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Abstract: As the size of smartphone touchscreens has become larger and larger in recent years,
operability with a single hand is getting worse, especially for female users. We envision that
user experience can be significantly improved if smartphones are able to recognize the current
operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In
this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the
user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes
the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the
hand-changing process. These two systems are based on two supervised classifiers constructed from
a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing
solutions that all require users to select the current operating hand or confirm the hand-changing
process manually, our systems follow much more convenient and practical methods and allow users
to change the operating hand frequently without any harm to the user experience. We conduct
extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate
that our proposed systems can recognize the current operating hand and detect the hand-changing
process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively,
when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the
False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either
work completely independently and achieve pretty high accuracies or work jointly to further improve
the recognition accuracy.

Keywords: operating hand recognition; hand-changing process detection; user interface adjustment;
smartphone; touchscreen; accelerometer and gyroscope; supervised classification

1. Introduction

As technology advances, smartphones with abundant built-in sensors are becoming more and
more ubiquitous in our daily lives, which stimulates the blooming of smartphone sensing research,
such as healthcare, localization and human computer interaction and makes our lives more efficient,
more intelligent and more enjoyable. In this paper, we also focus on this field. The smartphone
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operating habits are different for left-handed and right-handed people, especially the requirements
of the user interfaces. In addition, some users change operating hands frequently. The result of
our investigation about the dominant hand when operating smartphones by 500 randomly-selected
students from the University of Science and Technology of China shows that 34% of them usually
operate the smartphones with the left hand, 50% usually with the right hand and almost 16% operate
the smartphones utilizing the right or left hand with the same frequency. This problem was not that
severe previously since the sizes of smartphone screens were small. However, things are worse as
the sizes have become larger in recent years. For example, the screen size of iPhone 6 has already
reached 4.7 inches [1], while the screen size of iPhone 4 is only 3.5 inches [1], and the screen sizes of the
Nokia Lumia 930 and Samsung Galaxy S5 have already reached 5.0 and 5.1 inches, respectively [2,3].
Users’ visual experiences are improved with the continuous increase of smartphone screens sizes;
meanwhile, the single hand operability of smartphones is significantly getting worse, as depicted in
Figure 1, especially for female users.

Figure 1. Limited touching range of the thumb on the Samsung Galaxy S5.

To address this challenge, we propose, to the best of our knowledge, the first scheme for detecting
the current operating hand from touchscreen traces only, which is covered in [4] and the first scheme
for detecting the hand-changing process. As for the scheme for detecting the current operating hand,
we divide smartphone operation modes into five main categories based on numerous observations of
users’ daily lives, as shown in Figure 2. User interfaces of large-screen smartphones can be adjusted
for each particular mode, especially for Mode 1 and Mode 5, whose touching ranges are limited.
The accuracy of detecting the current operating hand by our proposed scheme is 94.1% when deciding
with a single trace only. As for the scheme for detecting the hand-changing process, after recognizing
that the user is passing the smartphone from the right hand to the left hand, or vice versa, the user
interfaces of large-screen smartphones can be adjusted accordingly, to make smartphones easy to
operate by the left hand or the right hand. The accuracy of detecting the hand-changing process by our
proposed scheme is 93.7% when deciding with a single segment only. These two schemes proposed
in this paper can both work completely independently and achieve pretty high accuracies or they
can also work jointly to further improve the recognition accuracy and reduce the false user interface
adjustments ulteriorly, which depends on the user’s choice, after synthetically considering the accuracy,
energy consumption and system overheads. This part is easy and can be flexibly arranged, so it is
beyond the scope of this paper.

Figure 2. Five smartphone operation modes.
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1.1. Motivations

Following are some common scenarios in smartphone (with large screen) users’ daily lives.

• People are operating smartphones with the right (or left) hand, but the buttons they want to press
are on the top left (or right) corner. Since smartphone screens are large, they have to try their best
to reach these buttons. They will be forced to use both hands if these buttons are too far away,
because almost all of the user interfaces today are fixed, which is inconvenient when the other
hand is busy doing other things, such as eating, carrying heavy loads, holding the handle of a
metro and driving a car.

• People frequently use the input method or the dialing keyboard to interact with smartphones,
and these two approaches usually occupy the entire width of the smartphone screen nowadays.
Therefore, they have to use both hands to input if the smartphone screens are large. User
experience will be greatly improved if the smartphone can dynamically detect the current
operating hand and then shrink the area of the input method or the dialing keyboard
proportionally, as well as automatically let them gather on the side of this hand; because users
can complete the whole input process with a single hand, even if the smartphone screens are
very large.

• There are numerous kinds of buttons on the smartphone user interface, and some of them are
sensitive or even destructive; for example, the send button for SMS, the dislike button for social
software, such as Facebook, and the delete button of the photo album (e.g., in the Android 5.1.1
Operating System). A series of serious consequences may be caused if the user accidentally
touches these buttons and is completely unaware of that. Therefore, these buttons should be
placed at specific positions (the red area in Figure 1) of the smartphone user interface that are4
closely related to the current operating hand. Then, the users need to make some effort to reach
these buttons if they really want to, so a casual touching event will never happen.

• There are three buttons at the bottom of most Android-based smartphones today, which are the
back button, the home button and the menu button, respectively. The use of the back button is
more frequent than the menu button for almost all users in our investigation. However, as far as
we know, the positions of these three buttons on the Android-based smartphone user interface
are all fixed nowadays. One more reasonable approach is putting the back button at the position
that is easiest to touch among the three positions according to the current operating hand.

2. Recognition of the Current Operating Hand from Touchscreen Traces

In this section, we introduce our first system in detail, namely the implementation and evaluation
of our proposed system for recognizing the current operating hand, from touchscreen traces.

