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Abstract: Therapeutic drug monitoring (TDM) of biologics—encompassing the measurement of
(trough) concentrations and anti-drug antibodies—is emerging as a valuable tool for clinical decision
making. While this strategy needs further validation, attention on its implementation into the clinic
is warranted. Rapid testing and easy sampling are key to its implementation. Here, we aimed
to evaluate the feasibility and volunteers’ perception of home microsampling for quantification
of adalimumab (ADM) concentrations in psoriasis patients. In addition, we compared lateral flow
testing (LFT) with enzyme-linked immunosorbent assay (ELISA). Patients participating in the SUPRA-
A study (clinicaltrials.gov NCT04028713) were asked to participate in a substudy where volumetric
absorptive microsampling (VAMS) was performed at home. At three time points, whole blood and
corresponding serum samples were collected for ADM measurement using an in-house ELISA. In
addition, the patients’ perspective on microsampling was evaluated via a questionnaire. LFT-obtained
ADM concentrations agreed very well with ELISA results (Pearson’s correlation = 0.95 and R2 = 0.89).
ADM concentrations determined in both capillary (via finger prick) and corresponding venous blood
VAMS samples correlated strongly with serum concentrations (Pearson’s correlation = 0.87). Our
preliminary data (n = 7) on rapid testing and home-based microsampling are considered promising
with regard to TDM implementation for adalimumab, warranting further research.

Keywords: psoriasis; biologics; therapeutic drug monitoring; lateral flow testing; microsampling

1. Introduction

The management of patients with moderate-to-severe psoriasis has changed dramati-
cally over the past years and has greatly benefited from the use of biologics, monoclonal
antibodies targeting specific components of the immune system [1]. The first class of
biologics comprises anti-tumor necrosis factor (anti-TNF) agents, including infliximab,
adalimumab (ADM), etanercept and golimumab, which remain widely used in psoriasis, in
addition to psoriatic arthritis and inflammatory bowel disease [2]. Although the efficacy is
superior compared to conventional systemic treatments such as methotrexate [3], real-world
evidence on effectiveness revealed primary and secondary non-responders [4–6]. Primary
non-responders are considered patients who do not respond or insufficiently respond to the
biologic, whereas secondary non-responders include patients who responded well initially,
yet lose clinical response over time. A variety of reasons exist for these observations, but
the exact mechanisms remain to be unraveled [7].

One explanation entails drug exposure, which is usually measured through the trough
(i.e., right before the next drug administration) concentrations in serum or plasma. To this
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end, a therapeutic window may be defined, making it possible to categorize patients as
‘underexposed’ or ‘overexposed’ (Figure 1).

Figure 1. Concept of therapeutic drug monitoring. Therapeutic drug monitoring as proposed in the
SUPRA-A trial: blood from the patient is sampled at trough as either whole blood (venipuncture or
finger prick). Adalimumab (ADM) concentrations can then be quantified by ELISA or lateral flow
testing (LFT). Based on the therapeutic window of ADM (dotted horizontal lines in graph) [8,9], the
patients’ trough levels can be categorized into three categories: supratherapeutic (above upper thresh-
old of window), optimal (within window), or subtherapeutic (below lower threshold of window).
Depending on the categorization, a management plan is set up by the physician and the dose admin-
istration can be adapted. In case of subtherapeutic levels, additional testing of immunogenicity may
be required to detect anti-drug antibodies (ADA). If ADA-negative, a dose increase (intensification)
may be needed. If ADAs are present, a treatment switch is recommended. Figure adapted from
Research Foundation—Flanders (FWO) grant proposal (T003218N). Abbreviations: ADA—Anti-Drug
Antibodies; Ctrough—serum trough concentration (i.e., drug concentration right before the next drug
administration.

The use of the concept of a therapeutic window, and corresponding adaptation of
a dosing regimen to ensure that the concentrations of a drug lie within this window, is
coined ‘therapeutic drug monitoring’ (TDM). TDM already found its way in the field of
treatment of inflammatory bowel disease with anti-TNF agents [10]. Here, windows have
been defined for infliximab, vedolizumab, golimumab, and ADM [8,9,11]. Interestingly,
the definition of such windows heavily depend on several factors, including the timing
of sampling (induction versus maintenance phase), the quantification assay but also the
clinical outcome and of course the disease [10]. To illustrate the latter, Juncadella et al.
evaluated ADM concentrations in light of several objective therapeutic outcomes: ADM
levels of 11.8, 12.0, and 12.2 µg/mL were associated with biochemical, endoscopic or
histological remission in patients with Crohn’s disease; respectively [11]. For ulcerative
colitis, levels of 10.5, 16.2, and 16.2 µg/mL of ADM were defined as threshold for the
respective outcomes. Endoscopic and histological remission required minimum levels of 12
and 12.2 µg/mL of ADM, respectively. Similar observations were made for infliximab [12].
In 2015, we defined a window for ADM in psoriasis of 3.51–7.0 mg/L associating with
an optimal clinical effect, which was later confirmed by Wilkinson and colleagues in a
larger cohort [8,9]. Currently, the use of TDM in patients with overexposure to ADM
(supratherapeutic levels) is being investigated in the SUPRA-A trial (recruitment ongoing;
clinicaltrials.gov NCT04028713) [13].

However, for TDM to be implemented in clinical practice, several criteria need to
be met: first, a therapeutic window or target concentration should be defined based on a
dose–response relationship, linking measurable drug concentrations (typically in serum)
to a clinical therapeutic efficacy. In addition, serum concentrations should be available
rapidly, in case of clinical flares, in order to propose dose adjustments, and, even more,
should be obtained with relative ease for patient, clinician and lab. Currently, TDM of
biologics is generally performed in serum as the sample matrix, requiring sampling to be
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done by a healthcare professional and the patient to leave their home. Not only is this time-
consuming for the patient, but during the initial COVID-19 pandemic lockdown, nearly
impossible [14]. Hence, alternative sampling methods that can be executed in the comfort
of the patients’ homes have become more relevant. Sampling via dried blood spots (DBS)
has long been a standard method of microsampling, with various studies supporting its
feasibility in different patient populations [15–19]. It has numerous advantages, including
the collection of microvolumes of equal to or less than 20 µL, which is more suitable for
reduced blood flow or when handling infants. Moreover, storage and transfer of DBS does
not require freezing, making it suitable for various settings (including patient homes or
remote locations). Another asset is the simplicity of collection, omitting centrifugation or
wet volume transfers and thus biohazardous handling. Lastly, its costs are much lower
regarding transport and storage, making it an attractive option for large trials or—when
needed regularly—in patient management.

