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A B S T R A C T   

To develop a comprehensive evaluation method for Keemun black tea, we used micro-near-infrared spectros
copy, computer vision, and colorimetric sensor array to collect data. We used support vector machine, least- 
squares support vector machine (LS-SVM), extreme learning machine, and partial least squares discriminant 
analysis algorithms to qualitatively discriminate between different grades of tea. Our results indicated that the 
LS-SVM model with mid-level data fusion attained an accuracy of 98.57% in the testing set. To quantitatively 
determine flavour substances in black tea, we used support vector regression. The correlation coefficient for the 
predicted sets of gallic acid, caffeine, epigallocatechin, catechin, epigallocatechin gallate, epicatechin, galloca
techin gallate and total catechins were 0.84089, 0.94249, 0.94050, 0.83820, 0.81111, 0.82670, 0.93230, and 
0.93608, respectively. Furthermore, all compounds exhibited residual predictive deviation values exceeding 2. 
Hence, combining spectral, shape, colour, and aroma data with mid-level data can provide a rapid and 
comprehensive assessment of Keemun black tea quality.   

1. Introduction 

Keemun black tea is highly appreciated by consumers because of its 
intense aroma and unique flavour and quality. Tea are typically graded 
depending on the quality of freshly picked leaves and other sensory 
criteria. However, sensory evaluations are subjective (Zhi et al., 2017). 
To ensure the objectivity of tea evaluations, many studies have 
employed methods such as gas chromatography–mass spectrometry and 
liquid chromatography–mass spectrometry to determine the chemical 
compounds in tea. However, these methods are complex, highly sus
ceptible to environmental factors, and costly (Wang et al., 2021a). To 
overcome these limitations, researchers have used a series of objective 
and smart nondestructive testing techniques to evaluate the quality of 
tea. These techniques provide information on the colour, shape, aroma, 
and flavour of tea for the comprehensive analyses of tea samples. 

Near-infrared spectroscopy (NIRS) primarily relies on low-energy 
electronic transitions and stretching vibrations in hydrogen-containing 
groups, such as in C–H, N–H, O–H, P–H, and S–H (Arslan et al., 
2020). Due to the presence of hydroxyl-containing compounds like 

catechins and amino acids in tea leaves, near-infrared spectroscopy can 
be employed to detect these components. Firmani et al. (2019) used 
NIRS in conjunction with partial least squares discriminant analysis 
(PLS-DA) and soft independent modelling of class analogies to distin
guish Darjeeling tea with protected geographical indication from other 
varieties of adulterated Darjeeling tea. Although benchtop NIR spec
trometers provide accurate and objective results, they are difficult and 
expensive to use in complex environments outside the laboratory. 
Therefore, micro-NIR spectrometers have been integrated into smart
phones to achieve low cost and portability. micro-NIR spectrometers 
provide results similar to those of benchtop NIR instruments (Wang 
et al., 2020). Li et al. (2021) used smartphone-based micro-NIR tech
nology to classify black tea, achieving an accuracy of 100 % for the 
calibration set and 94.29 % for the prediction set. Although NIRS en
ables qualitative and quantitative assessments of key quality compo
nents in tea leaves (Chen et al., 2018), it cannot capture the visual 
characteristics of tea leaves. By contrast, a computer vision system (CVS) 
can extract information such as colour, texture, and shape from images 
of tea samples and can objectively reproduce the visual characteristics of 
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tea leaves. This technique can distinguish between colour change pat
terns of tea samples and predict the concentrations of colour-related 
compounds (Ren et al., 2021). Wang et al. (2023) used a CVS to 
extract colour variables from images of tea samples and to monitor the 
fermentation process of black tea. The results of this approach play a 
major role in the pricing and sale of tea leaves. Ren et al. (2021) used a 
CVS to extract six shape features from images of tea samples. Using these 
morphological features, they developed a prediction model with an 
accuracy of 100 % for evaluating the quality of black tea. However, none 
of these methods can detect components related to the aroma of tea 
leaves. By contrast, colorimetric sensor array (CSA) simulate the oper
ating principle of the human sense of smell, enabling the acquisition of 
aroma information from tea samples. Its principle is to use the response 
pattern of sensor array cross-reactivity to obtain specific fingerprint 
information for differentiation of the substances to be measured. Studies 
have reported that porphyrin materials produce cross-responses to vol
atile gases such as alcohols, amines, ethers, thioethers and thiols, aro
matics, halocarbons, and ketones (Li et al., 2022). Unlike electronic 
noses (e-noses), CSA is minimally affected by environmental conditions, 
such as temperature and humidity. Li et al. (2023) used the character
ization information obtained from CSA to achieve rapid quantitative 
prediction of major volatile organic compounds during black tea 
fermentation. Therefore, when a single technique is employed, only one 
aspect of tea samples is evaluated, which provides limited information 
for determining the quality of tea. 

