurs before the coating has adequately
cured, these stresses will exceed the strength of the geopolymer [63], leading to cracks and debonding,
that undermine coating integrity.

For concrete coatings, there are at least two major contributors to drying shrinkage, illustrated
in Figure 1. The first, affecting all geopolymers regardless of substrate, is that a low environmental
humidity encourages water loss through evaporation. Indeed, it is well known that drying shrinkage
can be reduced by curing geopolymers in hermetically sealed conditions [63,64]. However, the second
mechanism for water loss is the diffusion of water from the moist geopolymer layer into the drier,
porous, concrete substrate. Thus, control of the moisture content of the substrate is essential to control
cracking [65].

As both drying mechanisms are surface-area dependent processes, the edges of geopolymer
patches are particularly prone to cracking, as these edges can present an extra surface for evaporation.

One clear way of tackling this issue is to accelerate the curing rate of the geopolymer coating (and
this is why elevated temperatures are often used). Grinding fly ash particles to improve their reactivity
and allow room temperature curing, as in [31], may appear to be another solution; however, this can
in some cases lead to a higher shrinkage, due to the particle size being so fine that agglomerates
form during mixing, resulting in a lower reaction rate which increases shrinkage [66]. While we are
avoiding additives in this work, it is worth noting that plastic fibers can reduce shrinking and cracking,
especially for sealed curing conditions [64].
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Figure 1. Illustration of the main water loss mechanisms from geopolymer coatings on concrete substrates.

2.2.2. Adhesion, Workability and Setting Time

One of the most common ways to apply cementitious coatings to concrete in the field is by
pumping and spray coating. There have also been lab studies that demonstrated (as is shown in this
work) the application of geopolymer coatings with a trowel [7], and even some that applied coating
using manufacturing methods such as three-dimensional (3D) printing [26]. Regardless of the method
used, one must consider the interplay between a geopolymer’s adhesion to concrete, its workability
and its setting time (and by extension, its behavior during curing and shrinkage). Geopolymers are
highly tuneable materials, but the majority of mixes will display:

• High surface tension: this plays a key role in the ability of the materials to bind and stay bound
to substrates. A reduction in surface tension may, in some cases, be required to ensure good
adhesion [67]. With respect to geopolymer microstructure formation, the water to solid ratio can
significantly affect the process of geopolymerization, and hence the properties of coatings, such as
their workability and adhesion [5].

• Thixotropic Bingham plastic fluid behavior: most geopolymers show history-dependent
rheological behavior, and can be kept in fluid form if subjected to constant shearing [13,68,69].
Their rheological behavior can also be tuned by altering the molar concentration of the sodium
hydroxide and the ratio of silicate to hydroxide solutions [70].

• Setting times that are strongly dependent on chemical composition: the setting time of
geopolymers can range from minutes to hours and depends on geopolymer composition.
Setting times can be reduced by lowering Si/Al ratios, or by increasing calcium (Ca) content [61].
For systems with high Si/Al ratios, polymerisation is more likely to occur among silicate species;
however, when Si/Al ratios are lowered, polymerisation is more likely to occur between aluminate
and silicate species. As condensation among silicate species is slower than that between aluminate
and silicate species, setting is delayed with higher Si/Al ratios [71].

The impact this has on coatings is that it can be challenging to independently tune adhesion,
rheology, setting time and shrinkage behavior, as the properties of the system are highly interdependent.
Therefore, previous work conducted at elevated temperatures may not always map onto efforts to
produce geopolymer coatings that cure in ambient conditions.
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2.2.3. The Concrete Substrate

Previous studies have found that the adhesion of coatings more generally is strongly influenced
by the roughness of the substrate surface, its water content and the mix composition of the coating
material [72–78]. Rough surfaces on concrete substrates are preferred as greater bond performance
is ensured [76,79]. Among the available surface preparation methods, a high bond strength can be
achieved with sand-blasting and wire brushing [72]. Morgan [80] states that the degree of roughness
and means of roughening both affect long-term performance. Before applying the geopolymer repair
material Zanotti et al., for example, roughened the surface using the sandblasting technique [81].

