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There are three prominent factors that can predict
human visual-search behavior in natural scenes: the
distinctiveness of a location (salience), similarity to the
target (relevance), and features of the environment that
predict where the object might be (context). We do not
currently know how well these factors are able to
predict macaque visual search, which matters because it
is arguably the most popular model for asking how the
brain controls eye movements. Here we trained
monkeys to perform the pedestrian search task
previously used for human subjects. Salience, relevance,
and context models were all predictive of monkey eye
fixations and jointly about as precise as for humans. We
attempted to disrupt the influence of scene context on
search by testing the monkeys with an inverted set of
the same images. Surprisingly, the monkeys were able to
locate the pedestrian at a rate similar to that for upright
images. The best predictions of monkey fixations in
searching inverted images were obtained by rotating the
results of the model predictions for the original image.
The fact that the same models can predict human and
monkey search behavior suggests that the monkey can

be used as a good model for understanding how the
human brain enables natural-scene search.

Introduction

Choosing where to look next is one of our most
frequent decisions. There have been substantial ad-
vances in understanding the factors that assist in
guiding saccades. Recent models can produce good
predictions of regions that will be targeted by saccades
across natural and artificial stimuli (Koch & Ullman,
1985; Najemnik & Geisler, 2005; Ehinger, Hidalgo-
Sotelo, Torralba, & Oliva, 2009; Borji & Itti, 2013;
Kümmerer, Theis, & Bethge, 2015). Three known
factors can help with the predictions: (a) The salience,
or conspicuousness of a point or object in a scene, is
based on how different an element is from the rest of
the scene in basic stimulus features such as color,
contrast, shape, and orientation (Koch & Ullman,
1985). (b) Target relevance, or similarity to the target,
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can alter the importance of the features for the task at
hand; for example, if a human subject is looking for a
red target, red features are important (Horowitz et al.,
2007). These experimental studies have been comple-
mented by models that detect human figures in natural
images (Dalal & Triggs, 2005). (c) Context, enabled by
an understanding of the scene, can assist in identifying
places where the object is more likely to be found
(Neider & Zelinsky, 2006). For instance, a human
subject looking for a pen or pencil in an office scene
would assign higher weight to a desktop than to
bookshelves. Interestingly, some features may contrib-
ute to several of these factors (Jansen, Onat, & König,
2009). All these factors must matter during everyday
visual search.

We have considerable knowledge about the impor-
tance of the three factors from a recent analysis of
human search (Ehinger et al., 2009). The authors
asked human participants to look for pedestrians in
images of urban scenes. They then modeled the
behavior combining all three factors, which each
contributed considerably to the quality of the predic-
tions. The results could be further improved by using a
so-called context oracle, a way of using the judgment
of other humans to identify areas of highest contextual
structure in each scene. Interestingly, there is some-
thing of a confound here: The context model deals
with the meaningful context—for example, a pedes-
trian being on the street—as well as the boring one,
where fixations in the middle of the image are more
likely (Tatler, 2007; Bindemann, 2010). Humans
clearly use all three factors, with each explaining
similar amounts of variance, which raises the question
of whether other species choose fixations in a similar
fashion.

With salience, relevance, and context making such
an important contribution to human eye-movement
guidance, we sought to investigate the role of these
factors in the guidance of rhesus monkey eye move-
ments. With a few notable exceptions (e.g., Einhäuser,
Kruse, Hoffmann, & Konig, 2006; Ghazanfar, Nielsen,
& Logothetis, 2006; Berg, Boehnke, Marino, Munoz, &
Itti, 2009; Shepherd, Steckenfinger, Hasson, & Gha-
zanfar, 2010; Ramkumar, Fernandes, Kording, &
Segraves, 2015; White et al., 2017; Wilming et al.,
2017), visual search in nonhuman primates has been
investigated using highly artificial stimuli. In order to
obtain a full understanding of neural mechanisms
guiding visual search in natural environments, it is
essential to understand the factors that guide a
monkey’s search when the monkey views scenes that
contain real-world settings. Our goal was to take
advantage of the substantial progress that has been
made in predicting human saccade targets and apply
these quantitative models in an effort to predict the

behavior of rhesus monkeys in a naturalistic search
task.