Multiple technologies have been integrated to evaluate tea samples 
from different perspectives. Some studies have highlighted the benefits 
of integrating different sources of information for the comprehensive 
evaluation of tea samples. For instance, Liu et al. (2022) used NIRS in 
conjunction with a CVS to quantitatively predict moisture during green 
tea processing. They combined low- and mid-level data and discovered 
that mid-level data fusion yielded more favourable results. Zhou et al. 
(2023) used a CVS in conjunction with an e-nose to obtain colour and 
aroma information, and through data fusion, they detected the 
fermentation degree of black tea. Their results indicated that mid-level 
data fusion outperformed low-level data fusion. Overall, the quality of 
black tea is determined by its colour, shape, aroma, and flavour. To 
overcome the limitations associated with the use of a single technique, 
additional comprehensive sensor data should be analysed, and other 
data fusion strategies should be implemented to evaluate the quality of 
black tea. 

Black tea has various chemical components, of which catechins are 
one of the most crucial. During the production of black tea, catechins are 
gradually transformed into aromatic aldehydes, ketones, theaflavins, 
and thearubigins, which influence the aroma, flavour, and colour of 
black tea (Hua et al., 2021). These compounds have a substantial effect 
on the mouthfeel and flavour of black tea, thereby affecting its overall 
quality (Chen et al., 2018). In terms of sales, the quality of tea leaves 
influences the price of the final tea product, with higher-quality tea 
being more expensive than lower-quality tea. Therefore, to ensure the 
correct grading and pricing of tea leaves during the sale process, a rapid, 
accurate, and reliable method is required for evaluating tea quality. 

In this study, we investigated the use of multiple sensor technologies 
in conjunction with multivariate statistical analysis and data fusion 
strategies for the nondestructive, objective, and accurate measurement 
of black tea quality for the purpose of black tea classification. First, we 
used multiple sensor technologies, such as NIRS, computer vision, and 
colorimetric sensor array, to obtain spectral, shape, colour, and aroma 
data. Second, we developed qualitative discrimination models based on 
these spectral, shape, colour, and aroma data and evaluated the effects 
of low-, mid-, and high-level data fusion on black tea classification. 
Third, we developed customised smartphone software for NIRS for 
obtaining spectral data and build quantitative models for relevant 
flavour substances in black tea. Fourth, we compared individual spec
tral, shape, colour, and flavour data with other detection results after 
data fusion. 

2. Materials and methods 

2.1. Sample materials 

Keemun black tea samples were obtained from Xiangyuan Tea 
(Anhui, China). Based on their sensory evaluation, they were divided 
into seven grades: Grade 1, Grade 2, Grade 3, Grade 4, Grade 5, Grade 6, 
and Grade 7. 

2.2. Artificial sensory evaluation 

Based on the GB/T 23776–2018 “Tea sensory evaluation method”, 
nine tea assessors carried out an organoleptic assessment of the tea 
samples. The total tea sensory evaluation score is calculated as follows: 

Total sensory score = appearance × 25 % + liquor colour × 10 % +
aroma × 25 % + flavor × 30 % + infused leaf × 10 %. 

2.3. Spectrum acquisition 

A smartphone-compatible micro-NIR spectrometer was used to 
collect spectral data from seven varieties of Keemun black tea. Spectral 
data were collected using a NIR-S-R2 spectrometer (InnoSpectra Cor
poration, Taiwan, China) with a spectral range of 900–1700 nm and a 
scanning resolution of 7.03 nm. Six scans were averaged to obtain the 
final spectrum, resulting in a total of 228 data points (spectral variables) 
per spectrum. Approximately 50 g of tea was collected from each 
cultivar and ground into powder. This powder was then sieved through 
an 80-mesh sieve (with a mesh diameter of less than 0.180 mm) to 
obtain the samples. A total of 30 samples were prepared for each tea 
variety, which were used for spectral data collection. The spectral data 
were then saved in CSV format on the smartphone and uploaded to a 
computer for further processing and analysis. 

2.4. Image acquisition 

The imaging signals acquired in this study primarily consisted of 
colour and shape signals. The colour signals were acquired using a self- 
developed portable recording system consisting of a dark box, a digital 
camera, and a laptop. For image acquisition, approximately 10 g of black 
tea was accurately weighed in a Petri dish. The laptop was then used to 
extract the hue, saturation, and value (HSV) of each tea leaf image. 
Subsequently, the HSV colour channels were individually quantised to 
create feature vectors. The following methods were used to partition the 
HSV colour channels of each tea leaf image: 

H =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 h ∈ [0, 15] ∪ (345, 360]
1 h ∈ (15, 25]
2 h ∈ (25, 45]
3 h ∈ (45, 55]
4 h ∈ (55, 80]
5 h ∈ (80, 108]
6 h ∈ (108, 140]
7 h ∈ (140, 165]
8 h ∈ (165, 190]
9 h ∈ (190, 220]
10 h ∈ (220, 255]
11 h ∈ (255, 275]
12 h ∈ (275, 290]
13 h ∈ (290, 316]
14 h ∈ (316, 330]
15 h ∈ (330, 345]

, (1)  

S =

⎧
⎪⎪⎨

⎪⎪⎩

0 s ∈ (0, 0.15]
1 s ∈ (0.15, 0.4]
2 s ∈ (0.4, 0.75]
3 s ∈ (0.75, 1]

, (2)  
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V =

⎧
⎪⎪⎨

⎪⎪⎩

0 v ∈ (0, 0.15]
1 v ∈ (0.15, 0.4]
2 v ∈ (0.4, 0.75]
3 v ∈ (0.75, 1]

. (3) 

The quantised results of the HSV colour channels were combined into 
a one-dimensional feature vector, F, as follows: 

F = LSLV H + LV S+V (4)  

where LS is the number of quantisation levels for the S component, and 
LV is the number of quantisation levels for the V component. Equations 
(1), (2), (3), and (4) are used to obtain the feature vector F with values in 
the range of [0, 255]. The entire colour space is represented as a feature 
vector with 256 levels. To calculate the frequency of each feature vector, 
a histogram of colour features is created for denoting a colour feature. 