Some authors [80,82,83] have shown the important role of the substrate during
concrete-to-concrete repair work. A significant mismatch between substrate and repair concrete
is a notable consideration if the repair is to resist the stresses induced by dimensional, mechanical
and durability incompatibility. The surface of the substrate should have an open pore structure, to
allow the absorption of the repair material into the substrate’s pore structure, thus enhancing the
bonding mechanism. In geopolymer coatings, this is at odds with the requirements for reducing
drying shrinkage, as an excessively dry substrate with open pores may absorb too much water from
the coating [84].

Today, opinions diverge about the most appropriate practice when coating and repairing
concrete substrates. Even between international codes of practice, recommendations are contradictory.
The AASHTO-AGC-ARTBA Joint Committee recommends a dry surface for concrete, except on dry
and hot summer days, while the Canadian Standards Association Standard A23.1 recommends wetting
the surface for at least 24 h before casting the new concrete [72]. In some studies, saturated but surface
dry conditions were considered to be the best solution [84].

2.2.4. Efflorescence

A final issue, which can be particularly prevalent in ambient temperature cured geopolymers,
is efflorescence. Efflorescence is the formation of white salt deposits, and it can unfortunately occur
during attempts to manipulate geopolymer shrinkage, adhesion, workability and setting time. It has
been found that efflorescence is due to many factors [30]: wet conditions, the reactivity of raw materials,
the alkali metal type and reaction conditions. In particular, a high alkali content in the activator solution
causes efflorescence in partially wet conditions [29,85]. Thus, geopolymer efflorescence is common
at high humidity, and this is important because humidity cannot always be controlled in the field.
Ambient temperature curing also makes efflorescence more likely, because the low temperatures reduce
the dissolution rate of the fly ash by the alkaline solution. Therefore, any excess alkaline solution is
more likely to induce crystallization on the surface [14].

3. Materials and Methods

3.1. Materials

In this work, geopolymers were synthesized from low calcium fly ash. According to standard
BS EN 450, the fly used was class B for Loss On Ignition (LOI) of 2.0% to 7.0%, and category S for
fineness (no more than 12% retained on the 45 micron sieve). Under US notation, according to ASTM
C 618-19, the fly ash used in this work would be considered class F. The chemical compositions of the
fly ash used is given in Table 1, along with the information on the source of the ash and its median
particle size, measured using a Mastersizer 2000. Figure 2 shows the particle size distribution of the fly
ash. The median value in Table 1 is the D50 or d (0, 5) value, defined as the intercept for 50% of the
cumulative mass.
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Table 1. Composition and properties of the fly ash used in this work.

Source West Burton Power Station, Lincolnshire, England (UK)

Supplier CEMEX

SiO2 52.70

Al2O3 21.70

Fe2O3 7.10

CaO 4.10

Loss on ignition 4.20

Na2O 1.10

K2O 2.50

SO3 0.90

MgO 1.80

Total phosphate 0.58

Free CaO 0.10

Median particle size, µm 10.6
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The alkaline activator used in this work was made by combining 10 wt% of 10 M sodium
hydroxide solution (NaOH) and 24 wt% sodium silicate solution (Na2SiO3), with the NaOH/ Na2SiO3

ratio equal to 0.4. This is in accordance with our previous work [28] based on fly ash geopolymer
coatings as skin sensors for concrete. The sodium silicate solution composition was made by 8.5 wt%
Na2O and 27.8 wt% SiO2, in distilled water. The Na2O and SiO2 concentrations of the alkaline
activator were 12.7 wt% and 19.9 wt%, respectively, and the remaining 67.4 wt% was deionized water.
The activator was made 24 h prior mixing, to allow the heat of any exothermic reaction to dissipate.

3.2. Methodology

3.2.1. Geopolymer Synthesis

The geopolymer binder was fabricated by combining the fly ash with the activator solution, with a
Liquid/Solid ratio (L/S) = 0.5. According to Nedelikovic et al., L/S = 0.5 improves workability, without
having a significant effect on compressive strength [86]. A higher quantity of liquid also produces a
less viscous slurry, which can penetrate more easily into the surface of a dry concrete substrate [87].