Despite being a relatively robust sampling method for routine drug monitoring, the
implementation of dried blood microsampling is hampered by a few issues. First, since
whole blood is used as a source, the presence of haematocrit impacts the viscosity of the
sample and thus its spreading on filter paper. This may pose an issue as, for a given volume
applied on filter paper, blood with a high haematocrit will yield smaller-sized DBS than
blood with a low haematocrit. Consequently, when using a partial-punch approach, the
blood volume contained within this punch -and hence also the concentration derived for a
compound- will differ. This is also referred to as the haematocrit effect [20,21].

Second, the volume of blood that is collected is not easily controlled. However,
recently several devices have been developed that allow volumetric collection of blood
from a finger prick [20,21]. One of these newer technologies is called volumetric absorptive
microsampling (VAMS), in which a polymeric tip wicks up a fixed volume of blood (e.g.,
10, 20 or 30 microliters), irrespective of the hematocrit [20,22]. The use of VAMS for
various drugs has been tested and was found to be a reliable sampling method, also for the
determination of larger proteins such as monoclonal antibodies [16,23].

After sample collection, the sample still needs to be assessed. Until now, in clinical
laboratory settings, the measurement of biologics is predominantly performed by means
of enzyme-linked immunosorbent assay (ELISA). ELISAs are antigen-specific, provide
quantifiable results, and can easily be implemented in clinical laboratories (in essence
only requiring an absorbance microplate reader). On a downside, the execution is rather
time-consuming (impacting the turn-over time) and it is rather suitable for high-throughput
measurement; i.e., to be cost-effective, multiple samples need to be analyzed simultaneously.
Only if sufficient patients in a short time window need to be sampled, ELISA is cost-
efficient, which may induce long waiting times to meet the serum sample number. To
this end, alternative assays were developed, such as ‘rapid’ testing via lateral flow testing
(LFT) assays. LFT has gained massive use amongst the general public since the COVID-19
pandemic [24]. In the field of TDM, LFT for the measurement of ADM and anti-ADM
antibodies has been developed as well [25]. However, the use of such assays has remained
limited to the clinical setting, due to the requirement of serum or plasma as a matrix and a
specific reader.

Although recent advances in the microsampling and rapid testing field allow for
several limitations to be tackled, this is yet to be shown for TDM of ADM in the psoriasis
population. Here, we report on a preliminary evaluation of the use of rapid testing and
home sampling by patients participating in a study assessing non-inferiority of a TDM-
based dose reduction strategy for ADM in psoriasis (Soenen et al.; unpublished). In this
study, two promising tools to facilitate TDM, self-sampling at home and rapid testing,
were evaluated.
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2. Materials and Methods
2.1. Study Design and Data Collection

Subjects were recruited from the SUPRA-A trial (NCT04028713) with ethical approval
from the Ethics Committee of Ghent University Hospital in Belgium (EudraCT 2019-001918-42).
All participating subjects provided written informed consent. The study was conducted in
accordance with the Declaration of Helsinki. At the time of writing, the study had not been
completed yet.

In short, patients with confirmed supratherapeutic ADM concentration were random-
ized 1:1 to a control or intervention arm, the latter implying a lengthening of the dose
interval (once every 3 weeks instead of bi-weekly). If the therapeutic response remained
stable in the intervention arm, the dose reduction could be extended to every 4 weeks. All
patients were asked to participate in a substudy in which the use of VAMS was evaluated
as an alternative sampling technique for quantification of ADM.

Study data were collected and managed using REDCap (Research Electronic Data
Capture) hosted at Ghent University Hospital [26,27].

2.2. Sample Collection, Transportation, Preparation and Storage

On day 0, patients received a short training by an instructed nurse as well as writ-
ten instructions on home sampling (Supplementary Figure S1). The first sampling was
performed under supervision of the trained nurse in the hospital. Afterwards, patients
were asked to self-sample at 9 pre-defined time points (day 3, 5, 7, 14, 21, 28, 35, 42, and
49) using a VAMS device, marketed as Mitra® (Neoteryx LLC, Torrance, CA, USA). In
short, the device consists of a plastic handler with an absorbent polymeric tip attached to it,
which absorbs a precise volume of blood (20 µL), after a finger prick was performed with a
1.8 mm safety lancet (Novolab, Ergolance Blue 25G, Geraardsbergen, Belgium). For each
time point, patients received a home sampling kit containing the following materials to
perform home sampling (in duplicate, if needed): lancet, sampling cartridge, cotton ball,
adhesive bandage and a prepaid shipping envelope with desiccant. At each time point,
2 VAMS samples were collected by the patients (biological replicates). The VAMS samples
were sent by postal service under ambient conditions to the Dermatology Research Unit
of Ghent University Hospital for processing. Upon receipt, the tips were first visually
inspected for absorption efficiency [28]; i.e., if white spots were still visible we assumed less
than 20 µL was absorbed and this was noted for each individual sample. Next, the VAMS
tips were transferred to 1.5 mL Eppendorfs with a forceps and 480 µL superblock PBS
buffer (ThermoFisher; Waltham, MA, USA) was added. Following an incubation of 1 h at
21 ◦C at 300 RPM (Eppendorf ThermoMixer C, Hamburg, Germany), each vial was shortly
vortexed and tips were removed with cleaned forceps. Extracts were stored at −20 ◦C until
analysis. Overall, extraction was done within 4 days after sampling (ranging from 1 day
until 10 days).

In addition, at 3 predefined time points (day 0, day 14 and day 28 or day 0, day 21
and day 42, depending on the randomization arm), whole blood and serum were collected
simultaneously, allowing comparison of the different matrices, i.e., capillary VAMS samples
(obtained following finger prick), venous VAMS samples and serum (gold standard) sam-
ples. Venous VAMS samples were obtained by a trained nurse by touching the surface of
ethylenediaminetetraacetic acid (EDTA)-anticoagulated venous whole blood with a VAMS
tip. The serum was centrifuged for 10 min at 252× g at room temperature (Eppendorf cen-
trifuge 5804, Germany), after an incubation time of maximum 24 h. Serum was preserved
at minimally −20 ◦C for a median time of 185 days until analysis. An overview of the
sampling time points is depicted in Figure 2.
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Figure 2. Overview of sampling time points in the substudy of the SUPRA-A trial. Patients were
asked to self-sample at 10 predefined time points (day 0 (after training and under supervision of
nurse), 3, 5, 7, 14, 21, 28, 35, 42, and 49) using a VAMS device, marketed as Mitra® (Neoteryx LLC,
Torrance, CA, USA). At day 0, day 14 and day 28 or day 0, day 21 and day 42 whole blood and serum
were collected simultaneously, allowing comparison of the different matrices, i.e., capillary VAMS,
venous VAMS and serum (gold standard) samples. Abbreviations: D—Day; N—Number of patients.

