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Abstract

Background

Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-

term disease free and overall survival. Responses of locally advanced breast cancer in

the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of

response is imperfect. The purpose of this study was to detect primary tumor responses

early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), tex-

tural analysis and molecular features in patients with locally advanced breast cancer.

Methods

The study included ninety six patients treated with neoadjuvant chemotherapy. Breast

tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment,

during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultra-

sound parameters and scatterer-based features were calculated from ultrasound radio

frequency (RF) data within tumor regions of interest. Additionally, texture features were

extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle

biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined.

Patients were classified into three treatment response groups based on combination of clini-

cal and pathological analyses: complete responders (CR), partial responders (PR), and

non-responders (NR). Response classifications from QUS parameters, receptors status

and pathological were compared. Discriminant analysis was performed on extracted param-

eters using a support vector machine classifier to categorize subjects into CR, PR, and NR

groups at all scan times.
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Results

Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively.

The best prediction of treatment response was achieved with the combination mean QUS

values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4,

and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone

predicted the three response groups with accuracies less than 60% at all scan time points.

Recurrence free survival (RFS) of response groups determined based on combined fea-

tures followed similar trend as determined based on clinical and pathology.

Conclusions

This work demonstrates the potential of using QUS, texture and molecular features for pre-

dicting the response of primary breast tumors to chemotherapy early, and guiding the treat-

ment planning of refractory patients.

Introduction

Neoadjuvant chemotherapy (NAC) is commonly used to treat patients with locally advanced

breast cancer (LABC) and a common option for primary operable disease. LABC are large

breast tumors greater than 5 cm, including stage 3/4 disease, and in some cases, involve the

skin and chest wall. They also typically involve axillary or peripheral lymph nodes and are

often surgically unrespectable. The advantage of NAC is that it reduces tumor volume [1] mak-

ing patients operable and also treats micro-metastatic disease up-front. Unfortunately, not all

patients respond well to NAC. Pathological response is a prognostic indicator for long-term

disease free survival (DFS) and overall survival (OS); with pathological complete responding

patients having better overall survival compared to partially responding patients [2]. This high-

lights the importance of early detections of ultimate patient responses to cancer therapies. Sev-

eral studies have indicated that patients who do not respond to initial chemotherapy may

benefit from salvage therapies (additional systemic chemotherapy or preoperative radiation or

surgery) [3–5], in the case where there is insufficient intra-treatment response. Specifically, in

a response-guided neoadjuvant chemotherapy for breast cancer study [4], breast cancer

patients were treated with two cycles of docetaxel, doxourubicin, and cyclophophamide (TAC)

and randomly assigned early non-responders to four cycles of TAC or vinorelbine and capec-

tiabine (NX) before surgery. In that study, researcher reported that disease free survival was

longer in early non-responders receiving TAC-NX than in those receiving TAC x 6. In the

Aberdeen study [3], LABC patients underwent CVAP x 4 (cyclophosphamide / vincristine /

doxorubicin / prednisone) chemotherapy treatment and randomly assigned early complete

and partial responders to further CVAP x 4 or docetaxel x 4. In that study, researcher reported

that patients receiving docetaxel had significant higher clinical response rate (94%) than

patient receiving CVAP (64%). However, at present, primary tumor response to NAC is evalu-

ated based on changes in tumor size, and histological examinations of the sectioned operative

specimen which take place typically months after chemotherapy treatment. This late assess-

ment of treatment response is mainly due to limitations from current imaging modalities,

such as magnetic resonance imaging (MRI), x-ray mammography, and conventional ultra-

sound which mainly rely on morphological-based size changes of tumor. An imaging modality

which can assess significant changes in cell death related tumor micro-structure would be

advantageous for the early assessment of treatment response.
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A significant number of studies have demonstrated that quantitative ultrasound (QUS) tech-

niques may be used to characterize various tissue types, classify tissue abnormalities compared

to normal tissues, and differentiate tumor types [6–8]. In preclinical studies, QUS techniques

have been demonstrated in the detection tumor response to cancer therapies such as chemo-

therapy, photodynamic therapy, X-ray radiation therapy and ultrasonically-stimulated anti-vas-

cular microbubble treatment, or combinatorial treatments [9–13]. In a pilot clinical study with

a limited number of patients, QUS techniques were used to differentiate clinical/pathological

responders and non-responders in an LABC population treated with NAC early after the start

of treatment (sensitivity: 77% and specificity: 86% at week 1; sensitivity: 83% and specificity:

100% at week 4) [14,15]. In those studies, QUS parameters such as mid-band fit (MBF), spectral

slope (SS) and 0-MHz intercept (SI), average scattering diameter (ASD), and average acoustic

concentration (AAC) were investigated and exhibited a strong correlation with primary tumor

response. Such parameters reflect tissue micro-structural properties such as scatter size, shape,

organization in addition to elastic properties. A recent study has reported an improvement in

accuracy in differentiating responder and non-responder groups early at week 1 after NAC ini-

tiation (sensitivity: 100% and specificity: 100%) [16] by combining QUS parameter and texture

features such as contrast, correlation, energy and homogeneity. These texture parameters quan-

tify the spatial relationship between neighboring regions with respect to acoustic properties.