Figure 3 summarizes the steps taken to mix and apply geopolymers. The mixing procedure
consists of gradually adding the fly ash powder into a bowl containing the alkaline solution while
continuously mixing (Figure 3a–c). Samples were either mixed manually (Figure 3b), or with an
automatic mixer at 500 min−1 (Figure 3c,d). Geopolymer binders were mixed for between 10 min and
1 h before being applied to concrete substrates with a trowel (Figure 3e).
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3.2.2. Application to Substrate

Two thicknesses (here defined as m) of geopolymer coatings were applied to concrete substrates
in this work. Thin coatings were around m = 1 mm, and thicker coatings were m = 3 mm.
These thicknesses were chosen in accordance with the requirements for sensing [28] and the
requirements for non-structural repairs outlined in standard BS EN 1504-3:2005. Structural repair
coatings typically require much higher thicknesses (15 mm or 50 mm) [88].

To study any potential effects of the concrete substrate on coating integrity, we applied geopolymer
coatings to concrete samples with varying age ranges:

• Newly cast, or “young” concrete samples, left to cure for 1–5 months;
• Intermediate-aged concrete samples, 5–12 months of curing;
• Old concrete samples, over 1 year of curing.

Our hypothesis was that the changing pore structure of the concrete substrate could affect
moisture transport from the geopolymer layer, and thus coating integrity. As concrete matures,
hydration progresses and capillary pore size and porosity decrease from the production of C-S-H.
Bentz et al. commented that when the volume fraction porosity has been reduced to approximately
0.20, the pore space is no longer interconnected throughout the paste and that water transport is
restricted; however, the small gel pores (<10 nm in diameter) remain filled at relative humidity (RH)
values of 50% and higher [89,90]. As a greater percentage of filled pores results in less capillary suction,
the more mature concrete might be expected to drain less water than the newer samples.

3.2.3. Concrete Substrate Roughness

The surface roughness of each concrete substrate used was measured by 3D laser scanning
(using a Micro Epsilon Scan Control 2700–100, an exposure time of 1 msec, 56 profiles per second,
and 1600 buffered profiles). The values for surface roughness were determined by analyzing the root
mean square deviation of the point cloud from a mean plane. Typical values of surface roughness for
concrete samples are shown in Table 2. Values all correspond to the smooth surface that one would
expect from untreated concrete [91].

Table 2. Surface roughness values for each type of concrete used.

Age of Concrete Young Intermediate Old

Surface roughness (mm) 0.097 0.053 0.091

3.2.4. Curing Conditions for Geopolymers

Geopolymer specimens were batched and placed within one of two curing conditions,
summarized in Table 3. Both patches were cured at 20 ◦C, and the relative humidity of batch 1
and batch 2 were 50% and 95%, respectively. Temperature and relative humidity (RH) were measured
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in lab conditions and shown to be relatively stable for batch 1; however, they were not tightly controlled.
Meanwhile, batch 2 was cured in an environmental chamber in controlled conditions.

All geopolymer specimens in the batches were left to cure for 28 days. While geopolymers do
tend to cure much faster than Portland cement mixes, we opted to use a prolonged curing duration in
this work to ensure that patches were fully cured and stabilized in ambient conditions.

Table 3. Curing conditions of geopolymer coatings, divided in two batches.

Batch Curing Conditions Temperature ◦C Curing Time (days) Average RH %

1 Laboratory bench 20 ± 2 28 50

2 Environmental chamber 20 ± 1 28 95

3.2.5. Analysis Methods

Several tests were carried out on the fly ash powder and the geopolymer binder to characterize
their properties, before mixing, during curing and after curing. These are summarized in the
following sections.

3.2.5.1. Vicat Needle Test

The setting time of geopolymer mixes was measured using the Vicat needle test, following the
procedure outlined in BS EN 196, part 3 [92]. This test was conducted in order to define a suitable time
to apply the geopolymer onto the concrete substrate, and to define the shelf life for our geopolymer
mixes. While the Vicat needle test is a well-accepted and easy-to-use standard method used within
ordinary Portland cement concrete mix design, it is less accurate than modern calorimetric and viscosity
measurements and so results should be interpreted with caution.