2.1. System Overview

Here, we provide a system overview of our current operating hand recognition scheme as shown
in Figure 3. The first step is the acquisition of touchscreen trace data from the smartphone touchscreen,
which are organized in the form of a series of coordinate data with the corresponding timestamp at
every sampling point. There is a length filter in the second step. Traces are delivered to this filter
where the length of every trace will be compared to a certain threshold. Then, our scheme discards
traces whose lengths are below this threshold, because these traces are too short to carry enough
useful information, and features extracted from these traces provide a poor degree of distinction.
Our scheme preprocesses the coordinate data of touchscreen traces in the third step in order to improve
the accuracy of feature vector computation. In the fourth step, our scheme computes a feature vector
consisting of features that can be utilized to recognize the current operating hand. Then, our scheme
constructs a supervised classifier called Random Forest (RF), which outputs the recognition result
Le f t, Right, Other for the current operating hand (finger), using features extracted in the fourth step. In
the sixth step, our scheme recognizes the current operation mode (as shown in Figure 2) according to
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the continuous sequence of supervised operation hand classification results within a previous period
of time. Our scheme recognizes user’s current operation mode as Mode 5 or Mode 1 when the results’
sequence contains at least n consecutive Le f t or n consecutive Right, respectively. n is a predefined
variate that represents the tradeoff between the response time of our scheme and the recognition
accuracy, and its value is five in this paper. Otherwise, if Le f t and Right appear in turn in the results’
sequence, then user’s current operation mode will be judged as Mode 3 by our scheme. Our scheme
believes that the user is operating the smartphone with Mode 2 or Mode 4 when the operation hand
classification result is Other. In the last step, there are many things the smartphone can do according
to the operation mode recognition result, and the most relevant one is adjusting the user interface for
the user if the recognition result is Mode 1 or Mode 5.

Step 6~Step 7

Length Velocity Displacement Shape

Feature Vector Computation

Supervised Operating Hand Classification

Step 2~Step 3

Step 4~Step 5

Other Left Left

5 Consecutive Left

Right

Appears by Turns

RightLeft

Mode 3 Mode 5Mode 2 or Mode 4

Step 6 Operation Mode Recognition

Data Preprocessing

Trace Length Filer

Step 1

Trace Acquisition

Step 7

for Left Handfor Right Hand

UI Adjustment

Figure 3. System overview of recognizing the current operating hand.

2.2. Utilizing Pattern Recognition Algorithms for Recognition

In this part, we present the details when utilizing pattern recognition algorithms for the
recognition in our first system.

2.2.1. Computation of the Feature Vector

We introduce features that are selected to distinguish the current operating hand, as shown
in Table 1.

Table 1. Features extracted from touchscreen trace data.

Length Features

1 Total Length

Velocity Features

3 Maximum and Average Velocity, Standard Deviation of Velocity

Displacement Features

4 Total and Maximum X-Displacement, Total and Maximum Y-Displacement

Shape Features

4 Root Mean Squared Error, Maximum and Average Curvature, Curve Convex Orientation
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• Length features. Total length.
• Velocity features. Maximum and average velocity. Standard deviation of velocity. The changing

process of the velocity on a trace contains two phases: acceleration and deceleration. The durations
of acceleration processes are different between traces generated by index fingers and thumbs
because of the different lengths of the traces. The deceleration processes of traces generated
by index fingers are shorter because these traces often slide out of the touchscreens directly
without deceleration. Therefore, the velocity features of traces generated by index fingers and
thumbs are different. Figure 4 plots the change of the velocity magnitude with displacement on
traces performed by different fingers of the same participant. The directions of traces are left in
Figure 4a and up in Figure 4b. We can observe that, for this participant, velocity features can be
utilized to distinguish traces generated by different fingers.

Figure 4. Velocity magnitude of each sampling point.

• Displacement features.

Total and maximum X-displacement.

Total and maximum Y-displacement.
• Shape features. In order to describe the shape features of traces quantitatively and accurately, we

carry out curve fitting on discrete sampling points of every trace using a quartic polynomial, which
is a tradeoff among fitting precision, computational complexity and the degree of distinction on
traces generated by different fingers.
Root mean squared error. This feature measures the smooth degree of traces. Index fingers
are more flexible and have larger touching ranges than thumbs. When operating smartphones,
index fingers exert less pressure on touchscreens and receive less friction resistance, so traces
generated by index fingers are always smoother than those generated by thumbs. The root mean
squared error of trace Ti is calculated as:

Root Mean Squared Errori =

√√√√ 1
ni

ni

∑
j=1

(yij − ŷij)2

where yij indicates the true y coordinate value of the j-th discrete sampling point on the trace Ti
and ŷij indicates the predicted y coordinate value of the j-th discrete sampling point calculated
by carrying out curve fitting on the trace Ti. ni indicates the number of sampling points on the
trace Ti. Figure 5 plots the distribution of the root mean squared errors from 200 traces generated
by the right thumb (as shown in Figure 5a) and the right index finger (as shown in Figure 5b),
respectively, of the same participant. The number of each kind of traces is 100, and all directions of
the traces are right. We can observe that, for this participant, the values of the root mean squared
error feature are different among traces generated by different fingers.
Maximum and average curvature. These two features measure the curvature degree of traces.
Users slide on touchscreens exploiting the most effortless approach unconsciously. When users
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operate smartphones with thumbs, restricted to the limited touching ranges, most of the traces
generated are curves whose centers are on the same side as the operating hand. The touching
ranges of index fingers are significantly larger, which produces straighter traces. The curvature at
the j-th sampling point of trace Ti is calculated as:

Curvatureij =
f ′′i (xij)

(1 + f ′i (xij)2)3/2

where fi(x) indicates the fitting curve function of trace Ti and f ′i (x), f ′′i (x) indicate the first order
derivative and the second order derivative of fi(x), respectively. xij indicates the x coordinate
value of the j-th discrete sampling point on the trace Ti. Figure 6 plots the curvature magnitude
at every sampling point on traces performed by different fingers of the same participant.
The directions of traces are left in Figure 6a and up in Figure 6b. We can observe that, for this
participant, curvature features can be utilized to distinguish traces generated by different fingers.

Figure 5. Root mean squared errors of 200 touchscreen traces.

Figure 6. Curvature magnitude of each sampling point.

Curve convex orientation. This feature measures the curve’s convex orientation, which can be
very useful in distinguishing traces generated by the left thumb and the right thumb. To calculate
the curve convex orientation of trace Ti, first, we randomly choose a sampling point that is close
to the middle of the trace. Second, we construct two vectors, which are from this sampling point
to the first and the last sampling point, respectively. Then, we calculate the cross product between
these two vectors.

~zi = det

∣∣∣∣∣∣∣
~x ~y ~z

xi1 − xik yi1 − yik 0
xini − xik yini − yik 0

∣∣∣∣∣∣∣
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where (xi1, yi1) and
(

xini , yini

)
indicate the coordinates of the first and the last sampling point of

trace Ti, respectively. (xik, yik) indicates the coordinates of the randomly chosen sampling point.
Finally, the curve convex orientation of trace Ti is calculated as:

Curve Convex Orientationi = sgn
{(

yini − yi1
)
~zi ·~z

}
where sgn is the sign function.