The shape signals were acquired using a self-developed image 
acquisition system consisting of an industrial camera (MV-U500, with a 
resolution of 2592 × 1944 pixels), a backlight, a roller sieve, a linear 
motion module, and a carrier platform. After the images were uploaded 
to the computer, shape feature parameters were extracted. Leaf width 
(d) is defined as the average width of a leaf, leaf length (l) is defined as 
the length of the leaf skeleton, leaf area (S) is defined as the number of 
pixels occupied by the leaf, and leaf perimeter (C) is defined as the 
number of pixels occupied by the outer contour of the leaf. The length- 
to-width ratio (N) represents the rectangularity of a single leaf, which is 
calculated as N = l/d. Rectangularity (R) represents the degree of filling 
of the bounding rectangle, which is calculated as R = S/(l × d). In this 
study, after the feature parameters were extracted, each feature was 
distributed within a specific range. For instance, the leaf length was 
distributed within the range of 0–36 mm with a step size of 3 mm. The 
leaf width was distributed within the range of 0–5 mm with an incre
ment of 0.5 mm. The leaf area was divided into intervals of 500 pixels 
within the range of 0–6000 pixels. The leaf perimeter was divided into 
intervals of 50 pixels within the range of 0–650 pixels. The length-to- 
width ratio was distributed within the range of 0.1–1 with an incre
ment of 0.1. Rectangularity was distributed within the range of 0–31 
with a step size of 5. The frequency of each feature was calculated, and a 
histogram of all shape features was created for denoting a shape feature. 

2.5. Aroma acquisition 

The selection of the materials in the study was based on our team’s 
previous working study, which found a strong response to the volatile 
components produced in tea. 

In this experiment, a CSA was developed to obtain aroma informa
tion from tea samples. To determine the optimal substrate and dabbing 
method for the sensor array, we examined the RGB response values of a 
CSA consisting of various combinations of C2 reversed-phase silica gel 
plates, filter papers, and Research Plus multichannel and microcapillary 
pipettes. We then compared the RGB response values of each dye dot in 
the sensor array to evaluate the performance of each combinations. 

As shown in Fig. S1, a CSA was fabricated using porphyrin. Chemi
cally reactive dyes were dissolved in N,N-dimethylacetamide solution 
and sonicated for 30 min to obtain a concentrated solution of 2 mg/mL 
porphyrin. A C2 reversed-phase silica gel plate was then used as a sub
strate for the CSA. Subsequently, a microcapillary pipette was used to 
draw 5 μL of the prepared dye solution and to deposit it on the silica gel 
plate, resulting in dye spots with a diameter of 3 mm. Finally, the CSA 
was allowed to dry in a ventilated fume hood for 15 min and then sealed 
for further use. 

To understand the reaction pattern and response time of the sensor 
array, the CSA was exposed to Keemun black tea samples as the reaction 
substrate. This step was conducted for examining the response of the 
CSA to the reaction substrate over an exposure period of 28 min, with 
RGB images of the sensor array acquired every 2 min, starting from the 
beginning of the reaction. This process enabled the generation of 

difference images, illustrating the temporal variations in the reaction. 
Through the analysis of these difference images, the optimal reaction 
time was identified, which could be applied in further experiments. 

During the procedure, 3 g of each black tea sample was placed in a 
clean Petri dish. The CSA was then positioned over different black tea 
samples, and the reaction proceeded at room temperature. RGB images 
of the CSA were captured using a flatbed scanner before and after the 
reaction. 

2.6. Chemical analysis 

The catechin content in various black tea samples was determined 
using the method outlined in the national standard titled “Determina
tion of Tea Polyphenols and Catechins in Tea” (GB/T 8313-2018). Fig. 1 
shows the experimental workflow employed in this study. 

2.7. Data fusion strategy 

Four algorithms, namely support vector machine (SVM), least- 
squares SVM (LS-SVM), extreme learning machine, and PLS-DA, were 
used to qualitatively differentiate between the grades of black tea. 
Support vector regression (SVR) was also used to quantitatively identify 
the flavour substances of black tea. 

Data fusion is a method for integrating information from diverse 
sources to enable a more comprehensive assessment. Typically, data 
fusion is classified into three levels: low, middle, and high. In low-level 
data fusion, data obtained from each sensor are simply merged, ensuring 
that all information is preserved. In mid-level data fusion, feature in
formation is extracted from various sensor data and combined to elim
inate redundancy and enhance computational efficiency. In high-level 
data fusion, individual regression models are constructed and the final 
predictions are generated by using the results of the model data from 
each sensor in combination. Consequently, the prediction results of each 
model can be analysed, and integrated decisions can be made. Fig. S2 
shows the data fusion strategy used in this study. 