Which factors would we expect to be predictive of
monkey natural-scene search? It is reasonable to
assume that salience—a supposedly innate, bottom-up
visual feature—would have a similar influence upon
monkey saccades as it does on human saccades. Berg
et al. (2009) have shown that salience models are
predictive of monkey fixations during viewing of
natural and artificial video clips, although prediction
of human fixations using salience models was stron-
ger. Likewise, target relevance may play an important
role in eye-movement guidance in both humans and
monkeys (Fecteau & Munoz, 2006; Henderson,
Malcolm, & Schandl, 2009; Ramkumar et al., 2015).
However, it is unclear whether monkeys use image
context to guide their saccades. One argument against
the possibility that monkeys use context is that this
might represent a higher cognitive ability that is
unique to humans. Further, the use of context may be
a learned behavior that humans acquire through
experience. For example, humans know to look for
pedestrians on sidewalks and not on rooftops, a result
of a lifetime of observation. On the other hand, a
laboratory monkey has little visual experience in the
outside world and may have little or no experience
seeing pedestrians in their natural surroundings.
However, laboratory monkeys often have access to
television, which may make their visual environment
similar in some ways to that of typical human
subjects. Moreover, the monkeys in this study were
trained extensively on pedestrian search before the
bulk of our data were acquired, allowing them to (in
principle) learn about context by trial and error. In
addition, the monkeys are likely to understand basic
principles of physics, like gravity, that contribute to
the contextual aspect of scene search (Võ & Hender-
son, 2009). The experiments described here assess the
degree to which monkeys use salience, relevance, and
context in visual search in comparison to that seen in
human behavior.

Here we collected eye-movement data from two
monkeys while they participated in a natural-scene
search task. We fitted the data with models containing
three factors: salience, relevance, and context. We also
explored two versions of context: one defined by an
algorithm and another defined by human observers. We
found that salience, relevance, and context all contrib-
ute significantly to the prediction of eye-movements. In
an attempt to disrupt image context, we found that the
monkeys performed almost as well when viewing
inverted images, although adjustments to the relevance
and context models were needed to achieve levels of
prediction that were similar to those obtained for the
viewing of upright images. Lastly, a comparison with
human performance reveals that the models are almost
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as good at predicting monkey eye movements as they
are at predicting human ones.

Methods

Animals and surgery

Two female adult rhesus monkeys (Macaca mulatta)
were used for these experiments, and are identified in
this report as M15 and M16. Northwestern University’s
Animal Care and Use Committee approved all
procedures for training, surgery, and experiments
performed. These procedures conform to the Associa-
tion for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and
Visual Research. Each monkey received preoperative
training designed to familiarize it with the experimental
setup. This was followed by an aseptic surgery to
implant a subconjunctival wire search coil and a
titanium receptacle to allow the head to be held
stationary during behavioral sessions. Surgical anes-
thesia was induced with thiopental (5–7 mg/kg intra-
venously) or propofol (2–6 mg/kg IV) and maintained
using isoflurane (1.0%–2.5%) inhaled through an
endotracheal tube. Monkey M15’s implant included a
plastic CILUX recording cylinder aimed at the frontal
eye field, for use in experiments not described in this
report.

Behavioral paradigms

We used the REX system (Hays, Richmond, &
Optican, 1982) based on a PC running QNX, a real-
time UNIX operating system, for behavioral control
and eye-position monitoring. Visual stimuli were
generated by a second, independent graphics process
(QNX Photon) running on the same PC, and rear-
projected onto a tangent screen in front of the monkey
by a CRT video projector (Sony VPH-D50, 75-Hz
noninterlaced vertical scan rate, 10243 768 resolution).
The distance from the monkeys’ eyes to the screen was
109 cm, and the projected image size was 488 wide3368
high.

Both monkeys were trained to perform a calibration
task that was run at the beginning of each data-
collection session. Eye movements were sampled with
either a magnetic search coil or a video eye-tracking
system. A red target spot appeared on a gray
background at the center, or at 128 eccentricity above,
below, left, or right of the center of the screen. This task
was used to calibrate the eye coil and eye-tracking
camera signals. Monkeys received a water reward after
maintaining eye position within a 28 window sur-