2.3. Evaluation

In this part, we report the performance for recognizing the current operating hand of our
first system, when utilizing pattern recognition algorithms.

2.3.1. Recognition Performance of Pattern Recognition Algorithms

Here, we present the results of our experiments, which consist of six parts. In the first part,
we demonstrate the computation time our scheme spends on feature vector extraction. Then, we
compare the differences in classification performance among five common classifiers in the second part.
In the following two parts, we study the impact of the number of training samples and the number
of trees in Random Forest (RF) on classification performance, respectively. Finally, we report the
evaluation results of our scheme.

According to the direction (displacement characteristics), we divide all touchscreen traces into
four categories: right, left, up and down. There are 14 participants in our experiment. We ask every
participant to generate traces in each direction with the right thumb, left thumb, right index finger
and left index finger successively in the procedure of data collection. However, in the actual use of
our scheme, the user could only generate traces in a subset of four directions if traces with directions
in the complementary set do not appear frequently in his or her daily smartphone operation. That is to
say, the user can make a tradeoff between the convenience of the training traces acquisition process
and response time, because our scheme will not respond to traces for which the directions are not in
the subset above. In this paper, we request all participants to generate traces in all directions in order
to adequately test the classification performance of our scheme on multifarious traces. Therefore, there
will be 16 trace subsets in total.

Computation Time of the Feature Vector

Table 2 shows the computation time (Avg. ± SD) of every feature vector from 100 touchscreen
traces. We can see that the RMSE, the maximum curvature and the average curvature are the most
time-consuming features, and all features can be calculated within about 17 ms.

Table 2. Computation time (Avg. ± SD) of every feature vector.

Features Time

Length Total (0.046 ± 0.011) ms

Velocity
Maximum

(0.088 ± 0.040) msAverage
Standard Deviation

Displacement

Total X

(0.037 ± 0.012) msMaximum X
Total Y
Maximum Y

Shape

RMSE (3.834 ± 0.367) ms

Maximum Curvature (13.834 ± 1.005) msAverage Curvature

CCO (0.007 ± 0.002) ms

Total (16.867 ±1.553) ms
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Multi-Class Classification Algorithms

In this paper, we use precision, recall, F1, FPR and AUC to measure classification performance,
and AUC is the area under the Receiver Operating Characteristic (ROC) curve.

In this part, we construct five different classifiers [5,6], which are Decision Tree (DT) [7,8],
Random Forest (RF) [9,10], Naive Bayes (NB) [11,12], Multi-Layer Perceptron (MLP) [13,14] and
k-Nearest Neighbors (k-NN) [15,16], and compare their classification performance on our touchscreen
traces data. The number of traces in each training subset and test subset is 40 and 10, respectively, in
this part, so the total number of traces in the training set and the test set is 640 and 160. Table 3 shows
the classification performance, and Figure 7 shows the total time (training time + test time) and FPR of
these five classifiers. The x-axes of Figure 7a,b are different classifiers. The y-axes of Figure 7a,b are
total time and FPR, respectively.

Table 3. Classification performance of different classifiers.

Precision Recall F1 AUC

DT 92.2% 91.8% 91.8% 0.975
RF 95.6% 95.6% 95.6% 0.990
NB 82.4% 71.5% 72.8% 0.919

MLP 96.9% 96.8% 96.8% 0.999
k-NN 88.1% 88.2% 88.2% 0.951

We can make two observations here. Firstly, on the one hand, MLP gives the best classification
performance, which achieves 96.9% precision and 1.5% FPR, and RF gives the second best classification
performance, which achieves 95.6% precision and 2.7% FPR. On the other hand, NB achieves the worst
classification performance, and k-NN is also not good enough. Second, as shown in Figure 7, the total
time of MLP is 1.41 s, but the total time of RF is only 0.04 s (almost 0 ms for every trace). The former
is 35-times as long as the latter. After considering all factors above, we finally choose RF as our
classifier in this paper, which is extremely effective for datasets containing many redundant features.
As mentioned before, the time consumption of feature extraction is about 17 ms. The time consumption
of the remaining steps is too short to measure. Therefore, for every trace, the whole recognition process
can be accomplished within about 17 ms.

(a) (b)

Figure 7. (a) Total time and (b) FPR of different classifiers.

Impact of the Number of Training Samples

In this part, we indicate the impact of the number of training samples on the classification
performance. The number of training samples is a significant parameter in the construction process of a
classification model. On the one hand, if the number of training samples is too large, the workloads of
training traces’ acquisition will become onerous for users. Moreover, although the training error of the
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classification model is low, the generalization error may be high sometimes, because the classification
model is over fitting, which will lead to poor classification performance eventually. On the other
hand, if the number of training samples is too small, the classification model will be under fitting,
which also leads to inaccurate classification results. The number of traces in each test subset is five, so
the total number of traces in the test set is 80 in this part. Figure 8 shows the change of classification
performance with the increase in the number of traces in each training subset.

(a) (b)

Figure 8. (a,b) Impact of the number of training samples.

We can make two observations here. Firstly, the classification performance is significantly
improved with the increase in the size of each training subset from five to 10. As shown in
Figure 8, the precision increases from 88.2% to 92.9%, and the FPR drops from 6.7% to 3.3%. This is
because the number of traces in the training set is larger than the test set for the first time. Secondly,
the RF achieves the optimal classification performance when there are 30 traces in each training subset.
Figure 8 shows that the precision can be as high as 97.7%, and the FPR achieves 0.8% accordingly.

Impact of the Number of Trees

In this part, we study the impact of the number of trees on the classification performance.
The number of trees is another significant parameter in RF. On the one hand, if the number of trees is
too large in RF, there will be many trees using features with a high degree of similarity, which makes the
construction process of the classification model spend too much time on less useful work. On the other
hand, if the number of trees is too small in RF, the combination of different features will not be sufficient,
so the RF cannot output the optimal classification results. We conduct a five-fold cross-validation
experiment on 16 touchscreen trace subsets, and each subset contains 50 samples. Figure 9 shows the
change of the classification performance with the increase in the number of trees in RF.