3.2.5.2. Isothermal Calorimetry

A thermal analysis, together with an evaluation of setting time using the Vicat needle test, can be
used to define an optimized time for applying geopolymer coatings to concrete substrates. In this work,
an isothermal calorimeter (Calmetrix, I-CAL 4000 HPC) was used to measure the temporal dependence
of the heat produced by the exothermic reactions occurring in the geopolymer from immediately after
mixing up to 3 days. Tests were conducted three times for each geopolymer mix tested, with the
averaged heat curve presented in the results.

3.2.5.3. X-Ray Diffraction Analysis

X-ray diffraction (XRD) analysis was carried out on samples of fly ash, on geopolymer layers
and on geopolymer coatings, which had demonstrated efflorescence. All XRD data was collected
using a Bruker D8 Advance instrument. Data for Rietveld refinement was collected in Bragg-Brentano
geometry from 12◦–75◦ 2theta with an increment of 0.02 ◦/s and a step time of 0.8 s. using a divergence
slit of 0.23◦. A Ni β filter was placed in the incident beam path. The sample was rotating at 30 rpm
and a knife edge collimator was used to reduce air scattering.

The efflorescence was analyzed intact on a sample of geopolymer. The efflorescence could not be
easily removed for conventional powder analyses and was analyzed in situ in the XRD using a Goebel
mirror. Data was collected from 10◦– 60◦ 2theta with an increment of 0.02 ◦/s and a step time of 8 s.
Quantitative analysis was carried out using the internal standard method by adding 10 wt% silicon
to the ground powder samples, and TOPAS software. ICSD structure files used in the refinement are
listed in caption of Figure 15. The method proposed by Williams and van Riessen [93], which uses
the intensity ratio of the 210 and 120 reflections (I210/I120) of mullite to estimate the mineral’s Si/Al
ratio, was used to choose the most appropriate structure file to include (ICSD collection code 66449) in
the TOPAS refinement. They showed a linear relationship between x in the mullite general formula
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(Al4+2xSi2-2xO10-x) and the 210/120 reflection intensity which was used here to calculate x = 0.28 for
the Cemex fly ash.

3.2.5.4. Compressive Strength

Compressive strength tests were conducted with a small loading cell with the speed of 2 mm/min
on geopolymer cubes of side 30 mm. Tests were conducted after 1 day, 2 days, 3 days, 4 days, 7 days,
14 days and 28 days. The intention here was to demonstrate the evolution of strength, rather than
strictly comply with strength-testing standards.

3.2.5.5. Visual Inspection and Quantification of Cracks

A visual inspection was often enough to provide a binary “yes/no” assessment of whether a
geopolymer coating had cracked after curing. However, to quantify the relative levels of cracking
between specimens in a less subjective manner, we developed a simple image processing technique
outlined in Figure 4.
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Figure 4. Steps of the image processing method.

The original sample images were taken using a DSLR (Digital Single-Lens Reflex) camera with a
set distance between the sample and the focal lens. The image was then cropped so that all samples
produce images of the same size for ease of comparison. The color images obtained were converted to
grayscale images. This eliminated colors during further processing, while preserving the intensity of
each pixel in the image with a grayscale level.

In order to ensure that the cracks are the darkest part of the image, a pre-processing step of
intensity adjustment was required. The bottom 1% and the top 1% of all pixel values were saturated to
increase the contrast of the output image. By identifying and intensifying the pixels below the mean
grayscale value in the image, a clearly distinguished foreground of cracks was obtained, as shown in
Figure 5.