2.3. Extraction Efficiency of Adalimumab in Volumetric Absorptive Microsamples

The extraction efficiency of ADM from VAMS tips was evaluated by spiking the blood
of healthy volunteers with known ADM concentrations, 0–1–5–10 and 20 µg/mL. After
drying for a minimum of 24 h, VAMS tips were extracted and extracts were stored at
−20 ◦C until analysis.

2.4. Quantification of Adalimumab Concentrations
2.4.1. Rapid Testing with Lateral Flow Technique

ADM serum levels were measured using RIDA®QUICK ADM Monitoring lateral
flow assay (R-Biopharm AG, Darmstadt, Germany), according to the manufacturer’s
instructions. In short, after a 5 min pre-incubation of 1:500 diluted sample with “Solution
A” and “Solution B” and 15 min developing time on the lateral flow strip, the lateral
flow strips were read using a portable reader (RIDA®- QUICK SCAN II, R-Biopharm AG,
Darmstadt, Germany). The RIDA®QUICK ADM Monitoring allows quantification of ADM
in the 0.5–25.0 µg/mL range [29].

2.4.2. Traditional Detection with ELISA

ADM concentrations in capillary VAMS samples, venous VAMS samples and serum
were determined using an in-house developed ADM ELISA with a lower limit of quan-
tification of 0.1 µg/mL [30]. Briefly, MA-ADM28B8 (4 µg/mL) was coated to 96-well
plates at 4 ◦C for 72 h. Serum and VAMS extracts were diluted to a final dilution of 1:2000
in PTAE buffer (phosphate-buffered saline (PBS) + 0.1% bovine serum albumin (BSA) +
0.002% Tween 80 + EDTA), applied on the plate and incubated overnight at 4 ◦C. The next
day, horseradish peroxide (HRP)-conjugated MA-ADM40D8 was applied for the detection
of bound ADM and incubated for 2 h at room temperature. Plates were washed and
developed using o-phenylenediamine and H2O2 in citrate buffer and the reaction was
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stopped with H2SO4 (4 M). The absorbance was then measured at 492 nm with an ELx808
Absorbance Microplate Reader (BioTek Instrumens Inc., Winooski, VT, USA).

2.5. Statistical Analysis

Correlations and agreements between the results obtained by LFT and ELISA were
assessed using the Pearson r correlation coefficient, simple linear regression, and Bland–
Altman analysis. A two-tailed p-value < 0.05 was considered significant. All statistics were
carried out using the statistical programs Graphpad Prism 8.3.0 (Graphpad software, San
Diego, CA, USA) and IBM SPSS Statistics 25 (IBM SPSS, Costa Mesa, CA, USA).

3. Results
3.1. Demographics of Study Cohort

Until present, the SUPRA-A trial recruited a total of 10 patients, of whom 6 were
randomized (1:1) in the intervention arm. With the exception of one patient, all patients
were male. The cohort had a mean age of 54.2 years, with a mean disease duration of
30.5 years. Treatment duration with ADM ranged from 3.9 years to 12.8 years, with a mean
psoriasis area and severity index (PASI) at start of therapy of 8.2. Before randomization, all
patients were screened with ELISA for supratherapeutic ADM serum trough concentrations
(>8 µg/mL). Patients were randomized if on two out of three time points, supratherapeu-
tic trough levels were measured. Overall, patients had a mean ADM concentration of
9.6 µg/mL during screening, ranging from 7.6 to 13.1 µg/mL.

Seven participants agreed to be included in the substudy for microsampling. All
patients were highly educated Caucasian men with an average age of 50.3 years. The
range of ADM serum trough concentrations obtained in the screening of this subcohort
was the same as the one mentioned above, with a mean of 9.7 µg/mL; five participants
were randomized to the intervention group.

3.2. Rapid Testing of Adalimumab Is Feasible and Valuable in Clinical Setting

A total of 15 samples were collected from 10 patients on week 0 and from 5 patients
on week 13. One patient in the control arm had dropped out before the sampling of week
13, hence the missing time point. Lateral flow testing was performed independently by
two researchers and showed a mean coefficient of variation (CV) of 7.6% (median: 6.4%;
range: 0.0–25.1%), which is slightly lower than the interassay precision reported by the
manufacturer [29]. The ADM concentrations in these serum samples ranged from 2.9
to 16.2 µg/mL (Table S1). Based on simple linear regression, a significant concentration-
dependent variation of the LFT measurements was observed (Figure 3a).

Next, LFT-obtained ADM concentrations (the mean of replicate measurements for
both assessments was used) were compared to ELISA-based quantification. The results
showed a good agreement with the reference assay, as indicated by a correlation coefficient
R2 of 0.89 (Figure 3b), which is somewhat lower than the correlation coefficient (R2 = 0.95)
previously reported by the manufacturer [29]. The Bland–Altman analysis yielded a mean
bias of −0.03 µg/mL, indicating the absence of a significant systematic bias between LFT
and ELISA (Figure 3c). Noteworthy, the span covered by the upper and lower limits of
agreement (LoA) (−1.98–1.93 µg/mL) is rather big, given the relative narrow therapeutic
window of ADM, i.e., 3.51–7.0 µg/mL. This may influence clinical decision-making as
categorization of patients as sub- or supratherapeutic may differ, depending on the method
of analysis used. However, relatively limited number of samples were included at this point
in time—future inclusion of more patients will help to further substantiate this finding.
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Figure 3. Comparison between LFT and ELISA for quantification of ADM in patient samples from
SUPRA-A trial. Serum was collected during ADM maintenance therapy from patients participating
in the SUPRA-A trial and drug concentrations were quantified in parallel by two detection methods
in duplicate, LFT and ELISA. (a) Pearson correlation between the CV (%) and the mean ADM
concentrations (µg/mL) measured with LFT by 2 independent researchers. Week 0 and week 13
values are represented by circles and triangles, respectively. The grey range indicates the 95% CI of the
best-fit line (simple linear regression). (b) Pearson correlation between ADM serum concentrations
measured with LFT (Y-axis) and in-house sandwich ELISA (X-axis). (c) Bland–Altman plot for ADM
quantification by LFT and with in-house sandwich ELISA. Mean bias and limits of agreement are
represented by full lines, 95% CI by dotted lines. Abbreviations: ADM—adalimumab; CI—confidence
interval; CV—Coefficient of variation; ELISA—enzyme-linked immunosorbent assay; LFT—lateral
flow test; N—number of samples.