rounding the target spot for 500 ms. Monkey M15 was
a subject for earlier experiments and had extensive
training and experience with the performance of a
variety of oculomotor tasks, including visual and
memory-guided saccade tasks and a scene-search task
that required the monkey to find a target embedded in
an image (Phillips & Segraves, 2010; Fernandes,
Stevenson, Phillips, Segraves, & Kording, 2013; Glaser
et al., 2016). For the search task used in the earlier
experiments, the target was an image of a fly
superimposed on a variety of natural images including
scenes with animals, people, plants, and food. An alpha
blending technique was used to embed the fly into the
image, making it more difficult to locate. It is important
to note that the fly was foreign to all of these images,
and its location for each presentation of an image was
determined pseudorandomly. Thus, salience and rele-
vance cues might have aided the monkeys’ search, but
context would have had no influence. Monkey M16
was naı̈ve prior to this study. She received preoperative
training, followed by 10 days of postoperative training
on the calibration task. For data collection with
upright images, both monkeys’ eye movements were
tracked with a subconjunctival wire search coil,
sampled at 1 kHz (Robinson, 1963; Judge, Richmond,
& Chu, 1980). For data collection with inverted images,
monkey M15’s eye movements were tracked by search
coil, while monkey M16’s were tracked with an infrared
eye tracker (ISCAN Inc., Woburn, MA; http://www.
iscaninc.com/) at 60 Hz. The output of the infrared eye-
tracker system was an analog signal which was
calibrated for gain and offset using a signal conditioner
(Intronix Technologies Co., Bolton, Ontario, Canada)
whose output was then sampled at 1 kHz.

The search task was adopted from the work of
Ehinger et al. (2009). We used the ‘‘target present’’
segment of their image set, which included a total of
456 color images containing pedestrians situated in
urban scenes at a resolution of 800 3 600 pixels. In
addition to one or more pedestrians, every image
contained typical real-life combinations of roads,
sidewalks, buildings, trees, and cars. Pedestrians
subtended an average of 1.88 3 3.68, corresponding to
roughly 31 3 64 pixels. These targets were spatially
distributed across the image periphery (target locations
ranged from 5.48 to 268 from the screen center; median
eccentricity was 17.28) and were located in each
quadrant of the screen with approximately equal
frequency. The tasks began with the appearance of a
red fixation spot at the center of the screen, and after
the monkey fixated the spot, the image was turned on.
The monkeys were rewarded when they directed their
gaze to, and fixated, the pedestrian for 350–500 ms. The
monkeys were allowed up to 20 saccades to find the
pedestrian target, after which the image was turned off
and a new trial began.
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Monkey M15 was used for the development of the
pedestrian search task, and received training on the
task for 38 daily sessions before the data used in this
study were collected. During this time, she was exposed
to a subset of 48 images that were not used for the data-
collection phase of these experiments. Monkey M16
received just 9 days of training on the task before we
began to collect the data included in this report. Her
training involved exposure to the same subset of 48
images used for training M15. For the inverted-image
task, both monkeys were trained on inverted versions
of the same set of 48 images for 7 days before data
collection began. The monkeys were then exposed to
the remaining images during the data-collection phase.

For each data-collection session, a monkey per-
formed the pedestrian search task with a subset of 102
images. The image for a given trial was selected in a
pseudorandom fashion from the group of 102 images
used for that day to ensure that the images were
presented in roughly equal numbers of trials. We
noticed during the training sessions that performance
began to decline after performing the task for 120 min,
and so we limited data collection to the first 120 min of
each behavioral session. Over 1,000 trials were run in
each of these daily sessions.

Data analysis

All data obtained in these experiments were analyzed
using MATLAB. For each trial, saccades in the eye-
movement record were identified using velocity criteria.
Endpoints of the saccades were then superimposed on
the image that the monkey had been viewing (Figure
1A). Each image was processed using the salience,
relevance, context, and combined models of Ehinger et
al. (2009; see http://cvcl.mit.edu/SearchModels/). For
each model, the parameters were set so that the model
identified the region equivalent to 20% of the entire
image where saccade endpoints were most likely to be
found (Figure 1B through E). For the combined model,
we used the same exponent values used for the human
data (c1 ¼ 0.1, c2 ¼ 0.85, c3¼ 0.05), which define the
relative importance of each of the components. Saccade
endpoints that fell within the regions predicted by the
models were expressed as a percentage of the total
number of saccades that landed within the boundaries
of the image. Saccade endpoints that fell outside the
boundaries of the image were labeled as off-slide
fixations, and were not included in calculating model
predictions. For each trial’s data, we also generated a
shuffle control where the saccade endpoints were placed
on an image that was selected at random from the
stimulus set and subsequently used for comparison to
predictions of the models (Figure 2).