2.8. Self-developed software 

This research is based on the Java programming language and uti
lizes Google’s official Integrated Development Environment tool, 
Android Studio, for software development. The main functions of the 
software include spectral scanning and model prediction. The acquired 
data is first transmitted via Bluetooth and stored on a mobile device. 
Subsequently, the data is preprocessed and feature extracted, and then 
the predictive models are used to classify the samples and calculate the 
catechin content. 

3. Results 

3.1. Sensory evaluation 

As shown in Table S1, when the quality of black tea decreased, the 
total score decreased. Other scores also demonstrated similar decreasing 
trends. In terms of appearance, the degree of uniformity of black tea 
gradually decreased when the sample colour shifted from black to grey. 
In terms of liquor colour, the degree of redness gradually decreased. In 
terms of aroma and flavour, the degree of sweetness decreased. In 
infused leaves, the degrees of both redness and tenderness decreased. 

Overall, the sensory quality of black tea is influenced by several 
factors. Generally, black teas with good raw material tenderness also 
have higher sensory quality (Zhang et al., 2011). In terms of raw ma
terial for Keemun black tea, higher-quality tea samples typically consist 
of leaves with greater plucking tenderness. Therefore, higher-quality 
black tea has greater sensory quality than lower-quality black tea. 
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3.2. Feature selection 

3.2.1. NIRS feature selection 
Fig. 2 A (a) and 3 A (b) show the original and averaged spectral 

curves obtained using micro-NIR spectroscopy. As indicated by these 
curves, the spectral trends of different grades of tea were similar. 
Prominent absorption peaks were observed in the wavelength ranges of 
920–930, 1190–1200, 1490–1500, and 1650–1660 nm. The absorption 
peak observed near 930 nm was ascribed to the second overtone of O–H 
vibration in water molecules. The peak observed within the range of 
1165–1180 nm was ascribed to the second overtone of –CH––CH in free 
amino acids and C–H vibration in catechins. The absorption peak 
observed near 1500 nm corresponded to the first overtone of O–H vi
bration in water molecules. The peak observed near 1650 nm was 

ascribed to the second overtone of C–H and S–H vibration in caffeine 
(Wang et al., 2021). 

3.2.2. CVS feature selection 
Fig. 2 B (a) depicts the images of different grades of black tea ac

quired using the self-developed portable acquisition system. Fig. 2 B (b) 
shows the resulting histograms after the distribution of various features 
within specific ranges. As indicated by the graphs, the features of higher- 
grade tea leaves were mainly distributed in the range of 125–175, 
whereas those of lower-grade tea leaves were mainly distributed in the 
range of 25–75. When the tea grade increased, the overall frequency of 
feature vectors demonstrated an initial increase followed by a decrease. 
Typically, feature vectors represent the quantification of hue, saturation, 
and brightness components, with higher frequency values indicating 

Fig. 1. Experimental flowchart.  
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stronger interactions between these components, resulting in more 
distinct colour characteristics. Hence, higher-grade tea leaves have a 
brighter and more vivid colour, whereas lower-grade tea leaves have a 
darker and less vivid colour. These findings were consistent with our 
sensory evaluation results. Overall, these findings may be ascribed to the 
high stem content in low-grade tea leaves, which affects the overall 
colour. 

Fig. 2 C (a) depicts the images of different grades of black tea ac
quired using the self-developed image acquisition system. Fig. 2 C (b) 
shows the resulting histograms after features were distributed with 
specific ranges. As indicated by the graphs, the distribution of shape 
features varied across different tea grades. However, relatively small 
differences in certain intervals were observed for adjacent tea grades. 
For instance, the leaf length was mainly distributed in the second in
terval, demonstrating an overall increasing trend followed by a 
decreasing trend. The leaf width was mainly distributed in the third 
interval, indicating wider leaves for tea of lower grades. The leaf area 
was mainly distributed in the first and second intervals, with smaller 
areas found for higher-grade tea leaves. The leaf perimeter was mainly 
distributed in the second and third intervals, demonstrating an overall 
increasing trend followed by a decreasing trend. The length-to-width 
ratio was mainly distributed in the first interval, indicating a gradual 
decrease in length as the tea grade decreased. Rectangularity was mainly 
distributed in the sixth and seventh intervals, demonstrating a gradual 
increase as the tea grade decreased. 

Higher-grade tea leaves are selected from fresh leaves comprising 
one bud and one or two leaves, whereas lower-grade tea leaves typically 
consist of one bud and three or four leaves. This distinction in leaf 
composition may result in higher-grade tea leaves exhibiting a finer and 
longer appearance than their lower-grade counterparts. However, 
certain characteristics of Grade 7 tea leaves deviate from this pattern. 
This deviation can be attributed to the fact that Grade 7 tea leaves have 
low quality requirements. To minimise costs and prevent the wastage of 

raw materials, manufacturers can combine leftover materials from other 
grades to produce Grade 7 tea leaves (Song et al., 2021). 