Scatterer spacing (SAS) which is spacing between two adjacent scatterers has also been widely

used in tissue characterization applications when tissue contains a detectable periodicity in its

structural organization. Recently, it has been used in breast tumor studies such as differentiating

normal breast tissue, fibroadenomas, simple carcinomas [17], and characterizing locally

advanced breast tumors based on histological grading [18]. Several investigators have evaluated

the relationship between breast cancer molecular features and pathological complete response

after NAC. In an early stage breast cancer study, researchers investigated the relationship

between molecular features and recurrence free survival (RFS) and found a strong correlation

of ER, PR, and HER2 receptor scores with RFS (p = 0.007–0.019) [19]. Similarly, in an LABC

study, investigators have been reported that HER2+ and triple negative breast cancer exhibit

higher rate of pathological complete response [2,20]. These finding suggests that molecular sub-

types are an important prognostic factor in deciding tumor responses to NAC.

Previous studies by our group have mainly focused on responder (CR+PR) and non-

responder classification early after NAC [14,16]. Given data [21] indicating that pathological

partial responders have significantly lower overall survival (OS) than pathological complete

responders that previous work has been expanded here. In the present study, we examined 96

LABC patients who received NAC studied over a period of 5 years. In the study here, patients

were divided into three response groups complete, partial, and non-responders based on com-

bined clinical and pathological responses and, then the correlation of quantitative ultrasound,

texture features estimated from primary tumor ultrasound data and clinical/pathological

response were investigated. Finally, a multi-feature classification model was developed to dif-

ferentiate complete responders, partial responders and non-responders early after NAC initia-

tion. This work demonstrates a method to predict three type of treatment response based on

mean values of QUS parameters, texture, and molecular features, and could potentially be

used in the future to help clinicians personalize NAC for locally-advanced breast cancer.

Methods

Study design

This locally advanced breast tumor response monitoring study was approved by the Sunny-

brook Research Institute research ethics board. Ninety six locally advanced breast cancer
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patients were enrolled and all signed an informed consent form before participating in this

study. Prior to treatment, as part of their clinical care, MRI images of the breast were acquired

for each patient to determine initial tumor size and all patients were subjected to a core needle

biopsy to confirm a cancer diagnosis, where information regarding histological subtype and

hormone receptors status such as estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor 2 (HER2) of tumor were recorded. Physical examina-

tion was conducted after each cycle of chemotherapy and size and stiffness of tumor was

assessed by clinicians. Post-treatment MRI scans of the breast were also acquired immediately

before patient surgery to measure residual tumor size. Axillary lymph node statuses were

recorded before and after neoadjuvant chemotherapy. Ultrasound data were collected from

each patient at 5 specific times during treatment. The first scan was before the start of chemo-

therapy and next three scans were at weeks 1, 4, and 8 during treatment, and final scan was

one week before mastectomy. After mastectomy, surgical specimens were prepared onto a

5˝×7˝ whole-mount pathology slide and digitized using a confocal scanner (TISSUEscopeTM,

Huron Technologies, Waterloo, ON). A board-certified pathologist examined the specimens

and reported the results into the patient’s medical chart. Tumor responses were classified into

three groups based on changes detected in primary breast tumor to neoadjuvant chemother-

apy as reported in previous imaging studies [22–26]. Patients who had no clinical evidence of

tumor in the breast and no histological evidence of invasive carcinoma on pathologic examina-

tion of the surgical specimen were classified as complete responders (CR). Patients who had at

least a 50% decrease in tumor size and significant decrease in tumor cellularity after treatment

were classified as partial responders (PR). Patients who had less than 50% decrease in tumor

size accompanied by no significant changes in tumor cellularity were classified as non-

responders (NR). Data presented here includes that from a pilot cohort of 35 patients [16].

Quantitative ultrasound parameter estimation

All radio frequency (RF) ultrasound data were collected using a Sonix RP clinical research sys-

tem (Analogic Medical Corp., Vancouver, Canada) equipped with a linear array transducer

(L14-5/60, Analogic Medical Corp., Vancouver, Canada) with a central frequency of 7 MHz

and bandwidth of 4–9 MHz. Data were digitally collected with a sampling frequency of 40

MHz. From each breast tumor, 4 to 6 frames were collected with intervals of 1 cm across the

breast, with the transducer focus at the centre of the tumor. The sector size for each image

frame was 6 cm along the lateral direction and 4–6 cm along the axial direction.