Results

Over the course of a 4-day testing period, each
monkey viewed a total of 408 images. Completed trials
include those where the monkey either found the
pedestrian (correct trials) or searched until the limit of
20 saccades was reached (error trials). Monkey M15
completed a total of 4,057 trials with 27,790 total
fixations (6.8 fixations/trial), and monkey M16 com-
pleted 3,877 trials with a total of 46,292 fixations (11.9
fixations/trial). This data set thus allows us to ask how
we can understand the choice of fixations.

It is crucial to know if the monkeys can successfully
find pedestrians. One monkey (M15) was experienced
at visual-search tasks and completed a higher percent-
age of correct trials than the more naı̈ve monkey
(M16). Monkey M15 correctly located and fixated the
pedestrian in 83% of image trials (3,378/4,057). In
contrast, monkey M16 performed at a level that
correctly fixated the pedestrian in only 54% of the total
image trials completed (2,091/3,877).

Despite this difference in success rate for the two
monkeys, their behavior shared some common fea-
tures. For example, the frequency of looking outside of
the image boundaries is a measure of the level of
motivation to perform the task as well as the difficulty
of finding the pedestrian in a particular image. This
frequency was remarkably similar between monkeys
(M15: 6%, 1,749/27,790; M16: 7%, 3,097/46,292). In
addition, for both monkeys the majority of these off-
slide fixations occurred during error trials in which the
monkey did not locate the pedestrian (M15: 90%,
1,579/1,749; M16: 91%, 2,815/3,097). This similarity in
the percentages of off-slide fixations for the two
monkeys suggests they shared a similar motivation to
correctly perform the task. Monkey M15’s more
extensive experience with search in natural images may
explain the higher percentage of correct trials that she
completed. Additionally, M16’s performance was at a
level similar to her performance in a number of
subsequent behavioral testing paradigms, where she
typically achieved a lower percentage of correct trials
than was the case for M15 (Ramkumar et al., 2015;
Glaser et al., 2016; Ramkumar et al., 2016). It seems
that the difference in performance is not a categorical
difference but simply a lower level of performance for
one of the monkeys. As will be seen later, the general
ability of the salience, relevance, and context models to
predict where these monkeys fixated was also similar
with both monkeys. Therefore, both monkeys can find
the pedestrian in this task, and both appear to apply
similar strategies to succeed.

How well do the models predict fixation choice? A
comparison of the percentages of fixations predicted by
the models for the entire data set reveals a gradual
increase in the percentage of fixations predicted, with
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salience being the least predictive, relevance the next
most predictive, context the second most predictive,
and the combined model the best predictor of saccade
endpoints (Figure 3A). Predictions for the more
experienced monkey (M15) were slightly higher, but the
trend for both monkeys was the same. For the shuffle
control, the correspondence between saccade endpoints
and model predictions was in the range of only about
20%–30%. The models do a decent job at predicting
fixations.

In the pedestrian search task, we should expect that
early saccades may be more predictable because the
monkey has not yet accumulated information about the
visual scene that would bias future saccades. After all,
such information could indicate that there are regions of
the image where the target cannot be, and the model
does not incorporate such terms. Indeed, Velichkovsky
and colleagues (Pannasch & Velichkovsky, 2009; Pan-
nasch, Schulz, & Velichkovsky, 2011) have shown that
variations in visual processing can affect the outcome of

Figure 1. Search behavior and analysis. (A) Example of test image with pedestrian target and a monkey’s eye-movement behavior

during a single trial. The trial begins with fixation at the green dot in the center of the image and ends when the monkey correctly

finds and fixates the pedestrian. Blue dots mark eye position sampled at 1 kHz. Red dots mark saccade endpoints. The gold star marks

the location where the monkey captured the pedestrian target. (B–E) Unmasked areas mark 20% of the total image area where

salience, relevance, context, and combined models predict that the endpoints of saccades made during searching for pedestrians are

most likely to be found. Green dots mark fixations from the trial shown in (A) that fell within the area predicted by the models, and

red dots mark fixations located outside of the predicted areas. For this trial, the correspondences of actual saccade endpoints to