During the image acquisition step, the inconsistent amount of light in the background was
difficult to avoid. In order to correct for this non-uniform illumination, adaptive binarization was used.
By applying Bradley’s method, each pixel in the integral image was compared to the average grayscale
level of its surrounding pixels and set to a binary value accordingly [94].
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Due to the special characteristics of cracks in our samples, morphological operations and dot
detection could be used to reduce noise that will interfere with the final quantification of cracking [95].
One pixel with more than four connected neighborhoods is seen as one element. By removing elements
that contained fewer than 10 pixels, more noise could be eliminated from the image. Dot detection was
used, since most of our samples had dark bubbles that were difficult to distinguish from real cracks in
the previous step. By utilizing the circular Hough transform, the round objects could be identified
and eliminated from the calculation. The Hough method is one of the standard methods for image
recognition [96]. The images after morphological operations and dot detection are shown in Figure 6.
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Figure 6. Binary images: (a) morphological operation; (b) dot detection.

The final step was to calculate the percentage of dark pixels (cracks) over the area of the whole
image, yielding a quantified and less subjective result for the levels of cracking in each sample.
This result was provided as a percentage of the image that showed cracks.

4. Results and Discussion

4.1. Compressive Strength

The evolution of the compressive strength of the geoploymer is shown in Figure 7, with a
non-linear fit obtained as outlined in [97]. The mean value of compressive strength for 28 days met
standard BS EN 1504-3:2005 for a non-structural class R1 repair; however, there was a growing degree
of strength variability in samples as they cured. As expected, the evolution of strength was notably
slower than for geopolymers cured at elevated temperatures.
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Figure 7. Compressive strength values for geopolymer cubes as a function of time. Error bars show the
standard deviation, taken over three cube tests at each time point.

4.2. Coating Thickness

The main finding of this investigation was related to the thickness of the geopolymer coatings
applied onto the concrete specimens. These results are shown in Figures 8 and 9 for 1 mm thick and
3 mm thick coatings, respectively. Coatings with a thickness of m = 1 mm (thin coatings), showed no
cracks and a good layer integrity, regardless of the age of the concrete substrate, the mixing time or
the curing conditions. The algorithm used to detect surface quality gave an average value of 0.001%
defects for all samples. On the other hand, geopolymer coatings with a thickness of m = 3 mm (thick
coatings) tended to show cracking. The extent of the cracking depends on the mixing time, but was
independent of the age of concrete and the curing conditions. The percentage values generated by the
crack detection algorithm are shown inset in each image in Figure 9.

This finding was initially surprising: the lower surface/volume ratio of the 3 mm thick coating
should allow the geopolymer to retain more water. The result was also at odds with previous work
by Zhang et al. [8], who concluded that increasing the thickness of the coatings from 3 mm to 5 mm
reduced shrinkage. On the other hand, according to [78], the overall shrinkage of repair material
increases with the repair volume, and this same result was found for concrete [98] and cementitious
materials in general [99]. The explanation for our results could be that thicker layers show a higher
drying shrinkage, since water is well-retained and evaporation takes place more gradually after the
geopolymer matrix has slightly hardened (therefore generating stress). The water absorbed in thinner
layers, meanwhile, is more likely to evaporate during the first few hours, while the geopolymer is still
in a plastic state, and prior to any significant hardening.
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Figure 9. Images of 3 mm thick geopolymer coatings on concrete. Results are shown as a function of
geopolymer mixing time, M; relative humidity during curing; and concrete substrate age. All images
shown cover a 40 mm × 40 mm area on the sample. The numbers shown inset in each image are the
crack percentages generated by the quantification algorithm.
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4.3. Setting and Mixing Time

The thicker coatings in Figure 9 show a relationship between coating quality and mixing time:
coatings mixed for 10 min show numerous air bubbles on the surface (black spots). These could be a
consequence of unreacted fly ash particles. When mixing times were increased to 1 h, there were fewer
air bubbles on the surface and no black spots (fewer unreacted particles). Cracks in thick coatings
appeared to be more extensive when the mixing time was longer. It could be that the agglomerates of
unreacted fly ash particles acted as ‘micro aggregates’ [89] for the coating, thus enhancing the strength
of the coating. However, this hypothesis will require testing in future work.