From each ultrasound frame, several parameters such as MBF (mid-band fit), SS (spectral

slope), SI (spectral intercept), ACE (attenuation co-efficient estimate), SAS (spacing among

scatterers), ASD (average scatterers diameter) and AAC (average acoustic concentration) were

determined using quantitative ultrasound methods. In this technique, tumor regions of inter-

est were selected. Each region of interest was divided into window blocks of size 10λ x 10λ
with a 94% overlap in axial and lateral directions. The tumor attenuation (ACE) was calculated

using a spectral difference method. A reference phantom technique was used to account for

clinical system dependences in quantitative ultrasound parameter estimation. The reference

phantom (attenuation: 0.576 dB/MHz/cm; speed of sound: 1488 m/s) was made of 5 to 30 μm

glass beads embedded in a homogeneous background of microscopic oil droplets in gelatin

(Medical Physics Department, University of Wisconsin, USA). The MBF, SS and SI were cal-

culated by linear regression analysis of the normalized backscatter power spectrum over the

frequency bandwidth of the transducer [27]. The scattering spacing, SAS, which represents the

distance between adjacent scatterers was determined using an autoregressive spectral analysis

method by modeling the tumor echo signal as an autoregressive signal [28]. For SAS parameter
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estimation, the power spectrum was normalized to that of a plexiglas planar reflector. The

ASD and AAC parameters were derived from the backscatter coefficient by comparing mea-

sured data with a theoretically derived backscatter coefficient using a Spherical Gaussian scat-

terer model (SGM) [29]. Finally, colour coded parametric maps for each estimated

quantitative ultrasound parameters were developed by generating a spatial map of the parame-

ter values computed over all window blocks.

Texture analysis

In addition to the mean values of quantitative ultrasound parameters which is determined by

averaging QUS parametric map values, spatial distributions of QUS parameters in parametric

maps were evaluated using a gray-level co-occurrence matrix (GLCM) [30] method, which

represents the angular relationship between neighboring pixels as well as their distances in

parametric maps. Sixteen symmetric GLCMs were constructed for each parametric map, con-

sidering each pixel’s neighbors located at different distances and directions, i.e, at distances of

1 pixel, 2 pixels, 3 pixels and 4 pixels, and at angles of 0˚, 45˚, 90˚, and 135˚. From each sym-

metric GLCM, four texture features such as contrast (CON), correlation (COR), homogeneity

(HOM), and energy (ENE) were determined and averaged. Hence, in this study, a total of 28

textural features (four texture features from MBF, SS, SI, SAS, ASD and AAC parametric

maps) were computed. A total of 65 features (7 mean of QUS parameters before treatment, 24

texture features before treatment, 7 changes in mean of QUS parameters after treatment, 24

changes in texture features after treatment, and molecular features such as ER, PR, and HER2)

were submitted to a support vector machine (SVM) classifier in order to best determine a

three type of response classification.

Tumor response classification analysis

In order to detect tumor response, a multi-feature response classification was performed on

three feature sets such as mean QUS values + texture, molecular features, mean QUS values

+ texture + molecular features using a support vector machine (SVM) with radial basis func-

tion (RBF) kernel classifier. The grid-search on C and γ which define the kernel function here

was performed for the range of 28, 29, 210,. . .,215 and 2−18, 2−17, 2−16,. . .2−5, respectively and

identified optimal values for these parameters. The feature selection was performed based on

accuracy value in differentiating three response groups using a sequential forward selection

(SFS) method which learns that which features are most informative at each time step, choos-

ing the next features based on already selected features and the internal “belief” of the classifier.

Prior to classification analysis, the estimated data set was randomly subsampled into 10 sub-

sets, such that each subset had equal number of the CR, PR and NR population members,

which was required to account for the imbalance that existed in the data (CR = 21, PR = 52,

NR = 23). For each iteration (number of sample = 63), optimal C and γ parameters selected by

grid-search, the optimal multivariate QUS model were obtained by using sequential forward

selection and results were validated using leave-one-out cross validation. Based on classifica-

tion rules, six features were selected for each subset [31]. Finally, the optimal features were

selected from feature histogram of all selected features of 10 subsets.

Statistical analysis

Statistical tests were used to compare response groups, in terms of mean QUS and texture-

based parameters. To determine the type of statistical test to use to compare the groups, a Sha-

piro-Wilk normality test was performed on each feature data set to determine whether it fol-

lows a normal distribution. For two response group comparisons: CR vs PR, CR vs NR, and PR
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vs NR at each scan time point, an unpaired t-test was completed for the datasets that passed

the normality test, otherwise, Mann-Whitney unpaired test was used. For comparison of three

response groups at each scan time point and also within the time points, a one-way ANOVA

was performed for the datasets that passed the normality test; otherwise, the Kruskal-Wallis

test was used. Recurrence free survivals for all three response populations were created by the

Kaplan-Meier method to clarify the time dependent cumulative survival rate, and the curves

were compared using a log-rank test. A value of p< 0.05 was considered to determine statisti-

cal significance.