3.2.3. CSA feature selection 
Fig. 3(a) presents the comparison results of the response differences 

of arrays constructed using various combinations of C2 reversed-phase 
silica gel plates, filter papers, and Research Plus multichannel and 
microcapillary pipettes. Under the same conditions, the response dif
ferences of the sensor arrays varied. Specifically, the combination of C2 
reversed-phase silica gel plates and microcapillary pipettes exhibited 
higher RGB response values than other combinations. Therefore, this 
combination was selected as the optimal method for the sensor array in 
the subsequent experiment. 

Fig. 3(b) shows the comparison results of the optimal response time. 
At the beginning of the experiment, a substantial colour change was 
observed in the dye spots. However, with the reaction time, the intensity 
of colour change gradually diminished, until it reached saturation at 
approximately 22 min. Consequently, in subsequent experiments, an 
optimal response time of 22 min was selected. 

Fig. 3(c) depicts RGB difference images of the response array before 
and after the reaction for various grades of tea samples. Because of 
differences in raw materials, each grade of black tea contains distinct 
volatile flavour substances. After interaction with these chemical com
ponents, the porphyrin dyes in the response array exhibited character
istic colour changes. The number and brightness of the reaction spots 
clearly revealed distinct colour change patterns for different tea grades. 
Additionally, the similarity in colour change patterns obtained from 
difference images in parallel experiments using the same tea grade 
suggested favourable reproducibility of the experiment. Notably, the 
colour changes of the reaction spots were similar for Grades 1, 2, 3, and 
4 and for Grades 6 and 7, indicating similar volatile flavour substances in 
adjacent tea grades. 

Fig. 2. A (a) Raw data and A (b) average data of spectral curves of different grades of Keemun black tea. B (a) Computer vision acquisition of colour images and B (b) 
Colour feature histogram of different tea grades. C (a) Computer vision acquisition of shape images and C (b) Shape feature histogram of different tea grades. 
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Fig. 3. (a) Comparison of bar charts of the optimal base plate and point board method. (b) Comparison of optimal response time difference images. (c) Difference 
images of finished products for different black tea grades in a CSA. 
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3.2.4. Data analysis of quality components 
Fig. 4 presents the concentrations of various flavour substances in 

each grade of black tea. As the tea grade increased, the concentration of 
gallic acid (GA) initially decreased, then increased, and decreased again. 
As the tea grade increased, the concentration of caffeine (CAFF) initially 
increased, then decreased, then increased again, and finally decreased. 
As the tea grade increased, the concentrations of catechins initially 
increased, then decreased, and then increased again. Particularly, the 
concentration of epigallocatechin (EGC) was high. These findings can be 
attributed to the extensive degradation of epigallocatechin gallate 
(EGCG), epicatechin gallate (ECG), and epicatechin (EC) during the 
fermentation of black tea, leading to decreases in their concentrations. 
During the fermentation process, the hydrolysis of galloylated catechins 
may have produced some non-galloylated catechins, such as EGC (Zhang 
et al., 2019). 

3.3. Prediction models for data from a single sensor 

The K-S sample partitioning algorithm was utilized to randomly 
divide the samples into training and prediction sets in a 2:1 ratio. 
Table S2 presents the prediction results of various algorithms for Kee
mun black tea grading. 

Among the four models, the SVM model consistently outperformed 
the other models in terms of spectral, shape, colour, and aroma data. For 
micro-NIR spectral data, the SVM model achieved an accuracy of 100 % 
on the training set and 91.43 % on the prediction set. For colour and 
shape data, the SVM model also achieved an accuracy of 100 % and 
99.29 %, respectively, on the training set and 90.00 % and 85.71 %, 
respectively, on the prediction set. However, for aroma data, the SVM 
model achieved an accuracy of 95 % on the training set and only 77.14 
% on the prediction set. Because implementing a single technique cap
tures only one aspect of the characteristics of a sample, the discrimi
natory accuracy of these models is relatively low. Therefore, these 
models should be integrated to comprehensively evaluate tea quality 
from multiple perspectives. 

3.4. Discriminant models for multilevel data fusion 

The data obtained from various techniques are typically multidi
mensional and may contain a large amount of irrelevant information. If 
all of this information is used for modelling, the prediction accuracy of 

the model used may decrease. Therefore, for modelling, variable selec
tion methods are required to select highly relevant feature variables 
from all variables. Table S3 presents the prediction results of classifi
cation models for Keemun black tea grading with different variable se
lection methods, including competitive adaptive reweighted sampling, 
particle swarm optimisation (PSO), successive projections algorithm, 
and variable combination population analysis. For spectral, colour, and 
shape data, the PSO model outperformed the other models, achieving 
identification rates with an accuracy of 99.29 %, 100.00 %, and 95.71 
%, respectively, on the training set and 94.29 %, 92.86 %, and 87.14 %, 
respectively, on the prediction set, thereby yielding satisfactory results. 
However, for aroma data, the performance of the variable selection 
methods was lower than that for the original data. This discrepancy may 
be attributed to fewer variables in the aroma data and because the 
variable selection methods may have eliminated useful information 
along with useless information. 