The reason for cracking in these coatings more generally can be explained using Figure 10,
which shows the rate of heat release from the geopolymer (obtained using isothermal calorimetry
analysis) over 4 days. Rapid heat release occurs within the first hour after mixing. A similar result
is seen in [86], for the same liquid to solid ratio. According to [100], heat release can be associated
with more shrinkage and cracking in coatings. For an ambient-cured geopolymer, mixing for 1 h is
preferable to mixing for 10 mins, as it allows more heat release to happen within the mixing bowl,
it allows water to be used in geopolymerisation (rather than being lost to the substrate) and it allows
unreacted fly ash particles to dissolve.

Figure 11 shows the cumulative heat release (calculated through cumulative trapezoidal numerical
integration of Figure 10). These values grew more gradually than those found in previous work [86],
and demonstrated that the reactions occurring in the ambient-cured geopolymer are more gradual.
This hypothesis is also supported by the slower strength development shown in Figure 7.
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logarithmic scale.

Finally, a Vicat Needle test produced the setting times shown in Figure 12. It appears that mixing
for longer durations (1 h, as opposed to 10 min) reduced the initial and final setting times, and this
also supports the idea that a further extent of geopolymerisation can occur during prolonged mixing.
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and M = 60 min.

4.4. Concrete Age

The results in this work showed that the age of the concrete substrate had little to no influence on
the integrity of the coating layer: the coating thickness and the mixing time of the geopolymer were far
more important factors. However, this does not rule out the effect of concrete age on water absorption
from the geopolymer layer in all cases, as the rate-of-hydration and pore-size-change within concrete
substrates are strongly dependent on the concrete’s water/cement ratio, the cement particle size and
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the curing conditions. Nevertheless, this result, together with the independence of the integrity of
the coatings on the curing RH levels between 50% and 95%, was encouraging from the standpoint of
application: geopolymer coatings can be applied to both new and old concrete assets, and at a wide
range of humidity ranges.

4.5. Efflorescence

The final issue faced in ambient curing of geopolymer coatings on concrete was efflorescence.
The samples in batch 2 of Table 3 (high humidity curing) showed, in most cases, evidence of white
crystals on the surface 3-8 weeks after application and curing. Efflorescence is a crystallization process,
so its extent can change from one sample to the other, but the high humidity increased the propensity
for it to occur. Figure 13 shows that efflorescence can be accompanied by the presence of cracking;
however, it is likely that efflorescence and cracking are both symptoms of moisture transport within
the sample, mainly due to the drying process.
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Figure 13. An example of geopolymer coating in batch 2, which demonstrated efflorescence.

To further analyze this efflorescence, the samples with efflorescence crystals were analyzed
using XRD, as described in Section 3. The results of the XRD analysis of geopolymer layers
showing efflorescence are shown in Figure 14. Solid black lines below the pattern are gaylussite
(Na2Ca(CO3)2·5H2O), dotted lines are quartz and dashed lines are mullite. Background has been
removed as the main feature of interest is the crystalline salt. The data was smoothed using the moving
average method with a span of 9.

The results reflected the literature findings discussed in Section 2.2.4. Excess Na2O is mobile and
at the surface of the coating can react with atmospheric CO2 to form Na2CO3 phases. In our case,
the XRD analysis showed that the reaction product was gaylussite—Na2Ca(CO3)2·5H2O. This result
suggests that Ca may have been dissolved from the concrete substrate or the CaO present in the ash,
forming gaylussite at the geopolymer surface. However, the CaO content of the ash is low which
is consistent with the lack of visible C-S-H formation in Figure 15 and suggests that Ca more likely
came from the concrete substrate. An amorphous halo was present from approximately 25–40 degrees
2theta, consistent with the formation of N-A-S-H, similar to [101–103].