Results

Patient characteristics

This locally advanced breast tumor response monitoring study was approved by the Sunny-

brook Research Institute research ethics board. The number of LABC patients enrolled in this

study was 96. The average age of patients was 49 ± 10 years (range, 29–80 years). The average

tumor size along the longest axis was 5.9 ± 2.8 cm (range: 1.6–14 cm). Among ninety six

patients, 89% had invasive ductal carcinoma and 5% of patients had lobular carcinoma. Nine

had grade I tumor, thirty nine had grade II tumors, and forty seven had grade III tumors.

Patients had a variety of neoadjuvant treatment plans with 63% of patients receiving combined

anthracycline and taxane-based chemotherapy. In our patient population, 33% of patients had

HER2+ tumors, 28% had triple negative and 38% had ER and/or PR +\ with HER2- tumor

type. All HER2+ patients were treated with trastuzumab during standard chemotherapy.

Patients were classified into one of three groups based on ultimate clinical and pathological

response to neo-adjuvant chemotherapy treatment. The number of CR, PR and NR patients

were 21, 52, and 23, respectively. Clinical and pathological characteristics of CR, PR and NR

patient groups are summarized in Table 1. Patient characteristics and their ultimate response

according to clinical and pathological reports of all patients are presented in S1 and S2 Tables.

The mean initial tumor sizes of CR, PR and NR patients were 4.9, 6.2, and 6.1 cm, respectively

and mean tumor shrinkage in these patient groups after treatment was 100%, 54%, and 0.05%,

respectively. In the complete responder group, the number of patients having negative ER and

PR expression was higher (71%, and 76%, respectively) than in the partial responder (36%, and

42%, respectively) and non-responder (17%, and 34%, respectively) groups. In contrast, the

number of patients having HER2 negative expression was lower in the complete responder

group (47%) than in partial (69%) and non-responder (73%) groups.

Quantitative ultrasound parameter

Parameters extracted from ultrasound radio frequency signals were MBF, SS, SI, ACE, SAS,

ASD and AAC. Ultrasound B mode images, MBF, SI and AAC parametric images correspond-

ing to complete (A), partial (B) and non responding (C) patients acquired prior to chemother-

apy onset, and after four weeks of treatment, and high magnification H&E images (D) of

corresponding histopathology for these three response types are displayed in Fig 1. The param-

eters MBF, SI, AAC were chosen to be presented here due to their dominant contribution in

the three response group classification. Data demonstrate increases in the ultrasound backscat-

ter power and changes in their textural patterns within the tumor region for complete and par-

tial responding patients after the start of treatment by weeks 1–4. In contrast, parametric

images exhibited no changes in their mean value and textural pattern in non-responding

patients. Average changes in one of the quantitative ultrasound parameter, AAC and corre-

sponding textural features of the CR, PR and NR group over the treatment period are pre-

sented in Fig 2. Histopathology analysis revealed no residual disease, and a complete
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Table 1. Clinical and pathologic characteristics of LABC patients receiving neo-adjuvant chemotherapy.

Characteristics CR (N = 21) PR (N = 52) NR (N = 23) All (N = 96)

Age

Mean ± std (year) 49 ± 8 50 ± 10 47 ± 11 49 ± 10

Range (cm) 31–62 32–80 29–66 29–80

Menopause

Postmenopausal (%) 38.1 30.8 30.4 32.3

Premenopausal (%) 47.6 57.7 65.2 57.3

Perimenopausal (%) 9.5 3.8 4.4 5.2

Unknown (%) 4.8 7.7 0 5.2

Tumor size before NAC

Mean + std (cm) 4.9 ± 2.2 6.2 ± 3.0 6.1 ± 2.8 5.9 ± 2.8

Range (cm) 2.3–10.0 2.0–14.2 1.6–11.7 1.6–14.2

Histological feature

IDC (%) 95.3 96.2 78.2 91.7

ILC (%) 0 3.8 13.0 5.2

IMC (%) 4.7 0 8.7 3.1

Tumor stage

T2 (%) 42.8 38.5 34.8 38.5

T3 (%) 42.8 40.4 43.5 41.7

T4 (%) 4.8 3.8 4.3 4.2

T4d (%) 4.8 7.7 8.7 7.3

Unknown (%) 4.8 9.6 8.7 8.3

Nodal status

N0 (%) 14.3 23.0 30.5 22.9

N1 (%) 71.3 50.0 47.8 54.2

N2 (%) 4.8 13.5 4.3 9.4

N3 (%) 4.8 0 8.7 3.1

Unknown (%) 4.8 13.5 8.7 10.4

Tumor grade

I (%) 4.8 11.5 8.7 9.4

II (%) 19.0 38.5 60.9 39.6

III (%) 71.4 46.2 30.4 47.9

Unknown (%) 4.8 3.8 0 3.1

Molecular features

ER—(%) 71.4 36.5 17.4 39.6

ER + (%) 28.6 63.5 82.6 60.4

PR—(%) 76.2 42.3 34.8 47.9

PR + (%) 23.8 57.7 65.2 52.1

HER2 - (%) 47.6 69.2 78.3 66.7

HER2 + (%) 52.4 30.8 21.7 33.3

Triple negative 42.9 23.1 17.4 28.2

ER or PR + \ HER2 - 4.8 42.3 60.9 38.5

Treatment

AC-T (%) 61.9 67.3 52.2 62.5

FEC-D (%) 28.6 21.2 34.8 26.0

Trastuzumab (%) 52.4 30.8 21.7 33.3

Others (%) 9.5 11.5 13.0 11.5

Tumor size after NAC

(Continued )
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degeneration of tumors cells in complete responding patients. In contrast, there was minimal