3.3. VAMS Is Suitable for Extraction of Adalimumab

For validation of the VAMS extraction protocol, the extraction efficiency of ADM from
VAMS tips was evaluated by spiking the blood of healthy volunteers with known ADM
concentrations, ranging from 0 to 20 µg/mL. Extracts were measured 5 times on different
days with an in-house ADM ELISA and a mean extraction efficiency was obtained of 114.4%
(SD 13.9%, CV 12.2%).

3.4. Feasibility of Home Sampling by Non-Experienced Patients Using VAMS

Until present, seven patients were included, resulting in 136 capillary VAMS samples
(68 replicates; 4 missing), 40 venous VAMS samples (20 replicates; 2 missing) and 19 serum
samples (2 missing) which were eligible for ADM quantification. Ten capillary VAMS
samples were excluded from analysis after visual inspection due to undersampling (7.4%).

First, the quality of the patient sampling technique was assessed by comparing biolog-
ical replicates of capillary VAMS. The difference between the replicates was determined
(n = 65) and the CV was calculated. The CV obtained for capillary VAMS samples was
13.5%, which was slightly, though significantly higher than the CV of 7.5% observed for
venous VAMS samples (Chi2-test, α = 0.05). The latter were prepared by a trained nurse,
dipping the VAMS tips in EDTA-anticoagulated venous whole blood. Overall, a very good
correlation was observed between biological replicates of the capillary VAMS samples,
with no concentration- or time-dependent variation in the imprecision of home sampling
(Figure 4a–c).
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Figure 4. Patients’ performance on microsampling (capillary VAMS). Participants self-sampled VAMS
twice in a row, these replicates being taken at 10 time points between day 0 and day 49. ADM was
measured in capillary VAMS extracts with an in-house ELISA. (a) Bland–Altman plot for ADM
quantification in capillary VAMS (n = 65). Mean bias and limits of agreement are represented by full
lines, 95% CI by dotted lines. (b) Boxplots of mean ADM concentrations in capillary VAMS samples,
taken at time points between day 0 and day 49. (c) CV (%) of replicates from capillary VAMS samples
at the sampling time points between day 0 and day 49. The CV (%) threshold of 15% and the best fit
curve (simple linear regression) are indicated by a dotted and full line, respectively. Abbreviations:
ADM—adalimumab; CI—confidence interval; CV—Coefficient of variation; ELISA—enzyme-linked
immunosorbent assay; N—number of samples; VAMS—volumetric absorptive microsampling.

Next, we evaluated how quantification of ADM obtained with VAMS would compare
to simultaneously collected serum (gold standard). Hereto, we first compared ADM
concentrations obtained from venous VAMS samples (Figure 5a,b) with those obtained
from the corresponding serum samples. A good correlation between ADM concentrations
in venous VAMS samples [7.32 ± 2.78; 6.92 (5.24–8.63)] and in serum [8.56 ± 2.7; 8.4
(7.3–10.5)] was observed, with a Pearson correlation of 0.87 [mean ± SD; median (IQR),
µg/mL].

Then, we examined the concordance of the results obtained from capillary VAMS
samples (obtained by patient self-sampling) and simultaneously collected venous VAMS
samples. Figure 5c depicts a Pearson correlation of r = 0.91. From the Bland–Altman
analysis, a mean significant bias of 1.30 µg/mL was apparent, with 95% CI 0.72–1.87
(Figure 5d; p = 0.0002). This implies that ADM concentrations in venous VAMS samples
are overall slightly higher than in capillary VAMS samples, collected at the same time
point. This capillary venous difference illustrates the need for the application of a capillary-
venous correction factor. Based on our cohort, a capillary-venous correction factor of 1.28
was found.

Finally, we compared ADM concentrations obtained from capillary VAMS samples
with those obtained from the corresponding serum samples. As shown in Figure 5
(panel e,f), a good correlation between ADM concentrations in capillary VAMS samples
[5.67 ± 2.47; 5.48 (3.52–7.61)] and in serum [8.56 ± 2.7; 8.4 (7.3–10.5)] was observed, with a
Pearson correlation of 0.87 [mean ± SD; median (IQR), µg/mL]. A significant mean bias of
2.7 µg/mL (95% CI: 1.96, 3.35) was found by Bland–Altman analysis (p < 0.0001), implying
that lower concentrations are obtained from VAMS samples, compared to the correspond-
ing serum samples, which can be expected, as ADM resides in the serum/plasma fraction
of blood. By multiplying the ADM concentration from capillary VAMS samples with the
capillary-venous and blood-serum correction factors of, respectively, 1.28 and 1.22, the
calculated ADM serum concentration was determined (Figure 6). As depicted in Figure 6c,
this may be an overcorrection due to the small sample size of this cohort.
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Figure 5. Concordance between capillary VAMS samples, venous VAMS samples and serum (gold
standard). (a) Pearson correlation of ADM concentrations obtained from venous VAMS samples
prepared by nurse (X-axis) and serum (Y-axis). (b) Bland–Altman comparison of ADM concentrations
in venous VAMS samples and serum. Mean bias and limits of agreement are represented by full
lines, 95% CI by dotted lines. (c) Pearson correlation of ADM concentrations obtained from mean
venous VAMS samples, prepared by a trained nurse (Y-axis) and mean capillary VAMS samples,
collected by the patients (X-axis). (d) Bland–Altman comparison of ADM concentrations in samples
obtained by nurse versus patients. Mean bias and limits of agreement are represented by full lines,
95% CI by dotted lines. (e) Pearson correlation of ADM concentrations obtained from capillary
VAMS samples collected by patients (X-axis) and serum (Y-axis). (f) Bland–Altman comparison of
ADM concentrations in capillary VAMS samples and serum. Mean bias and limits of agreement are
represented by full lines, 95% CI by dotted lines. Abbreviations: ADM—adalimumab; CI—confidence
interval; N—number of samples; VAMS—volumetric absorptive microsampling.
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Figure 6. Concordance between capillary VAMS samples, venous VAMS samples and calculated
serum (based on a blood-serum and capillary-venous correction factor). (a) ADM (µg/mL) in the three
matrices, capillary VAMS samples, venous VAMS samples and serum. Green range represents the
therapeutic window of ADM (3.51–7.0 µg/mL [8,9]) (b) Pearson correlation of ADM concentrations
obtained from serum samples (X-axis) and calculated ADM serum concentrations based on a blood-
serum correction factor of 1.22 and a capillary correction factor of 1.28 (Y-axis). (c) ADM (µg/mL) in
serum (gold standard) and calculated ADM serum concentration, based on a blood-serum correction
factor of 1.22 and a capillary-venous correction factor of 1.28. Green range represents the therapeutic
window of ADM (3.51–7.0 µg/mL [8,9]). Abbreviations: ADM—adalimumab; CI—confidence
interval; N—number of samples; VAMS—volumetric absorptive microsampling.