Figure 15 shows the XRD patterns for a sample of fly ash (lower diffraction pattern), and for a
sample of geopolymer obtained from the fly ash (upper diffraction pattern).
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Figure 15. XRD pattern of geopolymer sample of batch 2, Table 2 (upper diffraction pattern), and of
the fly ash (lower diffraction pattern). Phase identification starting from the top and moving down:
dashed lines are mullite (ICSD collection code 66449), solid lines are quartz (ICSD collection code
100341), dotted lines are magnetite (ICSD collection code 82237), lowest dot-dash lines are hematite
(ICSD collection code 82137). The star at 29.4 o2theta is a gypsum reflection (ICSD collection code
15982). The pattern shows an amorphous halo from approximately 20◦–35◦ 2theta, similar to [100].
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The X-ray diffraction (XRD) spectrum of the fly ash and of the geopolymer obtained from the fly
ash were acquired using the method detailed in Section 3.2.5.3. Identification of gypsum is tenuous as
the peak identified is very small and the other reflections between 12–75◦ 2theta overlap with more
major phases. While the XRD pattern for magnetite is almost identical to maghemite (another iron
oxide), the phase present was assumed to be magnetite, as it is more common in UK fly ashes [33].
Using Rietveld refinement (TOPAS v5, Bruker) on samples spiked with an internal standard (10 wt%
silicon) the crystalline phases and the amorphous content have been quantified for both the fly ash
and the geopolymer as presented in Table 4 (fly ash (a) and geopolymer (a)).

The identification of amorphous content in geopolymers is not trivial as no ‘pure’ X-ray
amorphous phase is formed without the presence of crystalline minerals. Recent work by Scarlett
and Madsen [104] has shown that the internal standard method can overestimate the amorphous
content of samples where there is broad range of MAC (micro-absorption coefficient, cm2/g) values
in the sample. They [104] worked on purpose made samples of controlled composition and particle
size and discovered that the PONKCS method (Partial Or No Known Crystal Structure) produced
the most accurate estimation of amorphous content. However Sun and Vollpracht [105] compared
the amorphous content of fly ash as determined by PONKCS and the internal standard method
and achieved virtually identical results (72.9 wt% and 73 wt% respectively) with the two methods.
The mass absorption coefficients of the phases present in the fly ash and geopolymer, as taken from
the TOPAS refinement are: Quartz (44.6 cm2/g), mullite (32.7 cm2/g), gypsum (64.7 cm2/g), hematite
(214.3 cm2/g) and magnetite (221.3 cm2/g). The outliers are the iron phases but they are also present
in small quantities in the fly ash as shown by the XRF composition given in Table 1. The amorphous
content of fly ash is described by Williams and van Riessen [93] as 40–80% and it often found to be over
60% [105–107] which fits with our results. For comparison, diffraction patterns were collected again on
separate but identical samples. In the second collection, the samples were not rotating, a knife edge
collimator was not used, the divergence slit was 0.3◦ and the Ni β filter was placed in the diffracted
beam path. Results from this refinement are labelled as b.

Table 4. Composition quantified using TOPAS (v.5 Bruker) for a sample of fly ash and a sample
of geopolymer from batch 2 of Table 3. The values for fly ash (a) and geopolymer (a) have been
determined from a sample rotating at 30 rpm and using a knife edge collimator. The values for fly ash
(b) and geopolymer (b) have been determined from a sample which was not rotating and a knife edge
collimator was not used. Rwp is the weighted profile R factor.

Sample
Phase Content

Mullite [%] Quartz [%] Magnetite [%] Hematite [%] Amorphous content [%] Gypsum [%] Rwp

Fly ash (a) 13.74 2.30 1.24 0.67 80.02 1.97 3.9

Geopolymer (a) 9.18 2.09 0.89 0.39 86.15 1.30 3.0

Fly ash (b) 15.68 3.48 1.25 1.34 76.65 1.36 2.4

Geopolymer (b) 12.13 2.75 1.05 0.80 82.12 1.20 2.2

5. Further Discussion and Future Work

This work demonstrated that fly ash geopolymer coatings can be cured at room temperature
without any additional grinding steps or additives, provided some conditions can be met on site.
While ambient-cured coatings did take longer to cure, they were touch-dry within one day, and were
strong enough to form a non-structural class R1 repair within 28 days. Accelerants (such as heat or
calcium additives) may be required if the application demands more rapid strength development.
The main factors that affected coating integrity were related to the retention of water in the geopolymer
during its prolonged curing at ambient temperatures. These were:

• Coating thickness: coatings with thickness < 1 mm showed no cracks, regardless of mixing times
and RH levels between 50% and 95%. Coatings with higher thickness showed cracks, the extent
of which was dependent on the mixing time;
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• Mixing time: for our mix, the optimal mixing time was 1 h, to allow the main extent of
geopolymerisation reactions to occur without loss of water or thermal stress, and to ensure
that only few fly ash particles were unreacted. Optimizing mixing time can allow geopolymer
coatings to overcome water loss induced cracking and to show a homogeneous surface without
voids and bubbles.