We can make two observations here. Firstly, the classification performance is significantly
improved with the increase of the number of trees in RF from two to thee. As shown in Figure 9,
the precision increases from 92.6% to 95.7%, and the FPR drops from 3.4% to 2.8%. This is because an
RF containing three trees reflects the advantages of ensemble classifiers compared to a single DT for
the first time. Secondly, the RF achieves optimal classification performance when there are six trees.
Figure 9 shows that the precision can be as high as 97.0%, and the FPR achieves 1.6% accordingly.
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(a) (b)

Figure 9. (a,b) Impact of the number of trees in RF.

Evaluation

In this part, we evaluate our scheme on two sets of 14 participants (seven male and
seven female participants). We ask every participant to generate traces in four directions with the
right thumb, left thumb, right index finger and left index finger, respectively, among which left (or
right) traces are generated by some operations, such as navigating among main screen pages or
viewing images, and up (or down) traces are generated by reading documents or browsing web pages.
The number of traces in each subset is 25. Then, we conduct a five-fold cross-validation experiment on
these traces. The average precision, TPR, FPR of the left thumb and FPR of the right thumb over all
14 participants turned out to be 94.1%, 94.1%, 2.7% and 2.4%, respectively, when deciding with a single
trace only. Figure 10a,b shows the bar plots of the evaluation results of 14 participants.

(a)

(b)

Figure 10. (a,b) Evaluation results of 14 participants.
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3. Recognition of the Hand-Changing Process from the Accelerometer and Gyroscope Data

In this section, we describe in detail our second system, that is the implementation and
evaluation of our proposed system for recognizing the hand-changing process, from accelerometer
and gyroscope data.

3.1. System Overview

In our hand-changing recognition process, as shown in Figure 11, some dedicated processing
steps are performed [17–19]. The first step is the acquisition of raw accelerometer and gyroscope
data from smartphones, which are organized in the form of triples (x-axis, y-axis and z-axis) with
corresponding timestamps. Then, an end-points detection-based segmentation algorithm is exploited
to extract the segments we are interested in from these accelerometer and gyroscope data time
series. In the third step, we compute a feature vector consisting of the time domain, the frequency
domain and statistics features, which contain important cues for distinguishing segments generated
by various actions. In order to evaluate the sparseness, to maximize the synergies between different
features, we conduct the dimension reduction in the fourth step. In this paper, we also exploit
the performance of utilizing Dynamic Time Warping (DTW) distances as features to recognize the
hand-changing process, as presented in the fifth step. Finally, we construct a recognizer, which outputs
the recognition results, namely hand-changing processes or other actions using features extracted in
the former step.

Step 1~Step 2

Acquisition of Raw Accelerometer and Gyroscope Data

Step 3~Step 7

Segmentation of Raw Data into Segments

Recognition of Hand-Changing Process

Segment-Level

Feature Extraction

Dynamic

Time Warping

Dimension Reduction Recognition Algorithm

Figure 11. System overview of recognizing the hand-changing process.

3.2. Activities of Daily Life

In this part, we illustrate several segments generated by hand-changing processes and activities of
daily life. Whereafter, in Figure 12a,b, we plot the waveforms of the accelerometer and gyroscope data
generated by hand-changing processes, including passing the smartphone from both the right hand to
the left hand and the left hand to the right hand. In Figures 13a,b and 14a,b, we plot the waveforms
of the accelerometer and gyroscope data generated by walking slowly and quickly, respectively. In
Figures 15a,b and 16a,b, we plot the waveforms of the accelerometer and gyroscope data generated by
going upstairs and downstairs, respectively. Finally, in Figures 17a,b and 18a,b, we plot the waveforms
of the accelerometer and gyroscope data generated by running slowly and quickly, respectively.
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Figure 12. Accelerometer (a) and gyroscope (b) data of hand changing.

Figure 13. Accelerometer (a) and gyroscope (b) data of walking slowly.

Figure 14. Accelerometer (a) and gyroscope (b) data of walking quickly.

Figure 15. Accelerometer (a) and gyroscope (b) data of going upstairs.

Figure 16. Accelerometer (a) and gyroscope (b) data of going downstairs.

Figure 17. Accelerometer (a) and gyroscope (b) data of running slowly.
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Figure 18. Accelerometer (a) and gyroscope (b) data of running quickly.

3.3. Segmentation Algorithm

End-Points Detection

Accelerometer and gyroscope data time series are divided into segments by our proposed
segmentation algorithm. Sliding windows [20,21] and end-points detection [22,23] are two of the most
popular segmentation methodologies. The sliding windows-based segmentation algorithm produces
massive segments, the processing, storage and recognition of which will consume enormous energy,
computing capabilities and memory, so the segmentation algorithm we utilized in this paper is based
on end-points detection, which focuses on particular segments that we are interested in and filters out
extraneous segments.

3.4. Utilizing Pattern Recognition Algorithms for Recognition

In this part, we provide the details when utilizing pattern recognition algorithms for recognition
in our second system.

3.4.1. Computation of the Feature Vector

Features can be considered as the abstractions of raw accelerometer and gyroscope data.
Proper features can precisely represent the main characteristics of data segments. In this section,
we calculate and manually refine a set of features from massive raw accelerometer and gyroscope data
and then organize them in the form of a feature vector, which can be utilized as inputs to different
pattern recognition algorithms to detect the hand-changing process from the activities of daily life.
All features are divided into three categories, namely the time domain features, statistics features
and frequency domain features, as shown in Tables 4 and 5, respectively, among which the prefix
X-, Y- or Z- indicates that this feature is extracted on the x-axis, y-axis or z-axis of the accelerometer
or gyroscope data, the prefix AbsX-, AbsY- or AbsZ- indicates that this feature is extracted on the
x-axis, y-axis or z-axis of the absolute values of the accelerometer or gyroscope data, and the prefix
All- indicates that this feature is extracted on the combination of the x-axis, y-axis and z-axis of the
accelerometer or gyroscope data; in other words, we calculate the value of x2 + y2 + z2 at every
sampling point of the accelerometer or gyroscope data.

• Time domain features. Time domain features focus on intuitive waveform characteristics,
which can be obtained from data segments directly, so very small computational complexity and
storage memory are required.

Max, Mean, Min and range. These features describe the basic shape of accelerometer and
gyroscope data segments and have been extensively exploited in various works, especially
threshold-based algorithms.