3.5. Patient Experience with VAMS

All participants completed the substudy according to the protocol, which by itself was
already considered to be a success regarding acceptance of VAMS as a collection technique.
All samples, shipped by regular mail, were received within an acceptable time frame (on
average 5 days, range [3–8]).

Next, we used a questionnaire to evaluate the patients’ perception on self-sampling at
home based on Van Uytfanghe et al. and Mbughuni et al., with minor adaptations [28,31].
The questionnaire consisted of 10 main questions and gauged about the clarity of instruc-
tions, experience, performance, user-friendliness, acceptability/pain and preference.

All patients (n = 7) completed the survey. Five out of seven participants (71.4%) had a
higher degree (bachelor or master). Except one, none of the respondents had experience
with performing VAMS before. All patients judged the clarity of the instructions to be clear
or very clear and evaluated the performance as very or rather user-friendly and feasible
(Figure 7a). None of the patients felt the need to consult for additional information (data
not shown). All patients self-sampled, except for one participant, who stated their partner
was a nurse who performed the finger prick (Figure 7b). On a scale of 1 (not painful at
all) to 10 (very painful), participants scored 3 or less, with 60% rating it a zero (Figure 7c).
Moreover, with the exception of one patient, all patients scored finger prick sampling as
less painful compared to a conventional blood draw (Figure 7d). With a higher degree of
flexibility/autonomy and no transportation to the clinic, this translates to the vast majority
(85.7%) preferring this type of sampling over a conventional blood draw (Figure 7d,e).
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Figure 7. Microsampling was found to be easily executed by patients and preferred over venous
sampling. After completing the substudy for microsampling, participants were sent an electronic
survey to inquire into their experience. Patients scored questions on execution (a) and execution
experience (b). Pain was quantified (c,d) and compared to traditional sampling (d,e). n = 7 The
number between brackets in panel (a,b,d) indicates the number of possible answers.

For VAMS to be adopted by patients in the context of TDM in psoriasis, we inquired
into patients’ acceptance. All participants scored the technique as user-friendly for use
at home (Figure 7a). In addition, all patients agreed that it would be feasible to perform
this regularly. When asked about an acceptable frequency to use VAMS, a monthly basis
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had the most votes (data not shown). Although patients were positive about this sampling
technique, more than half of the patients was uncertain about the reliability of the sampling
technique (Figure 7b), reflecting the gap of knowledge.

4. Discussion

Although the use of TDM in psoriasis is still not standard practice, parallel research
into enabling tools is required to facilitate implementation. As Figure 1 illustrates, TDM
requires various steps, and especially the first step, encompassing sampling, will pose most
challenges regarding implementation. Easy and feasible sampling is a great challenge, with
a healthcare professional being required for a traditional blood draw. Furthermore, serum
preparation from whole blood requires the sample to be handled in a laboratory setting.

Here, we investigated the home-based use of VAMS by psoriasis patients treated
with ADM for drug quantification. We focused on both the technical performance and the
patient’s user experience. From a technical perspective, our extraction protocol showed a
satisfactory extraction efficiency, with adequate reproducibility. As TDM is based on narrow
therapeutic windows, a robust extraction is essential to ensure appropriate interpretation
and treatment management plan. Patients’ performance assessed by replicates was deemed
acceptable, with a CV of 13.5%. As no long-term data were collected, at this point no
conclusions can be drawn related to ‘performance fatigue’. Performance compared to a
trained nurse also showed satisfactory results with a slightly, though significantly higher
CV than the CV derived under controlled circumstances for sampling, 7.5%. Based on this,
it could be estimated that home sampling accounted for 11.2% of the total imprecision of
the method.

In addition, a good correlation between the three matrices, capillary VAMS samples,
venous VAMS samples and serum was obtained. At this point it is too early to make
definitive statements on whether capillary samples can yield data that can reliably steer
dose adaptations (this will become clear in the ongoing trial and was beyond the scope
of the current pilot study). However, the data so far indicate that 2 kinds of corrections
are required to predict serum concentrations based on capillary blood concentrations: a
capillary-venous correction of 1.28, and a blood-serum correction of 1.22. The latter is
obvious, as ADM resides in the serum fraction of blood, and 20 µL of (dried) blood only
contains ~12 µL of serum (in the case of ~40% haematocrit blood). However, more data are
needed to validate these correction factors and verify these on independent sample sets. In
future, these data will provide further insight into the suitability of VAMS as an adequate
substitute for conventional sampling for ADM TDM.

Besides the technical suitability of microsampling for TDM of ADM in psoriasis
patients, it is also important to acknowledge the patients’ perception, as they are the end
users. Based on our questionnaire, it can be concluded that the patients were overall positive
about home-based microsampling. Even more, participants in this pilot study preferred
this type of sampling over a conventional blood draw, but this needs to be confirmed in a
larger cohort. This is in agreement with results obtained by Morgan et al., who showed
that 81% of the participants preferred VAMS collection, and is in line with the preference
for VAMS in the cohort studied by Verougstraete et al. [23,32]. Essential to implementation,
we also investigated the time it took for a sample to reach our laboratory. Based on our
limited data, the time window was deemed acceptable for psoriasis management with
ADM. Most biologics are administered from twice a month to every 3 months—rendering
an average of 5 transport days (range: 3–8 days) acceptable for the physician to adapt the
management plan.