residual disease in partial responders. Non-responding patients exhibited large deposits of

residual disease. These changes in tumor macro- and microstructure were reflected in esti-

mated ultrasound parameters.

Multi-feature tumor response classification model

Statistical analysis using unpaired t-test to compare mean QUS values, texture-based parame-

ters and molecular features estimated from two response groups: CR vs PR, CR vs NR and PR

vs NR before treatment, and change in mean values of QUS parameters and textural features

estimated during treatment are summarized in S3, S4, S5, and S6. Statistical analysis results

revealed significant differences between CR and PR in SAS texture features such as SAS-CON0

(p = 0.008) and SAS-HOM0 (p = 0.015) (scatterer spacing contrast and homogeneity) and also

differences between CR and NR (p = 0.007), and PR and NR in ACE0 (p = 0.047) (mean of

attenuation) and MBF-ENE0 (p = 0.043) (energy of MBF) before treatment. Molecular features

such as ER and HER2 which were determined from biopsy samples before treatment exhibited

significant differences between CR and PR (p = 0.007) patient groups and also between CR

and NR (p = 0.017) patient groups. During treatment at week 1, ΔSAS (p = 0.009) and ΔSAS-

CON (p = 0.028) indicated differences between CR and PR. At weeks 4 and 8, changes in

MBF (p = 0.037) and corresponding texture parameters such as ΔMBF-CON (p = 0.038) and

ΔMBF-ENE (p = 0.033) were the dominant parameters in separating CR and PR from NR.

Features exhibited significance differences between two response groups: CR vs PR, CR vs NR

and PR vs NR before treatment, at week 1, 4 and 8 are presented in Table 2. Analysis using

ANOVA with a Bonferroni correction demonstrated significant differences in changes of SI

and texture parameters extracted from MBF, SI and AAC parametric maps acquired at week

1 and 8 in complete and partial responders. In contrast, none of the mean QUS and texture

features from non-responders showed any changes after treatment initiation (S7 Table). Dif-

ferences between responder, R (CR + PR) and NR were also investigated. Statistical analysis

results revealed significant differences between R and NR mostly in their texture features

such as MBF-ENE0 (p = 0.038), MBF-HOM0 (p = 0.032), and SI-CON0 (p = 0.048) (spectral

intercept contrast) before treatment. During treatment at weeks 1 and 4, ΔACE (p = 0.032),

ΔMBF-CON (p = 0.048), ΔMBF-ENE (p = 0.05), and ΔSS-ENE (p = 0.005) (spectral slope

energy) indicated differences between these groups. At week 8, mean QUS values especially

ultrasound backscatter intensity parameters, ΔMBF (p = 0.025), ΔSI (p = 0.048) and corre-

sponding texture features, ΔMBF-ENE (p = 0.013), ΔMBF-HOM (p = 0.04), ΔSS-ENE

(p = 0.048) revealed significant differences between R and NR.

In order to attempt to differentiate three response groups, a multi-feature SVM classifica-

tion analysis was performed. Classification analysis performed on mean QUS + texture fea-

tures, differentiated three response groups with accuracies of 54%, 60% and 59% at weeks 1, 4,

Table 1. (Continued)

Characteristics CR (N = 21) PR (N = 52) NR (N = 23) All (N = 96)

Mean ± std (cm) 0 2.6 ± 2.9 5.9 ± 4.2 2.9 ± 3.9

Range (cm) 0 0.1–17.0 1.2–19.0 0–19.0

Abbreviations: NAC, neoadjuvant chemotherapy; CR, complete responder; PR, partial responder; NR, non-responder; IDC, invasive ductal carcinoma;

IMC, invasive mammary carcinoma; ILC, invasive lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth

factor receptor 2; ACT, adriamycin, cytoxan and paclitaxel; FECD, 5-fluourouracil, epirubicin, cyclophosphamide and docetaxel.

https://doi.org/10.1371/journal.pone.0189634.t001

Response monitoring of breast cancer patients using quantitative ultrasound, texture, and molecular features

PLOS ONE | https://doi.org/10.1371/journal.pone.0189634 January 3, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0189634.t001
https://doi.org/10.1371/journal.pone.0189634