• Statistics features. Statistics features capture the distribution characteristics of consecutive
accelerometer and gyroscope sampling points.
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Kurtosis. This feature weighs how the amplitude decays near the extreme points, namely the
peakedness and flatness. Larger kurtosis values indicate a more peaked distribution. The kurtosis
of the accelerometer or gyroscope segment Si is calculated as:

Kurtosisi =

nt
i

nt
i

∑
j=1

(sij − s̄i)
4

(
nt

i
∑

j=1
(sij − s̄i)2)2

where sij indicates the x-axis, y-axis or z-axis value of the j-th sampling point in accelerometer
or gyroscope segment Si and s̄i indicates the mean x-axis, y-axis or z-axis value of all sampling
points in accelerometer or gyroscope segment Si. nt

i is the total number of sampling points in
accelerometer or gyroscope segment Si.

• Frequency domain features. Frequency domain features pay attention to the periodic nature.
We transform the time series of accelerometer or gyroscope data into spectrum employing FFT
(Fast Fourier Transform) in this paper. Centroid. This feature characterizes the barycenter of the
frequency spectrum. The centroid of the accelerometer or gyroscope segment Si is calculated as:

Centroidi =

n f
i

∑
j=2

aij log2
fij

1000

n f
i

∑
j=2

aij

where n f
i indicates the total number of frequency components and aij indicates the amplitude of

the j-th frequency component fij, in the frequency spectrum of the accelerometer or gyroscope
segment Si.

Table 4. Features extracted on accelerometer data. Abs, absolute value.

Accelerometer Data-Based Features

Time

4 All-Max, All-Mean, All-Min, All-Range

3 AbsX-Max, AbsX-Mean, X-Range

5 AbsY-Mean, AbsY-Min, Y-Max, Y-Mean, Y-Min

5 AbsZ-Max, AbsZ-Mean, Z-Max, Z-Mean, Z-Range

Statistics 2 X-Kurtosis, Y-Kurtosis

Frequency

2 All-DC Amplitude, All-Peak Amplitude

3 X-Centroid, X-Decrease, X-Roll-Off

7 Y-Centroid, Y-DC Amplitude, Y-Decrease
Y-Flux, Y-Peak Amplitude, Y-Roll-Off, Y-Spread

5 Z-DC Amplitude, Z-Decrease, Z-Flux, Z-Peak Amplitude, Z-Spread
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Table 5. Features extracted on gyroscope data.

Gyroscope Data-Based Features

Time
2 All-Max, All-Range
3 AbsY-Max, Y-Max, Y-Range
1 Z-Mean

Statistics 2 X-Kurtosis, Y-Kurtosis

Frequency

1 All-Peak Amplitude
4 X-Centroid, X-Decrease, X-Roll-Off, X-Spread
3 Y-Centroid, Y-Roll-Off, Y-Spread
2 Z-DC Amplitude, Z-Decrease

DC amplitude. This feature denotes the amplitude of the DC component.

Decrease. This feature weighs the decreasing degree of the frequency spectrum curve. The
Decrease of the accelerometer or gyroscope segment Si is calculated as:

Decreasei =
1

n f
i

∑
j=2

aij

n f
i

∑
j=2

aij − ai1

j− 1

Flux. This feature describes the stability of the frequency spectrum curve, in other words,
how often the frequency spectrum curve of the accelerometer or gyroscope signal changes. The
flux of the accelerometer or gyroscope segment Si is formally defined as:

Fluxi =
n f

i

∑
j=2

(aij − ai(j−1))
2

We choose the L2-norm, namely the Euclidean distance and the unnormalized spectrum when
computing flux in this paper.

Peak amplitude. This feature measures the max amplitude in the frequency spectrum. The peak
amplitude of the accelerometer or gyroscope segment Si is calculated as:

Peak Amplitudei = aij′

j′ = arg max
j∈
[
2,n f

i

] |Fj(si)|

where |Fj(si)| indicates the amplitude of the j-th frequency component of the accelerometer or
gyroscope segment Si after fast Fourier transformation and si indicates the x-axis, y-axis or z-axis
values of all sampling points in accelerometer or gyroscope segment Si.

Roll-off. This feature captures the frequency below which 75% of the total amplitudes of all
frequency components is contained. The roll-off of accelerometer or gyroscope segment Si is
calculated as:

Roll-O f fi = min j′, subject to:

j′

∑
j=1

aij ≥ 0.75
n f

i

∑
j=1

aij

Spread. This feature denotes the shape of the frequency spectrum, that is to say whether it is
concentrated in the vicinity of its centroid or spread out over the frequency spectrum. The spread
of the accelerometer or gyroscope segment Si is calculated as:
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Spreadi =

√√√√√√√√√√
n f

i
∑

j=2
(log2

fij
1000 − Centroidi)2aij

n f
i

∑
j=2

aij

3.4.2. Dimension Reduction of the Feature Vector

The feature vector is 54 dimensions. In order to evaluate the sparseness, to maximize the synergies
between different features and then reduce the dimension of the feature vector, we explore Linear
Discriminant Analysis (LDA) [24–26] and Principal Component Analysis (PCA) [27–29] in this paper.

3.5. Utilizing Dynamic Time Warping for Recognition

In this part, we give the details when utilizing DTW for recognition in our second system.

Preliminaries about DTW

DTW is a famous algorithm to explore and find out the optimal alignment, then to measure
the similarity between two given time series under certain restrictions, which has been applied to
automatic speech recognition and several other application scenarios [30–32]. In this paper, we also
innovatively exploit whether it is possible to calculate the DTW distances between a particular segment
and every segment in the template library and utilize them as features for recognition. The detailed
procedures are provided in Figure 19, Algorithms 1 and 2.

Figure 19. Computational process of the DTW.

Algorithm 1: Calculate DTW distance set.
1: T: template library containing nt template segments.
2: Input:
3: s: segment for recognition, whose class is unknown.
4: Output:
5: D: DTW distance set containing nt DTW distances between s and each template segment.
6: for each template segment sti in T do

7: di = dynamic time warping (sti, s);
8: add di into D;
9: end for
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Algorithm 2: Dynamic time warping.
1: Input:
2: st: template segment, with nst sampling points st1 to stnst .
3: s: segment for recognition, whose class is unknown, with ns sampling points s1 to sns .
4: Output:
5: d: DTW distance between s and st.
6: normalize the amplitude of each sampling point in s into [-1, 1];
7: normalize the amplitude of each sampling point in st into [-1, 1];
8: d00 = 0;
9: for i = 1 to nst do

10: di0 = + ∞;
11: end for
12: for j = 1 to ns do

13: d0j = + ∞;
14: end for
15: for i = 1 to nst do

16: for j = 1 to ns do

17: d̃ij = |sti − sj|;
18: dij = d̃ij + min(d(i−1)j, d(i−1)(j−1), di(j−1));
19: end for
20: end for
21: d = dnstns ;

3.6. Evaluation

In this part, we study the performance for recognizing the hand-changing process of our second
system, when utilizing pattern recognition algorithms and DTW, respectively.