In this paper, we did not address the impact of storage conditions on extraction
efficiency. However, we refer to Bloem et al. where a similar technique has been investigated
for several storage conditions [17]. In addition, Li et al. obtained very encouraging
drug recovery data after short and long term storage for biotherapeutics daclizumab and
trastuzumab [33]. Ideally, when patients require a change in management plan, results
should become available relatively fast, making long-term storage impact irrelevant. The
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impact of parameters such as temperature and humidity should be investigated in real
world settings for conclusive evidence. To lower the threshold of using VAMS within the
patient community and empower patients to monitor their drug concentrations, in the
future, microsampling kits could become available at the pharmacy, or could be provided
by the treating physician upon treatment with biologics.

After sampling, trough drug concentrations are traditionally measured by ELISA, re-
quiring laboratory equipment (e.g., a shaker and dedicated reader) and are time-consuming.
An additional disadvantage of ELISA is the ratio of performance time to sample size. As
ELISA is standard-dependent, a single sample run is considered wasteful. To this end, the
(complementary) use of immunochromatographic lateral flow testing allows for a more
satisfactory ratio of performance time to sample size. The LFT assay investigated here
was demonstrated to be applicable in clinical practice, with a turnover time of less than
30 min after serum preparation. Although it was compared to only one ELISA kit for ADM
quantification [25,34], our data show acceptable results for clinical applicability. As the
therapeutic window of ADM is relatively narrow [8,9], interpretation of results should
be done taking into account the type of assay. In the limited dataset from this study, a
good agreement was found between LFT and ELISA, suggesting that no adaptation of the
therapeutic window would be required when implementing this LFT assay—obviously,
more samples are required to further substantiate this finding. The current LFT assay was
performed on serum samples, and its compatibility with VAMS remains to be elucidated.
Ultimately, a combination of both tools would truly enable rapid and easy monitoring.

Limitations of this pilot study inherently include the small sample size for both
microsampling and rapid testing. In addition, we did not address various conditions to
assess the impact on both tools. For instance, we currently lack data on storage conditions
and how ADM concentrations in VAMS samples are affected. All LFT measurements were
executed by trained lab personnel. As all measurements were performed in an academic
hospital setting, extrapolation to private practices is limited. It should also be noted that
the used LFT cassettes are not compatible with all LFT-readers.

Strengths of this study reside in the affinity with real world evidence as SUPRA-A
is considered a pragmatic trial, in addition to the use of public postal services for sample
transport. Furthermore, participants had access to adequate educational material to execute
microsampling. Lastly, in addition to laboratory evaluations, we also considered and
investigated the study participants as end users—rendering this study comprehensive.

5. Conclusions

Microsampling for ADM TDM in the context of psoriasis treatment is a valuable
alternative to traditional blood sampling, enabling patient-centric TDM. VAMS, as applied
here, can be performed by non-experienced patients at home, potentially allowing to
reach a greater patient community. In addition, rapid testing by LFT of ADM allows the
dermatologist to rapidly obtain results that may impact a patient’s treatment plan.

The results presented here provide preliminary evidence, revealing that LFT and mi-
crosampling are promising tools to facilitate TDM of ADM in clinical practice. Though the
data is from a limited sample size, both tools pose interesting fields of further investigation
for TDM in psoriasis.
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of adalimumab concentrations in SUPRA-A trial participants.

Author Contributions: Conceptualization, J.L. and L.G.; Data curation, R.S.; Formal analysis, A.C.,
H.D.S., M.D., T.M. and R.S.; Funding acquisition, J.L. and L.G.; Investigation, A.C., M.D., T.M. and R.S.;
Methodology, C.S., H.D.S., L.G. and R.S.; Project administration, R.S.; Resources, J.L.; Supervision,
C.S., J.L. and L.G.; Visualization, R.S.; Writing—original draft, L.G. and R.S.; Writing—review and

https://www.mdpi.com/article/10.3390/jcm11113011/s1
https://www.mdpi.com/article/10.3390/jcm11113011/s1


J. Clin. Med. 2022, 11, 3011 14 of 15

editing, C.S., M.F., J.L., L.G. and R.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Research Foundation—Flanders (FWO), Belgium (T003218N).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Ghent University
Hospital (EudraCT 2019-001918-42; 22 April 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study can be found at https://osf.io/2bk7u
hosted at Open Science Framework and access can be obtained upon request.

Acknowledgments: We would like to express our gratitude to all patients willing to participate in
this study. Special gratitude goes out to Brigitte Blanquart as a dedicated study nurse. In addition,
we want to thank Neoteryx and R-Biopharm for the fruitful discussions.

Conflicts of Interest: Lambert has received grants (not personal but for scientific research account
University Ghent) from Janssen, AbbVie, and Pfizer; had paid consultancies (not personal but for
scientific research account University Ghent) from Abbvie, Almirall, Argenx, BMS, Janssen Cilag,
Pfizer, Leo Pharma, Novartis and UCB; and carried out clinical trials for Janssen-Cilag, Merck Serono,
Amgen, Pfizer, AbbVie, Celgene, Regeneron and Novartis. Lynda Grine received paid speaker fees
from UCB, AbbVie and R-Biopharm. The other authors state no disclosures.

References
1. Brownstone, N.D.; Hong, J.; Mosca, M.; Hadeler, E.; Liao, W.; Bhutani, T.; Koo, J. Biologic treatments of psoriasis: An update for

the clinician. Biol. Targets Ther. 2021, 15, 39–51. [CrossRef]
2. Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [CrossRef]
3. Schmitt, J.; Rosumeck, S.; Thomaschewski, G.; Sporbeck, B.; Haufe, E.; Nast, A. Efficacy and safety of systemic treatments for

moderate-to-severe psoriasis: Meta-analysis of randomized controlled trials. Br. J. Dermatol. 2014, 170, 274–303. [CrossRef]
[PubMed]

4. Keystone, E.C.; Rampakakis, E.; Movahedi, M.; Cesta, A.; Stutz, M.; Sampalis, J.S.; Nantel, F.; Maslova, K.; Bombardier, C.
Toward Defining Primary and Secondary Nonresponse in Rheumatoid Arthritis Patients Treated with Anti-TNF: Results from the
BioTRAC and OBRI Registries. J. Rheumatol. 2020, 47, 510–527. [CrossRef]

5. Bracke, S.; Lambert, J. Viewpoint on handling anti-TNF failure in psoriasis. Arch. Dermatol. Res. 2013, 305, 945–950. [CrossRef]
[PubMed]

6. De la Brassinne, M.; Ghislain, P.-D.; Lambert, J.L.W.; Lambert, J.; Segaert, S.; Willaert, F. Recommendations for managing a
suboptimal response to biologics for moderate-to-severe psoriasis: A Belgian perspective. J. Dermatolog. Treat. 2016, 27, 128–133.
[CrossRef] [PubMed]