In this study, data fusion was used to integrate spectral, colour, 
shape, and aroma data obtained using NIRS, CVS, and CSA techniques, 
with low-, mid-, and high-level data fusion. The mid-level fusion data 
consisted of the four types of single-sensor data from obtained after PSO- 
based variable selection, whereas the high-level fusion data consisted of 
the model calculation results of the four types of single-sensor data 
obtained using PLS-DA. Table 1 presents the discrimination results ob
tained by applying four models to the fused data. Among all models, the 
LS-SVM model exhibited the highest performance. In low-level fusion, 
the discrimination accuracy of 100 % on the training set and with four 
misclassified samples out of 70 in the prediction set, resulting in an 
accuracy of 94.29 %. Among all fusion methods, mid-level fusion 
exhibited the highest overall performance, with a discrimination accu
racy of 100 % on the training set and with only one misclassified sample 
in the prediction set, resulting in an accuracy of 98.57 %. 

3.5. Quantitative prediction of the concentrations of chemical components 

An SVM regression model was constructed using spectral data com
bined with the measured concentrations of flavour substances. The 
model results are listed in Table 2. In terms of predicting the concen
trations of CAFF, catechin (C), and EC, the SVR models constructed 
using preprocessed data achieved the highest prediction performance 
among all models. For these three-component prediction models, The 
correlation coefficient for the training sets (Rc) were all greater than 0.9, 

Fig. 4. Concentrations of flavour substances in different Keemun black tea grades. *Letters in Fig. 4 represent significant differences in flavour substances in different 
grades of tea. 
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and the correlation coefficient for the predicted sets (Rp) were all 
greater than 0.8, thereby indicating the high prediction accuracy of the 
models. However, after variable selection, the prediction performance of 
the three components decreased, presumably because of the removal of 
crucial feature wavelengths during the selection process. 

In terms of predicting the concentrations of GA, EGC, EGCG, gallo
catechin gallate (GCG), and total catechins, the SVR models constructed 
using preprocessed and variable-selected data achieved the highest 
prediction performance among all models. The Rc and Rp values were 
all greater than 0.8. The preprocessing of most of the data resulted in 
improved prediction performance, suggesting that data preprocessing 
can aid in retaining useful information while eliminating interfering 
factors, such as noise. In addition, all models exhibited residual pre
dictive deviation (RPD) values greater than 2.0, indicating their high 
accuracy for the quantitative prediction of the concentrations chemical 
components among different tea grades. 

4. Discussion 

Keemun black tea is primarily graded depending on its colour, 
aroma, flavour, and shape. Computer vision can be used to obtain in
formation on the shape and colour of black tea. Each grade of black tea 
has a certain shape. However, the shape variations between adjacent 
grades are small. These findings are consistent with those of Song et al. 
(2021). In terms of colour, higher-grade tea leaves have a vibrant and 
bright colour, whereas lower-grade tea leaves tend to have a less vibrant 
and darker colour. Colorimetric sensor array is used to obtain infor
mation on the aroma of black tea. Each grade of black tea has a distinct 
content of volatile aroma substances. However, the colour variations 
between adjacent grades are small. These findings are consistent with 
those of Huo et al. (2014). NIRS is used to obtain information on the 
aroma and flavour of black tea. Several grades of tea exhibit similar 
NIRS spectra, indicating similar flavour attributes. These findings are 
consistent with those of Wang et al. (2021b). 

Table S4 presents the results of some studies on the quality of 
different grades of tea. According to the results of traditional sensory 
evaluation methods, higher-grade tea has higher overall sensory quality 
scores, with the concentrations of flavour substances serving as the 
material basis for high-quality tea (Pang et al., 2022). However, tradi
tional sensory evaluation methods are subjective. Han et al. (2022) and 
Zeng et al. (2023) have used liquid chromatography quadrupole time-of- 
flight mass spectrometry and gas chromatography–mass spectrometry to 
objectively analyse tea leaves. These techniques, however, are associ
ated with high costs and complex operation. Therefore, more convenient 
nondestructive testing techniques have been introduced. Liu et al. 
(2019) used NIR technology to identify different grades of green tea, 
achieving an accuracy of 100 %. However, the use of a single technology 
detects only specific quality characteristics. Therefore, data fusion has 
been introduced to improve model accuracy. Xu et al. (2019) reported 

that the integration of an e-nose and computer vision technology 
increased the accuracy of tea quality identification in comparison with 
the use of a single sensor. Similarly, Ren et al. (2020) successfully 
differentiated between black tea grades by combining spectral and 
image information. However, in these studies, no comprehensive ana
lyses of tea samples were conducted. Given the small differences be
tween adjacent grades of Keemun black tea and the potential for 
confusion, combining multiple sensory technologies is necessary to 
comprehensively capture the quality characteristics of black tea and to 
achieve precise and objective quality assessments. In this study, we 
combined spectroscopy with shape, colour, and aroma data to classify 
tea grades, providing a more comprehensive approach. We also imple
mented different data fusion strategies, including low-, mid-, and high- 
level fusion strategies. 

Most of the aforementioned studies have focused on the qualitative 
discrimination of tea grades. In this study, we applied micro-NIRS 
technology to quantitatively evaluate flavour substances in different 
grades of Keemun black tea. In the future, we intend to develop a mobile 
app for the rapid identification of the grade of Keemun black tea, and we 
will integrate it into an online detection system. Compared with tradi
tional detection techniques, our technique is faster, nondestructive, and 
capable of rapidly monitoring a large number of samples. These capa
bilities lay the foundation for the development of online monitoring 
tools. This simple yet efficient method, which requires minimal opera
tion, can be useful for protecting consumer rights and regulating the 
market. 