3.6.1. Recognition Performance of Pattern Recognition Algorithms

Here, we provide the results of our experiments, including five parts. In the first part, we present
our experimental dataset. Then, we compare the differences in recognition performance among
five common recognizers in the second part. In the third part, we explore the performance of two
dimension reduction algorithms. Finally, we demonstrate the time consumption of every step in the
recognition process for every segment.

Experimental Dataset

As shown in Table 6, our experimental dataset contains 500 hand-changing processes performed by
passing the smartphone from the left hand to the right hand, 500 hand-changing processes performed
by passing the smartphone from the right hand to the left hand and 130,050 segments generated by all
kinds of activities in seven days of daily life.

Table 6. Experimental dataset for recognizing the hand-changing process employing pattern
recognition algorithms.

Activities Total

Left Hand to Right Hand 500 times
Right Hand to Left Hand 500 times

Activities of Daily Life 7 days(Walk, Run, Go Upstairs and so on)
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Multi-Class Recognition Algorithms

We construct five multi-class recognizers based on different recognition algorithms [33–40],
which are Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Multi-Layer Perceptron
(MLP) and k-Nearest Neighbors (k-NN), respectively. Then, we conduct a series of 10-fold
cross-validation experiments. Firstly, we randomly partition our experimental dataset into 10 mutually
exclusive folds, and all folds each have an approximately equal size. Secondly, training and testing
processes are performed 10 times, that is to say, in the i-th iteration, fold i is retained for testing, and
the remaining nine folds are used for training. Figure 20 presents the confusion matrices; Figure 21a
illustrates the TPR; Figure 21b highlights the FPR; and Figure 22 reports the time consumption for
recognition on our experimental dataset of these five different recognition algorithms. The TPR and
FPR are calculated as:

True Positive Rate =
ntp

ntp + n f n

False Positive Rate =
n f p

ntn + n f p

where ntp indicates the total number of segments whose classes are positive and which are correctly
recognized by our proposed and trained system. n f n indicates the total number of segments whose
classes are positive, but which are wrongly recognized as negative by our proposed and trained system.
n f p indicates the total number of segments whose classes are negative, but which are wrongly
recognized as positive by our proposed and trained system. ntn indicates the total number of segments
whose classes are negative and which are correctly recognized by our proposed and trained system.

Figure 20. Confusion matrices of different recognition algorithms. (a) DT; (b) RF; (c) NB; (d) MLP;
(e) k-NN.

(a) (b)

Figure 21. True positive rate (TPR) (a) and false positive rate (FPR) (b) of different recognition algorithms.
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We can make three main observations here. Firstly, as presented in Figures 20 and 21, MLP outputs
the best recognition performance, namely 99.0% TPR of recognizing the hand-changing process,
0.6% FPR of recognizing the activities of daily life and 12 misrecognition segments in total. RF achieves
the second best recognition performance, that is 98.5% TPR of recognizing the hand-changing process,
0.9% FPR of recognizing the activities of daily life and 15 misrecognition segments in total. Secondly, NB
yields the worst recognition performance, namely, 69 misrecognition segments in total, among which
58 segments of the activities of daily life are wrongly recognized as segments of the hand-changing
process. k-NN provides the second worst recognition performance, that is 48 misrecognition segments
in total, among which 24 segments of passing the smartphone from the right hand to the left hand are
wrongly recognized as segments of passing the smartphone from the left hand to the right hand, and
the other 16 segments are wrongly recognized just in the opposite case. Thirdly, as reported in Figure 22,
we only pay attention to the time consumption of the test process, because the training process can
be accomplished offline. k-NN is the most time-consuming for testing our experimental dataset,
1000 labeled segments of the hand-changing process and 130,050 labeled segments generated by all
kinds of activities in seven days of daily life, which spends 2896.68 s. NB and MLP spend 11.18 s and
6.35 s, respectively. DT and RF are the least time-consuming, which can both complete the whole test
process within 3.0 s.

Figure 22. Total time consumed by different recognition algorithms.

In summary, RF and MLP achieve almost similar recognition performance and consume almost
similar test time, but MLP is much more complicated than RF, so we finally decide to employ RF to
construct the recognizer in this paper.

Dimension Reduction Algorithms

Then, we construct the recognizer based on RF; in addition, we exploit PCA and LDA to
reduce the dimension of features. We conduct a series of 10-fold cross-validation experiments on
our experimental dataset, which contains 500 hand-changing processes performed by passing the
smartphone from the left hand to the right hand, 500 hand-changing processes performed by passing
the smartphone from the right hand to the left hand and 50,000 segments generated by all kinds of
activities in four days of daily life. Figure 23 presents the confusion matrices; Figure 24a illustrates the
TPR; and Figure 24b highlights the FPR of RF along with LDA and PCA.

We can observe that the combination of RF and LDA achieves better recognition performance,
namely 93.9% precision, 93.7% TPR of recognizing the hand-changing process, 0.7% FPR of recognizing
the activities of daily life and 68 misrecognition segments in total, which also reduces the features
to two dimensions. The combination of RF and PCA yields worse recognition performance, that
is 78.5% precision, 76.8% TPR of recognizing the hand-changing process, 2.1% FPR of recognizing
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the activities of daily life and 234 misrecognition segments in total, and it reduces the features to
14 dimensions.

Figure 23. Confusion matrices and feature dimensions of RF along with LDA and PCA.

(a) (b)

Figure 24. TPR (a) and FPR (b) of RF along with LDA and PCA.

Time Consumption of Every Computational Step

Next, we conduct the recognition experiment on our dataset 10 times and compute the average
time consumption for every segment, as shown in Table 7, which is specific to every step. We can
observe that the segment-level feature extraction is the most time consuming, and the acquisition of
raw accelerometer and gyroscope data along with the segmentation of raw data into segments is the
second most time consuming. The remaining steps almost do not consume time. For every segment,
the whole recognition process can be accomplished within about 6.86 ms.

Table 7. Time consumption (Avg. ± SD) of every step in the recognition process for every segment.