7. Edson-Heredia, E.; Sterling, K.L.; Alatorre, C.I.; Cuyun Carter, G.; Paczkowski, R.; Zarotsky, V.; Maeda-Chubachi, T. Heterogeneity
of Response to Biologic Treatment: Perspective for Psoriasis. J. Invest. Dermatol. 2014, 134, 18–23. [CrossRef] [PubMed]

8. Menting, S.P.; Coussens, E.; Pouw, M.F.; van den Reek, J.M.P.A.P.A.; Temmerman, L.; Boonen, H.; De Jong, E.M.G.J.G.J.;
Spuls, P.I.; Lambert, J. Developing a Therapeutic Range of Adalimumab Serum Concentrations in Management of Psoriasis.
JAMA Dermatology 2015, 151, 616. [CrossRef]

9. Wilkinson, N.; Tsakok, T.; Dand, N.; Bloem, K.; Duckworth, M.; Baudry, D.; Pushpa-Rajah, A.; Griffiths, C.E.E.M.; Reynolds, N.J.;
Barker, J.; et al. Defining the Therapeutic Range for Adalimumab and Predicting Response in Psoriasis: A Multicenter Prospective
Observational Cohort Study. J. Investig. Dermatol. 2019, 139, 115–123. [CrossRef]

10. Papamichael, K.; Cheifetz, A.S. Therapeutic Drug Monitoring in IBD: The New Standard-of-Care for Anti-TNF Therapy. Am. J.
Gastroenterol. 2017, 112, 673–676. [CrossRef]

11. Juncadella, A.; Papamichael, K.; Vaughn, B.P.; Cheifetz, A.S. Maintenance Adalimumab Concentrations Are Associated with
Biochemical, Endoscopic, and Histologic Remission in Inflammatory Bowel Disease. Dig. Dis. Sci. 2018, 63, 3067–3073. [CrossRef]
[PubMed]

12. Vande Casteele, N.; Feagan, B.G.; Wolf, D.C.; Pop, A.; Yassine, M.; Horst, S.N.; Ritter, T.E.; Sandborn, W.J. Therapeutic Drug
Monitoring of Tumor Necrosis Factor Antagonists in Crohn Disease: A Theoretical Construct to Apply Pharmacokinetics and
Guidelines to Clinical Practice. Inflamm. Bowel Dis. 2021, 27, 1346–1355. [CrossRef] [PubMed]

13. Lambert, J.; Grine, L.; Soenen, R. Dose Tapering Study of Adalimumab in Psoriasis—Full Text View. Available online: https:
//clinicaltrials.gov/ct2/show/NCT04028713 (accessed on 24 January 2022).

14. Harahap, Y.; Diptasaadya, R.; Purwanto, D.J. Volumetric absorptive microsampling as a sampling alternative in clinical trials
and therapeutic drug monitoring during the covid-19 pandemic: A review. Drug Des. Dev. Ther. 2020, 14, 5757–5771. [CrossRef]
[PubMed]

https://osf.io/2bk7u
http://doi.org/10.2147/BTT.S252578
http://doi.org/10.1016/S0140-6736(16)30173-8
http://doi.org/10.1111/bjd.12663
http://www.ncbi.nlm.nih.gov/pubmed/24131260
http://doi.org/10.3899/jrheum.190102
http://doi.org/10.1007/s00403-013-1418-6
http://www.ncbi.nlm.nih.gov/pubmed/24096701
http://doi.org/10.3109/09546634.2015.1086476
http://www.ncbi.nlm.nih.gov/pubmed/26415615
http://doi.org/10.1038/jid.2013.326
http://www.ncbi.nlm.nih.gov/pubmed/23921949
http://doi.org/10.1001/jamadermatol.2014.5479
http://doi.org/10.1016/j.jid.2018.07.028
http://doi.org/10.1038/ajg.2017.21
http://doi.org/10.1007/s10620-018-5202-5
http://www.ncbi.nlm.nih.gov/pubmed/30006816
http://doi.org/10.1093/ibd/izaa265
http://www.ncbi.nlm.nih.gov/pubmed/33051647
https://clinicaltrials.gov/ct2/show/NCT04028713
https://clinicaltrials.gov/ct2/show/NCT04028713
http://doi.org/10.2147/DDDT.S278892
http://www.ncbi.nlm.nih.gov/pubmed/33414636


J. Clin. Med. 2022, 11, 3011 15 of 15

15. Kneepkens, E.L.; Pouw, M.F.; Wolbink, G.J.; Schaap, T.; Nurmohamed, M.T.; de Vries, A.; Rispens, T.; Bloem, K. Dried blood spots
from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory
diseases. Br. J. Clin. Pharmacol. 2017, 83, 2474–2484. [CrossRef] [PubMed]

16. Mingas, P.D.; Zdovc, J.; Grabnar, I.; Vovk, T. The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal
Antibodies in Inflammatory Diseases. Molecules 2021, 26, 1787. [CrossRef]

17. Bloem, K.; Schaap, T.; Boshuizen, R.; Kneepkens, E.L.; Wolbink, G.J.; de Vries, A.; Rispens, T. Capillary blood microsampling
to determine serum biopharmaceutical concentration: Mitra ® microsampler vs dried blood spot. Bioanalysis 2018, 10, 815–823.
[CrossRef]

18. Delahaye, L.; Veenhof, H.; Koch, B.C.P.; Alffenaar, J.-W.C.; Linden, R.; Stove, C. Alternative Sampling Devices to Collect Dried
Blood Microsamples. Ther. Drug Monit. 2021, 43, 310–321. [CrossRef]

19. Martial, L.C.; Aarnoutse, R.E.; Schreuder, M.F.; Henriet, S.S.; Brüggemann, R.J.M.; Joore, M.A. Cost Evaluation of Dried Blood
Spot Home Sampling as Compared to Conventional Sampling for Therapeutic Drug Monitoring in Children. PLoS ONE 2016,
11, e0167433. [CrossRef]

20. De Kesel, P.M.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-critical issues in quantitative analysis of dried
blood spots: Challenges and solutions. Bioanalysis 2013, 5, 2023–2041. [CrossRef]

21. Velghe, S.; Delahaye, L.; Stove, C.P. Is the hematocrit still an issue in quantitative dried blood spot analysis? J. Pharm. Biomed.
Anal. 2019, 163, 188–196. [CrossRef]