Response monitoring of breast cancer patients using quantitative ultrasound, texture, and molecular features

PLOS ONE | https://doi.org/10.1371/journal.pone.0189634 January 3, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0189634


and 8, respectively. Clinical receptors status alone differentiated the three response groups

with accuracies of 38%, 37% and 50% at weeks 1, 4, and 8, respectively. However, the best clas-

sification accuracies were obtained with the combination of mean QUS values, texture and

molecular features with accuracies of 79%, 86% and 83% at weeks 1, 4, and 8, respectively. All

results were obtained after leave-one-out cross-validations. The optimal features were selected

from feature histogram of selected features using a sequential feature selection method over 10

iterations. For example, the feature histogram for the week 8 data set is presented in Fig 3 and

optimal features at this scan time were HER2 (8 occurrences), Δ SI (7 occurrences), Δ
AAC-ENE (7 occurrences), ER (7 occurrences), Δ MBF (5 occurrences), and SAS-CON0 (4

occurrences). Optimal features selected for week 1, 4, 8 data sets are presented in Table 3 and

features are arranged from higher to lower frequencies of occurrences over iterations.

Recurrence free survival. Recurrence free survival curves for chemotherapy treatment

response based on clinical-pathological response and testing against combinations of mean

QUS, texture, and molecular features at week 1, 4 and 8 after the start of treatment are pre-

sented in Fig 4. The 5-year recurrence free survival (RFS) rates for CR, PR, and NR patient

groups were 100%, 89.7%, and 66.4%, respectively, with RFS of the pathological complete and

partial responders significantly higher than that of the non-responders, as expected. However,

no significant difference was found between the complete and partial responder groups

enrolled in this study for the monitored follow up period. Whereas the classification model

developed could differentiate all three response groups with an overall accuracy of 79% at

week 1, the survival rate did not exhibit a significant difference between these groups at the fol-

low-up period available. Similar to survival curves based on ultimate and pathological

response, survival analysis based on estimated features at week 4 and 8 demonstrated a higher

RFS for complete and partial responding patients compared to the non-responding patients.

Fig 1. B-mode and QUS parametric images MBF, SI, and AAC from a complete responder (A), partial responder (B), and non-responder (C)

before start of NAC (Pre-Tx) and after 4 weeks of treatment. High magnification light microscope images of whole mount histopathology

from complete, partial and non-responders (D). The scale bars in ultrasound images represent 5 mm. The color bars present scale for MBF

parameter of -16 to 18 dBr, for SI parameter of -15 to 50 dBr, and for AAC parameter of 12 to 66 dB/cm3. The scale bar in histology

represents 200 microns. MBF, mid-band fit; SI, spectral intercept; AAC, average acoustic concentration, Pre-Tx, prior to treatment.

https://doi.org/10.1371/journal.pone.0189634.g001

Fig 2. Average changes in average acoustic concentration and corresponding texture parameters

measured in ultimate clinical and pathological complete, partial and non-responders at times before

and after the start of treatment. AAC, average acoustic concentration; CON, contrast; COR, correlation;

ENE, energy; HOM, homogeneity; CR, complete responder; PR, partial responder; NR, non-responder.

https://doi.org/10.1371/journal.pone.0189634.g002
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Discussion

In this study, we present the results of a clinical investigation on 96 locally advanced breast

cancer patients receiving NAC, whose primary tumor responses were monitored using QUS

and texture analysis techniques in conjunction with tumor molecular features early after the

start of treatment. Seven quantitative ultrasound parameters and four texture features

extracted from each QUS parametric maps were investigated from locally advanced breast

tumors over the course of the treatment. The results exhibited considerably different trends

for changes in mean QUS values and texture features for three different response groups (com-

plete responders, partial responders, and patients with no response). Specifically, the majority

of mean QUS parameters demonstrated similar trends for CR and PR after treatment initia-

tion. Nevertheless, some of the associated QUS-based texture features exhibited different

trends, but these differences were not significant. In contrast, QUS parameters and texture fea-

tures determined from NR followed completely different trends from CR and PR during

treatment.

Firstly, in order to understand the relationship between QUS-derived indicators of tumor

microstructure and treatment response, the correlations of estimated QUS, texture and molec-

ular features with treatment response were investigated. Statistical tests revealed ACE, and

Table 2. Features which exhibited significance differences between two response groups: CR vs PR, CR vs NR and PR vs NR.