Step Computational Process Time

1–2

Acquisition of Raw

(2.33 ± 0.09) msAccelerometer and Gyroscope Data

Segmentation of
Raw Data into Segments

3 Segment-Level Feature Extraction (4.53 ± 0.04) ms

4 Dimension Reduction Train ∼0 ms
(LDA) Test

6 Recognition Algorithm Train ∼0 ms
(RF) Test

Total (6.86 ± 0.11) ms
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3.6.2. Recognition Performance of DTW

Here, we give the results of our experiments, including three parts. In the first part, we present
our experimental dataset. Then, we study the recognition performance in the second part. Finally,
we demonstrate the time consumption of the DTW in the recognition process for every segment.

Experimental Dataset

As shown in Table 8, our experimental dataset contains two categories, namely template library
and test set. The template library is composed of 20 hand-changing processes performed by passing
the smartphone from the left hand to the right hand and 20 hand-changing processes performed
by passing the smartphone from the right hand to the left hand. These segments form the T in
Algorithm 1. The test set consists of 500 hand-changing processes performed by passing the
smartphone from the left hand to the right hand, 500 hand-changing processes performed by passing
the smartphone from the right hand to the left hand and 50,000 segments generated by all kinds of
activities in four days of daily life.

Table 8. Experimental dataset for recognizing the hand-changing process employing DTW.

Category Activities Total

Template Library Left Hand to Right Hand 20 times

Right Hand to Left Hand 20 times

Test Set

Left Hand to Right Hand 500 times

Right Hand to Left Hand 500 times

Activities of Daily Lives 4 days(Walk, Run, Go Upstairs and so on)

Experimental Results

In this paper, we innovatively exploit the recognition performance of RF utilizing the DTW
distances between a particular segment and every segment in the template library, as features.
We conduct a series of 10-fold cross-validation experiments on our experimental dataset presented
in Table 8. Figure 25 presents the confusion matrix; Figure 26a illustrates the TPR; and Figure 26b
highlights the FPR.

We can observe that the combination of RF and DTW achieves 83.3% TPR of recognizing the
hand-changing process, 15.0% FPR of recognizing the activities of daily life and 236 misrecognition
segments in total.

Figure 25. Confusion matrix of RF along with DTW.
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Figure 26. TPR (a) and FPR (b) of RF along with DTW.

Time Consumption of DTW

We conduct the DTW to calculate the distances as features on our dataset presented in Table 8
10 times and compute the average time consumption for every segment, as shown in Table 9. We can
observe that, for every segment, the DTW can be accomplished within about 233.51 ms. According to
Table 7, Step 3, the segment-level feature extraction only consumes 4.53 ms. The former is 52-times
as long as the latter. Due to the poor recognition performance and excessive time consumption, we
eventually do not adopt the DTW in our system.

Table 9. Time consumption (Avg. ± SD) of DTW in the recognition process for every segment.

Step Computational Process Time

5 Segment-Level Feature Extraction (DTW) (233.51 ± 0.61) ms

4. Related Work

In this section, we describe three areas of related work. In the first category, there are
some smartphone touchscreen-based papers, mainly for authentication, which are relevant to our
first system in this paper. In the second category, we give several smartphone accelerometer
and gyroscope-based papers, mainly aiming at human activity recognition, which are relevant
to our second system. In the third category, we provide some smartphone user interface
adjustment-related papers.

4.1. Touch Behavioral Biometrics-Based Authentication

In recent years, there has been some smartphone-based biometric authentication work.
Sae-Bae et al. [41] presented an authentication mechanism using multi-touch traces, and then, they
defined a comprehensive five-finger touchscreen trace set that makes use of biometric information,
such as hand size and finger length. Shahzad et al. [42] defined 10 kinds of specific touchscreen traces
in their paper and proposed an authentication scheme for the secure unlocking of touchscreen devices
using these touchscreen traces. There is some other touch feature-based identification-related work,
e.g., [43–45]. Recently, some identification-related research work focused on using not only the
touchscreen, but also smartphone-equipped sensors such as the accelerometer and gyroscope, to
enrich features that can be used when identifying. GripSense [46] recognizes four kinds of hand
postures, leveraging both smartphone touchscreens and inertial sensors (accelerometers, gyroscopes)
and achieves 84.3% accuracy. Frank et al. [47] proposed an authentication scheme using 30 features,
including touch features and inertial sensors features. However, the overfitting problem becomes more
severe when too many features are used, which is called the curse of dimensionality. In their work, the
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EERwas approximately 13% when deciding with a single stroke. There are some other related works,
e.g., [48–53].

4.2. Human Activity Recognition with Inertial Sensors

Massive significant inertial sensor-based human activity recognition-related research has been
conducted, some of which is implemented on smartphones. Abbate et al. [54] put forward a novel
smartphone-based fall detection system, which keeps monitoring the activities of the carriers and
recognizing the falls. Their work we believe is of great significance to the care of elderly people.
Bo et al. [55] presented a system that can estimate the locations and calculate the traveling distances
of vehicles in urban environments leveraging the inertial sensors for metropolitan localization.
In [56], Dai et al. proposed a smartphone-based drunk driving detection system aiming at the
warning of drinking-related dangerous driving behaviors, which is also very meaningful, because
their work could save lives under some particular circumstances. Kwapisz et al. [19] described
and evaluated a system that takes advantage of accelerometers incorporated in smartphones to
identify the physical activities performed by the users. Bhoraskar et al. [57] presented a non-intrusive
system to estimate the traffic and road condition with the help of inertial sensors along with the
Global Position System. Recently, researchers also explored the wearable devices for human activity
recognition [58]. Parate et al. [59] designed a system that leverages a wristband to detect smoking
gestures in real time, which can be employed to help people give up smoking. Ladha et al. [60]
developed a climbing assistance system that aims to provide expert assessments for climbing
enthusiasts. Tapia et al. [61] proposed a real-time system that not only recognizes human activities,
but also measures their intensities, innovatively exploiting heart rate monitors, besides inertial sensors.
Bo et al. [62] achieved a non-intrusive system that can detect the drivers’ texting operations during
driving. This system is significant for driving safety. There are still many other excellent related
research works, but due to the page limitation, we will not introduce them here.