22. Spooner, N.; Denniff, P.; Michielsen, L.; De Vries, R.; Ji, Q.C.; Arnold, M.E.; Woods, K.; Woolf, E.J.; Xu, Y.; Boutet, V.; et al. A device
for dried blood microsampling in quantitative bioanalysis: Overcoming the issues associated blood hematocrit. Bioanalysis 2015,
7, 653–659. [CrossRef]

23. Verougstraete, N.; Lapauw, B.; Van Aken, S.; Delanghe, J.; Stove, C.; Stove, V. Volumetric absorptive microsampling at home as an
alternative tool for the monitoring of HbA1c in diabetes patients. Clin. Chem. Lab. Med. 2017, 55, 462–469. [CrossRef] [PubMed]

24. Montesinos, I.; Gruson, D.; Kabamba, B.; Dahma, H.; Van den Wijngaert, S.; Reza, S.; Carbone, V.; Vandenberg, O.; Gulbis, B.;
Wolff, F.; et al. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2
antibodies. J. Clin. Virol. 2020, 128, 104413. [CrossRef]

25. Verstockt, B.; Moors, G.; Bian, S.; Van Stappen, T.; Van Assche, G.; Vermeire, S.; Gils, A.; Ferrante, M. Influence of early adalimumab
serum levels on immunogenicity and long-term outcome of anti-TNF naive Crohn’s disease patients: The usefulness of rapid
testing. Aliment. Pharmacol. Ther. 2018, 48, 731–739. [CrossRef]

26. Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al.
The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208.
[CrossRef]

27. Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-
driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42,
377–381. [CrossRef] [PubMed]

28. Van Uytfanghe, K.; Heughebaert, L.; Stove, C.P. Self-sampling at home using volumetric absorptive microsampling: Coupling
analytical evaluation to volunteers’ perception in the context of a large scale study. Clin. Chem. Lab. Med. 2021, 59, e185–e187.
[CrossRef]

29. Castillo, C. GN3043_RIDA QUICK_ADM Monitoring_2018-06-28_EN. Available online: https://clinical.r-biopharm.com/wp-
content/uploads/2018/08/gn3043_rida-quick_adm-monitoring_2018-06-28_en.pdf (accessed on 24 January 2022).

30. Bian, S.; Van Stappen, T.; Baert, F.; Compernolle, G.; Brouwers, E.; Tops, S.; de Vries, A.; Rispens, T.; Lammertyn, J.;
Vermeire, S.; et al. Generation and characterization of a unique panel of anti-adalimumab specific antibodies and their application
in therapeutic drug monitoring assays. J. Pharm. Biomed. Anal. 2016, 125, 62–67. [CrossRef] [PubMed]

31. Mbughuni, M.M.; Stevens, M.A.; Langman, L.J.; Kudva, Y.C.; Sanchez, W.; Dean, P.G.; Jannetto, P.J. Volumetric Microsampling of
Capillary Blood Spot vs Whole Blood Sampling for Therapeutic Drug Monitoring of Tacrolimus and Cyclosporin A: Accuracy
and Patient Satisfaction. J. Appl. Lab. Med. 2020, 5, 516–530. [CrossRef]

32. Morgan, P.E. Microsampling Devices for Routine Therapeutic Drug Monitoring-Are We There Yet? Ther. Drug Monit. 2021, 43,
322–334. [CrossRef]

33. Li, H.; Myzithras, M.; Bolella, E.; Leonard, A.; Ahlberg, J. Whole blood stability evaluation of monoclonal antibody therapeutics
using volumetric absorptive microsampling. Bioanalysis 2021, 13, 621–629. [CrossRef] [PubMed]

34. Rocha, C.; Afonso, J.; Lago, P.; Arroja, B.; Vieira, A.I.; Dias, C.C.; Magro, F. Accuracy of the new rapid test for monitoring
adalimumab levels. Therap. Adv. Gastroenterol. 2019, 12, 1756284819828238. [CrossRef] [PubMed]

http://doi.org/10.1111/bcp.13371
http://www.ncbi.nlm.nih.gov/pubmed/28791718
http://doi.org/10.3390/molecules26061787
http://doi.org/10.4155/bio-2018-0010
http://doi.org/10.1097/FTD.0000000000000864
http://doi.org/10.1371/journal.pone.0167433
http://doi.org/10.4155/bio.13.156
http://doi.org/10.1016/j.jpba.2018.10.010
http://doi.org/10.4155/bio.14.310
http://doi.org/10.1515/cclm-2016-0411
http://www.ncbi.nlm.nih.gov/pubmed/27732552
http://doi.org/10.1016/j.jcv.2020.104413
http://doi.org/10.1111/apt.14943
http://doi.org/10.1016/j.jbi.2019.103208
http://doi.org/10.1016/j.jbi.2008.08.010
http://www.ncbi.nlm.nih.gov/pubmed/18929686
http://doi.org/10.1515/cclm-2020-1180
https://clinical.r-biopharm.com/wp-content/uploads/2018/08/gn3043_rida-quick_adm-monitoring_2018-06-28_en.pdf
https://clinical.r-biopharm.com/wp-content/uploads/2018/08/gn3043_rida-quick_adm-monitoring_2018-06-28_en.pdf
http://doi.org/10.1016/j.jpba.2016.03.029
http://www.ncbi.nlm.nih.gov/pubmed/27003121
http://doi.org/10.1093/jalm/jfaa005
http://doi.org/10.1097/FTD.0000000000000884
http://doi.org/10.4155/bio-2021-0025
http://www.ncbi.nlm.nih.gov/pubmed/33829873
http://doi.org/10.1177/1756284819828238
http://www.ncbi.nlm.nih.gov/pubmed/30833984

	Introduction 
	Materials and Methods 
	Study Design and Data Collection 
	Sample Collection, Transportation, Preparation and Storage 
	Extraction Efficiency of Adalimumab in Volumetric Absorptive Microsamples 
	Quantification of Adalimumab Concentrations 
	Rapid Testing with Lateral Flow Technique 
	Traditional Detection with ELISA 

	Statistical Analysis 

	Results 
	Demographics of Study Cohort 
	Rapid Testing of Adalimumab Is Feasible and Valuable in Clinical Setting 
	VAMS Is Suitable for Extraction of Adalimumab 
	Feasibility of Home Sampling by Non-Experienced Patients Using VAMS 
	Patient Experience with VAMS 

	Discussion 
	Conclusions 
	References