• Age of concrete: the results showed that coating integrity did not depend on concrete age. This is
an important consideration if geopolymer coatings and linings are to be applied to newly cast
concrete structures, and not only to old structures which need repair.

• Efflorescence: for low-temperature, but humid curing conditions (above 70% RH), efflorescence
was likely, as excess alkaline solution crystallized on the surface of the coating. Efflorescence was
less likely for relative humidities at or below 50%.

The challenge of ambient-cured geopolymer coatings is by no means easy to solve, due to the
several competing and interconnected reactions and water transport processes: as the geopolymer
cures, more N-A-S-H gel is produced, thus resulting in smaller pores, and in some cases in closed
pores, and this will change the permeability of the geopolymer and so the water transport inside the
geopolymer coating [108].

5.1. The Role of Coating Thickness

Coating thickness was found to play a role in coating integrity. The thickness of cementitious
coatings on concrete assets can play a direct role on their overall performance for their intended use.
Firstly, repairs require high strain capacity to resist strain, and subsequently, cracks [80]. Thicker
patches generate lower stresses under drying, therefore minimizing the chance of defects [109].
Patches low in volume are susceptible to high amounts of liquid loss when applied onto dry
concrete substrates, which in turn can affect cement hydration and their mechanical properties [65].
Furthermore, thin geopolymer patches have been mentioned to be more crack-prone in marine
applications than thicker coatings. However, humidity levels were also mentioned to play a role
as coatings of equal thickness showcased different behaviors for different exposure to seawater [8].
Thicker cement patches debonded at higher load values than thinner ones under axial loading [88].

The thickness of patches has also been reported to affect the sensing capabilities of cement-based
self-sensing coatings for loading applications. Baeza et al. reported that thinner patches had higher
sensing capacity [110], whereas Wang et al. stated that thicker patches gave a higher fractional increase
in resistance than thinner patches, which was attributed to greater crack propagation in thicker
patches compared to thinner ones [111]. While it is currently rather unclear which of the two provide
greater sensing capabilities, it can be assumed that the thickness of self-sensing coatings impacts
sensing capabilities.

5.2. Thermal Expansion and Bond Strength

Morgan [80] has stated that an ideal repair material should display a similar modulus of elasticity
and thermal expansion to the parenting substrate and that it should be compatible with the existing
structure (in terms of its adhesion strength, capillary water absorption, dilatation properties and
durability). The bond strength and thermal expansion of our ambient-cured mix are factors that still
require further investigation. As we are aiming to demonstrate a non-structural repair, for the time
being, measurements of elastic modulus are not required (according to BS EN 1504-3:2005).

5.3. Characterisation of the True SiO2/Al2O3 Ratio

The actual compositional ratio SiO2/Al2O3 depends on how much aluminosilicate precursor
has reacted and on the final product, since a link has been demonstrated between precursor type
characterization and extent of the reaction [112]. In order to have an idea of the SiO2/Al2O3 molar
ratio of the final geopolymer, a detailed characterization of the geopolymer sample after curing is
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required, as described in [112]. It is beyond the scope of this paper, but will be taken into consideration
within future work.

6. Conclusions

This paper has outlined the manufacture of ambient-cured geopolymer coatings for concrete,
without the use of additives. The most important consideration was the interaction between
water-transport processes and the geopolymerisation reaction processes responsible for strength
gain. While the geopolymer coatings took longer to cure than a thermally cured specimen, they remain
a promising choice for retrofitted concrete repairs, rehabilitation and sensing. Future work should
focus on solutions to the issues of efflorescence in humid environments, the influence of concrete
substrate water saturation, durability under exposure to a variety of environmental conditions and
should define methods for studying the relationship between coating thickness, shrinkage and integrity
after prolonged geopolymer mixing.
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