4.3. Smartphone User Interface Adjustment

Recently, several research efforts were made about the smartphone user interface adjustment.
Song et al. [63] proposed an automatic graphical user interface adjustment method based on human
face tracking. Hu et al. [64] presented an intriguing system that enables a smartphone to adjust the
user interface when the user is at a slanted viewing angle. They augment the smartphone camera
with a fisheye lens and then employ the face recognition technology. He et al. [65] put forward a
flexible dynamic resolution scaling system for a smartphone that adopts an ultrasonic-based approach
to detect the distance between the user and the touchscreen, at a low power cost. Komine et al. [66]
investigated how the size of the command button affects the physical performance of a user and the
psychological perception of a smartphone. Alonso et al. [67] found that the graphical user interface is
not specifically tailored for different smartphones with touchscreens. They conducted a user study
and provided evidence that it is important to tailor the graphical user interface to make good use of
the display size of a given smartphone. Several latest large screen smartphones and applications also
support the function of user interface adjustment in order to improve user experience. The smartphone
Smartisan [68] lets the user select the dominant hand when the smartphone boots up for the first time
and allows the user to set the positions of the back button and the menu button according to his or
her operation habit. The Baidu input method [69] supports single hand mode. The user can make the
interactive interface shrink proportionally and gather on the side of the current operating hand by
clicking a particular button. The iPhone 6 [1] user can make the whole smartphone interactive interface
descend by tapping the home button twice, so the buttons on the top of the smartphone screen can be
reached. However, this approach also makes the same operation that needs only one click originally
now need three clicks. The interactive interface of Samsung Note 3 [3] can be shrunk in proportion
and be placed on a corner of the smartphone screen, but apparently, this practice conflicts with the
original intention of using a large screen smartphone. These state-of-the-art user interface adjustment



Sensors 2016, 16, 1314 24 of 29

functions all require the user’s intervention, such as one step or many steps of selecting operation, so
these functions are impractical when the user changes the operating hand frequently. According to our
research, all functions mentioned above can be achieved automatically or improved.

5. Discussion

5.1. Smartphone User Interface Adjustment

In this paper, we have implemented two systems on smartphones, which can recognize the current
operating hand and the hand-changing process. After that, the user interface should be adjusted to
make the smartphones easier to operate, according to the current operating hand. We have developed
a demonstration application to illustrate how the whole proposed system works. On the one hand, we
do not have the permission and approach to change the user interfaces of other applications, especially
those developed by commercial software companies, which are protected by copyrights. On the other
hand, there are hundreds of thousands of applications in the world, and for different applications, even
different pages in the same application, the numbers, attributes (sensitive or should be convenient
to reach) and layouts of buttons may be totally different. Accordingly, the adjustment strategies
(for example, when the current operating hand has been changed from the left to the right, this button
should be moved from here to there) will be totally different, for different applications. Therefore, in
this paper, we did not provide the specific adjustment strategies, for every application, because that
is not realistic, as mentioned before. We proposed the idea of user interface adjustment according to
the current operating hand and have implemented a completely feasible technical solution. Actually,
when our solution is authentically adopted in the future, we prefer it to be a port that will be integrated
in the smartphone operating systems and can be provided to the software engineers directly. The
remaining job, that is the user interface adjustment, is less technical, but requires more professional
artistic accomplishment.

5.2. Energy Consumption Analysis

5.2.1. Recognition of the Current Operating Hand

There are three steps that mainly cause energy consumption [70] in the current operating hand
recognition process. The first step is the acquisition of touchscreen traces. The lightening of the
touchscreen will consume a certain amount of energy. However, even if our system does not exist,
when people normally use smartphones, this part of the energy will still be consumed anyway.
We just incidentally employ these traces generated during the users’ smartphone operation processes
for recognition. Therefore, the energy consumption of the first step can be ignored. The second
step is the feature extraction. As shown in Table 2, all of these features, such as length, velocity and
displacement, are economical and can be easily calculated. The energy consumption of calculating
these features is negligible, compared to other smartphone applications, such as the video processing
in an exquisite racing or shooting game. The third step is the classification. The training process of
the classifier is offline. Therefore, its energy consumption can be ignored. Then, based on the existing
random forest classifier, the smartphone conducts the classification, which will not use too much
energy, because the random forest classifier is extremely lightweight.

5.2.2. Recognition of the Hand-Changing Process

As for the recognition of the hand-changing process, there are four steps that mainly cause energy
consumption. The first step is the acquisition of the accelerometer and gyroscope data. The power of
the accelerometer is about 96 mW [71]. The power of the gyroscope is about 153 mW [72]. They are both
low cost. Therefore, the energy consumption of the first step is only at about the thousand-Joule-level
per hour. The second step is similar to the second step of the current operating hand recognition process.
Therefore, we will not analyze it again here. The third step is the dimension reduction of the features.
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The training process of the linear discriminant analysis is offline. Then, the smartphone conducts
only two linear transformations to transform high dimensional features into low dimensional features.
Therefore, the energy consumption of the third step can be ignored. The fourth step is the same as
the third step of the current operating hand recognition process. Therefore, we will not analyze it
again here.

5.2.3. Another Related Paper

Hao et al. [73] proposed a sleep quality monitoring system, which conducts the similar
processing steps as our systems. The first step is the acquisition of audio clips from the smartphone
built-in microphone. The power of the microphone is about 329 mW [71], which is greater than the
sum of the accelerometer and gyroscope. Then, the smartphone extracts several efficient features. In
the third step, the smartphone utilizes a pre-trained decision tree classifier to detect the events that
are related to sleep quality. The whole energy consumption of their system is about 4% of the battery
capacity per hour.

6. Conclusions

User experience can be significantly improved if the smartphones are able to recognize the current
operating hand, detect the hand-changing process and then adjust the user interfaces subsequently.
In this paper, we proposed two novel systems. The first one leverages the user-generated touchscreen
traces for the recognition of the current operating hand, and the second one utilizes the accelerometer
and gyroscope data of all kinds of activities in the user’s daily life for the detection of the
hand-changing process. These two systems are based on two supervised classifiers, which are
constructed from several refined touchscreen trace, accelerometer and gyroscope features. We have
implemented our systems on Android-based smartphones and conducted a series of experiments.
Evaluation results demonstrate that our proposed systems can both recognize the current operating
hand and detect the hand-changing process accurately for different users. To the best of
our knowledge, this is the first paper that has proposed the idea of smartphone user interface
automatic adjustment and gave a complete and feasible technical solution using touchscreen traces
and accelerometer-gyroscope data.
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Abbreviations

The following abbreviations are used in this manuscript:

TPR True Positive Rate
FPR False Positive Rate
DT Decision Tree
RF Random Forest
NB Naive Bayes
MLP Multi-Layer Perceptron
k-NN k-Nearest Neighbors
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
DTW Dynamic Time Warping
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