Scan

time

CR vs PR CR vs NR PR vs NR

Pre-Tx SAS0, SAS-CON0, SAS-HOM0,

HER 2

SAS-HOM0, HER2, ER MBF-ENE0

Week 1 ΔSAS, ΔSAS-CON ΔACE ΔACE

Week 4 ΔAAC-ENE ΔMBF-CON ΔACE, ΔMBF-ENE

Week 8 Δ AAC-ENE ΔMBF, ΔSI, ΔMBF-CON, ΔMBF-ENE, ΔMBF-HOM,

ΔAAC-ENE,

ΔMBF, ΔMBF-ENE, ΔMBF-HOM,

ΔSI-ENE,

https://doi.org/10.1371/journal.pone.0189634.t002

Fig 3. Feature histograms obtained from week 8 data set over 10 iterations of classifications. In each

iteration, best features were selected using sequential feature selection method and frequencies of

occurrence of selected features over 10 iterations are presented. MBF, mid-band fit; SS, spectral slope; SI,

spectral intercept; SAS, spacing among scatterers; ASD, average scatterer diameter; ACE, attenuation co-efficient

estimate; AAC, average acoustic concentration; ER, estrogen receptor; HER2, human epidermal growth factor

receptor 2; CON, contrast; COR, correlation; ENE, energy; HOM, homogeneity; 0, parameter estimated prior to

treatment.

https://doi.org/10.1371/journal.pone.0189634.g003
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molecular features, ER and HER2 determined from CR and PR were significantly different

from NR before treatment. ACE is related to tissue composition. This finding suggests the sig-

nificance of tumor composition and molecular features as prognostic indicators of chemother-

apy responsiveness. This result is consistent with a previous study that investigated

relationship between baseline tumor oxygen (stO2) estimated using optical imaging techniques

and pathological complete response in breast cancer patients treated with NAC [32]. That

study reported that combining baseline stO2 and ER could differentiate pathological complete

response and non-pathological complete response with a sensitivity of 100% and a specificity

of 85%. In our study, texture characteristics of QUS parametric images especially, MBF and SI

texture features revealed significant difference between R and NR before treatment. MBF and

SI are strongly related to scatterer number density and their elastic properties. The range of

scatter size, ASD (80–160 μm) estimated from tumor ultrasound data for the frequency band-

width 4–9 MHz was comparable with lobule diameters observed from histopathology images.

This suggests that tumors which responded to NAC (R) and tumors which did not respond to

Table 3. Selected features for three- type tumor response classification using sequential feature selection method. Features are arranged from

higher to lower frequency of occurrence over 10 iterations.

Rank Week 1 Week 4 Week 8

1 ER MBF-CON0 HER2

2 AAC-COR0 Δ AAC-ENE ER

3 SAS-CON0 HER2 Δ SI

4 Δ SAS-CON MBF0 Δ MBF

5 Δ ACE ASD0 Δ AAC-ENE

6 MBF-CON0 SS-COR0 SAS-CON0

https://doi.org/10.1371/journal.pone.0189634.t003

Fig 4. Recurrence free survival curves for chemotherapy treatment response based on ultimate

clinical-pathological assessment, and comparison to predicted recurrence free survival curves when

based on quantitative ultrasound, texture parameters and molecular features acquired at weeks 1, 4,

and 8 after treatment. CR, complete responder; PR, partial responder; NR, non-responder; QUS + Texture

+ Molecule, combination of mean QUS values, texture and molecular features.

https://doi.org/10.1371/journal.pone.0189634.g004
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NAC (NR) have different lobule number density distributions. SAS and corresponding texture

parameters estimated from CR and PR before start of treatment revealed significant differ-

ences. This suggests that spacing between adjacent lobules is different in complete and partial

responding tumors. In addition to molecular features, these differences in CR, PR and NR

microstructure arrangement respond differently to chemotherapy treatment.

Multi-feature discriminant analysis using a SVM classifier was performed on estimated fea-

tures to improve the accuracy of a three type of response group classification. Sequential fea-

ture selection was used to select optimal features, and discriminant analysis was performed on

selected features with cross validation using true labels identified by clinical/pathological

examinations. The most accurate classifications were obtained by the combination of mean

QUS values, texture and molecular features with accuracies of 79%, 86% and 83% at weeks 1,

4, and 8, respectively. Optimal features selected at these scan times are presented in Table 3.

The optimal features selected to differentiate three response groups at week 1 were mostly tex-

ture parameters, especially pre-treatment texture features. More detectable changes in mean

values of MBF, SI parametric maps were observed at week 8. These findings suggests that

development of response in tumor cells is a gradual process which initially affects tissue

micro-structure arrangement such as the spacing between lobules and later affects macro-

structure such as lobule size, shape and their elastic properties and finally replaced with colla-

gen and fibrotic deposition which reflect longer-term results of cell death process [33]. Ali et al

[16] reported R and NR classification with the sensitivity 100% and specificity 100% early after

NAC using combined mean QUS values and texture features. In that study, investigators used

limited patient numbers and discriminant model was not validated. In our study, accuracies

for R and NR classification using combined mean QUS values and texture features were 82%,

86%, and 90%, at week 1, 4, and 8 after NAC respectively. Adding molecular features with

mean QUS values and texture parameters improved R and NR discrimination accuracies to

88%, 96%, and 95% at week 1, 4, and 8 after start of chemotherapy. The results obtained from

binary and multiclass tumor responses classification in this study exhibit the importance of

molecular features in determining the breast tumor response to NAC as described in previous

studies [2,19].