5. Conclusion 

In this study, we examined the feasibility of integrating spectroscopy 
with shape, colour, and aroma data for evaluating the quality of 
different grades of Keemun black tea. Using multiple data fusion stra
tegies, including low-, mid-, and high-level data fusion, we developed a 
discrimination model that is more accurate than models based on a 
single method. Among all models, the LS-SVM model combined with 
mid-level data fusion achieved the highest accuracy (98.57 %) on the 
test set. We also used spectroscopic data to quantitatively determine 
flavour substances in black tea. For GA, CAFF, EGC, C, EGCG, EC, GCG, 
and total catechins, the Rc values were 0.96767, 0.96165, 0.96606, 
0.91554, 0.83693, 0.99827, 0.96288, and 0.98500, respectively, and 
the Rp values were 0.84089, 0.94249, 0.94050, 0.83820, 0.81111, 
0.82670, 0.93230, and 0.93608, respectively. All RPD values were 
greater than 2. In summary, we developed a comprehensive strategy for 
evaluating the quality of different grades of Keemun black tea, thereby 
overcoming the limitations of single-sensor data. This strategy can be 
widely implemented to predict the concentrations of flavour substances 
in different grades of black tea. 

Table 1 
Model discrimination results based on multi-layer fusion information.  

Data Model NVs Parameter Calibration set Prediction set 

Result CCR Result CCR 

Low-level SVM 591 c = 12.126, g = 0.009 139/140  99.29 % 49/70  70.00 % 
LS-SVM 591 σ2 ¼ 259.450, γ¼ 333.070 140/140  100.00 % 66/70  94.29 % 
ELM 591 n = 53 121/140  86.43 % 42/70  60.00 % 
PLS-DA 591 LVs = 3 55/140  39.29 % 26/70  37.14 % 

Middle-level SVM 304 c = 194.012, g = 0.016 140/140  100.00 % 50/70  71.43 % 
LS-SVM 304 σ2 ¼ 934.417, γ ¼ 53.067 140/140  100.00 % 69/70  98.57 % 
ELM 304 n = 53 115/140  82.14 % 38/70  54.29 % 
PLS-DA 304 LVs = 2 54/140  38.57 % 26/70  37.14 % 

High-level SVM 4 c = 0.001, g = 0.082 127/140  90.71 % 63/70  90.00 % 
LS-SVM 4 σ2 ¼ 1.846, γ ¼ 3.795 129/140  92.14 % 66/70  94.29 % 
ELM 4 n = 33 119/140  85.00 % 55/70  78.57 % 
PLS-DA 4 LVs = 4 109/140  77.86 % 57/70  81.43 %  
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Table 2 
Prediction model results of Keemun black tea flavour substances based on SVR.  

Flavour substances Model N Parameter Calibration set Prediction set  

Rc RMSEC Rp RMSEP RPD 

GA raw-SVR 228 c = 64, g = 0.25  0.78215  0.02843  0.64750  0.03748  7.80 
MSC-SVR 228 c = 1.3195, g = 1024  0.98675  0.00248  0.83273  0.02673  10.93 
SNV-SVR 228 c = 1.3195, g = 2.2974  0.98533  0.00275  0.83596  0.02640  11.07 
detrend-SVR 228 c = 6.9644, g = 337.7940  0.98849  0.00223  0.81270  0.02984  9.79 
SNV-CARS-SVR 16 c = 21.1121, g = 0.0825  0.78296  0.03606  0.78430  0.03273  8.93 
SNV -PSO-SVR 115 c ¼ 1.3195, g ¼ 4  0.96767  0.00604  0.84089  0.02613  11.18 
SNV -SPA-SVR 6 c = 12.1257, g = 2.2974  0.87309  0.02165  0.79316  0.03597  8.12 

CAFF raw-SVR 228 c = 588.1336, g = 0.7579  0.66633  1.46282  0.59004  1.63990  0.97 
MSC-SVR 228 c = 6.9644, g = 1024  0.95767  0.21426  0.79430  0.92299  1.72 
SNV-SVR 228 c ¼ 4, g ¼ 4  0.96165  0.19628  0.94249  0.78878  2.01 
detrend-SVR 228 c = 6.9644, g = 1024  0.93994  0.30974  0.70611  1.29427  1.23 
SNV-CARS-SVR 9 c = 6.9644, g = 21.1121  0.76536  1.10858  0.69325  1.30098  1.22 
SNV-PSO-SVR 120 c = 6.9644, g = 4  0.95855  0.20941  0.77918  0.98670  1.61 
SNV-SPA-SVR 20 c = 337.7940, g = 1.3195  0.69636  1.34749  0.70343  1.30542  1.22 