Several other cancer response monitoring studies have been conducted using other func-

tional imaging modalities. Specifically, several functional magnetic resonance imaging tech-

niques such as dynamic contrast-enhanced (DCI)-MRI, diffusion weighted (DW)-MRI, blood

oxygenation level-dependent (BOLD)-MRI, and MR elastography have been demonstrated in

breast cancer characterization and their response to treatment early or after chemotherapy

based on their ability in detecting changes in tumor microvasculature, cell density, hypoxia,

metabolism, oxygenation and stiffness [34–38]. [18F]fluorodeoxyglucose positron emission

tomography method has been demonstrated for detecting the pathological response of primary

breast cancer after neoadjuvant chemotherapy treatment [22]. These modalities are often

costly and require contrast agents to monitor tumor response to treatment. In contrast, the

QUS techniques used in this study depend on internal contrast alterations scattered from dif-

ferences in the acoustic impedance of tumor cells when they respond to treatment. Compared

to previous QUS-based tumor response monitoring studies [14,15], the number of patients

used in this study was relatively large and imbalances within tumor response group numbers

were balanced by randomly subsampling the total population into several subsets before per-

forming classification analysis and the discriminant model was cross validated to avoid over-

fitting. Furthermore, we have shown that combining molecular feature with quantitative ultra-

sound technique significantly improved the discrimination between responder and non-

responder groups and further helped to differentiate responder groups into complete and par-

tial responders early after one week start of treatment.
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Studies confirm that pathological response is a prognostic indicator for long term disease

free and overall survivals [2,39]. In this study, the 5-year recurrence free survival (RFS) rates

calculated for complete and partial responders were significantly higher than non-responder

patient groups, as expected. However, no significant difference was found between the com-

plete and partial responder groups in this study for the monitored follow up period. Miller

et al [21] classified breast cancer patients into four groups such as complete response, strong

partial response, weak partial response and tumor growth based on the ratio between residual

in-breast disease divided by size on pre-NAC imaging and reported that complete response

has significantly higher overall survival than strong and weak partial responses. It is possible

that relatively small numbers of patients in CR compared to PR, and relatively short follow up

times in this study limit the differences in RFS of CR and PR groups. Currently, primary

tumor response to neoadjuvant chemotherapy is evaluated based on changes in tumor size,

and histological examinations of the surgical specimens which take place typically months

after chemotherapy treatment. Several previous studies have demonstrated that patients who

do not respond to initial chemotherapy may benefit from salvage therapies: additional sys-

temic chemotherapy or preoperative radiation or surgery [3–5]. The multi-feature tumor

response classification model developed in this study by combination of quantitative ultra-

sound, texture and molecular features acquired early within one week after start of treatment

could differentiate pathological response groups with reasonable accuracy Therefore, such an

early insight into patient outcomes could facilitate the decision of switching to a more effective

therapy for treatment-refractory patients or even shifting to a salvage therapy, before it is

potentially too late. One of the limitations in our study is that all patient data investigated in

this study were collected from a single institution and some patients did not have MRI imag-

ing, thus forcing us to substitute ultrasound or CT imaging measurements which may not be

precisely comparable although for response purposes are taken as clinically equivalent.

Several studies demonstrated significant difference in response and survival of different

molecular subtype breast cancers: HER2+, triple negative, and ER and/or PR + with

HER2- to chemotherapy treatment [2,20,40]. Therefore, it would be interesting to investi-

gate the potential impact of molecular subtypes of breast cancer on therapy response eval-

uation using QUS and texture biomarkers obtained at different times after the start of

treatment. 5 years disease free survival rate calculated for such three molecular subtypes

breast cancer from our patient population did not exhibit significant difference. Accura-

cies for detecting molecular subtypes of breast cancer using QUS and texture biomarkers

acquired before treatment, at weeks 1, 4, and 8 after treatment were 51.1%, 52.3%, 53.0%,

and 53.7%, respectively. Therefore, larger cohort of patients with enough number of cases

for each subtype will be required for such study to permit a more accurate cross-validated

evaluation.

In conclusion, given the importance of detecting and evaluating the early tumor

response to standard treatment many new techniques are being developed. We find quan-

titative ultrasound technique which has ability to detect tumor microstructure in cellular

level to be particularly attractive given it simplicity and low cost and does not require the

injection of any exogenous contrast agent. In terms of accuracy, it remains to be seen

whether our preliminary observations are truly significant in a larger cohort of patients.

The correlation between tumor response predicted based on quantitative ultrasound tech-

nique and histopathology analysis suggests that this may be an excellent, noninvasive, low

cost tool to predict tumor response early after start of the treatment for oncologists. Vali-

dation of our multi-class tumor response classification approach, both through multi-site

studies, larger patient population, and longer follow-up times would be useful to further

support our findings.
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