EGC raw-SVR 228 c = 1024, g = 4  0.96378  0.48084  0.88055  1.44331  1.76 
MSC-SVR 228 c = 1024, g = 4  0.94672  0.69236  0.89541  1.27572  1.99 
SNV-SVR 228 c = 1024, g = 0.0090  0.94483  0.71573  0.89422  1.29048  1.97 
detrend-SVR 228 c = 588.1336, g = 21.1121  0.96289  0.50830  0.90451  1.21140  2.10 
detrend-CARS-SVR 34 c ¼ 337.7940, g ¼ 337.7940  0.96606  0.46023  0.94050  0.75619  3.37 
detrend-PSO-SVR 131 c = 337.7940, g = 111.4305  0.98135  0.26957  0.90792  1.18229  2.15 
detrend-SPA-SVR 4 c = 194.0117, g = 1024  0.89033  1.35514  0.86096  1.65931  1.53 

C raw-SVR 228 c = 6.9644, g = 12.1257  0.85907  0.01976  0.73203  0.03718  7.26 
MSC-SVR 228 c = 6.9644, g = 36.7583  0.82991  0.02219  0.76947  0.03201  8.44 
SNV-SVR 228 c = 6.9644, g = 0.0825  0.82604  0.02261  0.76833  0.03222  8.38 
detrend-SVR 228 c ¼ 0.4353, g ¼ 1024  0.91554  0.01273  0.83820  0.02452  11.01 
detrend-CARS-SVR 25 c = 6.9644, g = 194.0117  0.79905  0.02718  0.73156  0.03668  7.36 
detrend-PSO-SVR 94 c = 6.9644, g = 1024  0.98744  0.00180  0.79834  0.02719  9.93 
detrend-SPA-SVR 14 c = 1.3195, g = 1024  0.79382  0.02699  0.70170  0.03983  6.78 

EGCG raw-SVR 228 c = 588.1336, g = 0.7579  0.86638  0.02183  0.69835  0.03245  7.78 
MSC-SVR 228 c = 1.3195, g = 588.1336  0.95801  0.00708  0.71035  0.03229  7.82 
SNV-SVR 228 c = 1.3195, g = 1.3195  0.95394  0.00778  0.71145  0.03210  7.87 
detrend-SVR 228 c = 36.7583, g = 12.1257  0.83063  0.02856  0.70293  0.03246  7.78 
detrend-CARS-SVR 17 c ¼ 6.9644, g ¼ 2.2974  0.83693  0.02440  0.81111  0.02215  11.40 
detrend-PSO-SVR 113 c = 2.2974, g = 1.3195  0.93329  0.01102  0.72003  0.03069  8.23 
detrend-SPA-SVR 4 c = 588.1336, g = 0.0825  0.70227  0.04106  0.42659  0.03841  6.57 

EC raw-SVR 228 c = 1024, g = 0.1436  0.79936  0.06240  0.82348  0.05998  7.08 
MSC-SVR 228 c = 21.1121, g = 36.7583  0.87562  0.04074  0.80499  0.06280  6.76 
SNV-SVR 228 c = 6.9644, g = 0.1436  0.84719  0.04924  0.79949  0.06449  6.59 
detrend-SVR 228 c ¼ 4, g ¼ 1024  0.99827  0.00066  0.82670  0.05907  7.19 
detrend-CARS-SVR 28 c = 6.9644, g = 1024  0.85763  0.04621  0.82105  0.05803  7.32 
detrend-PSO-SVR 107 c = 1.3195, g = 588.1336  0.81701  0.05894  0.79832  0.06819  6.23 
detrend-SPA-SVR 5 c = 36.7583, g = 337.7940  0.72687  0.08128  0.68969  0.09393  4.52 

GCG raw-SVR 228 c = 588.1336, g = 1.3195  0.97191  0.01014  0.90149  0.03423  12.40 
MSC-SVR 228 c = 6.9644, g = 588.1336  0.99974  0.00010  0.93071  0.02610  16.26 
SNV-SVR 228 c = 6.9644, g = 1.3195  0.99974  0.00010  0.93098  0.02605  16.29 
detrend-SVR 228 c = 588.1336, g = 1.3195  0.94119  0.02181  0.87707  0.04159  10.21 
SNV-CARS-SVR 26 c ¼ 2.2974, g ¼ 6.9644  0.96288  0.01321  0.93230  0.02400  17.69 
SNV-PSO-SVR 112 c = 4, g = 2.2974  0.99912  0.00033  0.91524  0.03052  13.91 
SNV-SPA-SVR 1 c = 1.3195, g = 194.0117  0.89673  0.03547  0.87179  0.04309  9.85 

Total catechins raw-SVR 228 c = 1024, g = 2.2974  0.94186  1.11227  0.84704  2.5337  1.18 
MSC-SVR 228 c = 64, g = 111.4305  0.98007  0.37653  0.90168  1.66529  1.79 
SNV-SVR 228 c = 64, g = 0.2500  0.97849  0.40774  0.90173  1.66452  1.79 
detrend-SVR 228 c = 337.7940, g = 194.0117  0.99999  0.00010  0.88199  2.13100  1.40 
SNV-CARS-SVR 28 c ¼ 21.1121, g ¼ 12.1257  0.98500  0.26878  0.93608  1.13169  2.64 
SNV-PSO-SVR 109 c = 337.7940, g = 0.2500  0.98711  0.23312  0.88995  1.88097  1.59 
SNV-SPA-SVR 11 c = 337.7940, g = 0.7579  0.95425  0.82753  0.81030  3.52120  0.85  
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