model predictions were 58% (salience), 50% (relevance), 58% (context), and 67% (combined).
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saccade decisions during viewing of images. Likewise,
scene complexity, which varied across the image set,
affects the efficiency of visual search (Henderson,
Chanceaux, & Smith, 2009). The models should have
their strongest predictive power during the initial
saccades. To allow us to compare the monkey data with
those reported by Ehinger et al., we looked at the
models’ ability to predict the location of the first three
fixations. When the endpoints of the first three saccades
from both correct and error trials were included, the
trend in predictive power of the models was similar to

that seen when every saccade made in each trial was
considered. However, the magnitude of the predictions
of all four models was slightly higher when only the first
three saccades were used (Figure 3B). This effect was
stronger for the less experienced monkey (M16), which
required a higher average number of saccades to find the
pedestrian. This resulted in a larger dichotomy between
the analyses of all saccades when compared with the
analyses of the first three saccades for M16.

To further test the assumption that the predictive
power of the models would be greater for earlier

Figure 2. Shuffle control. (A) Eye-movement data from trial shown in Figure 1 placed on an image selected at random from the image

library. (B–E) In a manner identical to that of Figure 1, unmasked areas mark 20% of the total area where salience, relevance, context,

and combined models predict that the locations of saccadic endpoints made while searching for pedestrians are most likely to be

found in this image. The correspondence of saccade endpoints from the Figure 1 trial to model predictions for this randomly selected

image were 25% (salience), 8% (relevance), 42% (context), and 33% (combined).
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saccades, we compared the ability of the models to
predict fixations in trials where there were more than
three fixations (Figure 4). The percentages of fixations
predicted by the models for the later fixations were
clearly reduced in comparison to predictions for the
first three fixations (Figure 3B). The predictions plotted

in Figure 3B include a number of trials when the
monkey located the pedestrian with three or fewer
saccades. When we looked only at trials where there
were more than three fixations, and compared the
percentages of fixations predicted by the models for the
first three fixations versus the percentages for Fixations
4–20, we found that the differences were significant (p
, 0.001) for all models with the exception of the
relevance model for monkey M15 (p¼ 0.2). Therefore,
early saccades are more predictable than late saccades
using these models.

If the models are robust, then they should predict
saccades in both successful and unsuccessful trials. We
thus compared the data for correct and error trials to
determine whether or not the models were predictive
only in trials when the monkeys correctly fixated the
pedestrian (Figure 5). Predictions are not as high for
error trials compared to successful trials, but the trends

Figure 3. Percentages of fixations predicted by the models for all

trials, including both correct and error trials. (A) Percentages

predicted by the models for saccade endpoint locations on

original scenes and shuffle-control scenes for all saccades that

landed within the image boundaries in each trial. (B)

Percentages predicted by the models for the first three fixations

in each trial. For original- versus shuffled-scene comparisons

performed on these data as well as for the data plotted in

Figure 5, every comparison with a two-sample t test reached

significance, p , 0.0001. Standard error of the mean for these

data were too small to be visible on these bar graphs. Off-slide

fixations that landed outside of the boundaries of the image

were excluded from this analysis.

Figure 4. Effect of fixation number: Percentages predicted by

the models for saccade endpoint locations on original scenes

for all saccades that landed within the image boundaries in

each trial. In this case, only fixations that occurred after the

third fixation were used to obtain the percentages (Fixations

4–20).
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between models are preserved (compare Figure 5A and
B to Figure 5C and D). For error trials, the prediction
percentages were lower, but they were still significantly
different from shuffle controls. The models make
meaningful predictions even for error trials where the
monkey never finds the target.

The observation that the first three saccades are
more predictable (Figure 3) could be driven by the
inclusion of both successful and unsuccessful trials in
the comparison. The increase in model performance
when comparing data for the first three fixations to
data for all fixations (Figure 3B compared to Figure

Figure 5. Model predictions for correct and error trials. (A–B) Percentages for saccade endpoint locations for (A) all saccades and (B)

the first three saccades landing within the image boundaries in correct trials where the monkeys successfully found and fixated the

pedestrian. (C) Percentages for all saccade endpoints in error trials where the monkey failed to find the pedestrian after 20 saccades.

(D) Percentages for the first three saccade endpoints in error trials.
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3A) is lost by looking only at correct trials (Figure 5B
compared to Figure 5A). This suggests that most of the
loss of predictive power in looking at all fixations
versus the first three can be attributed to error trials
where the monkeys reached the limit of 20 saccades
without finding the pedestrian. This finding suggests
that prediction quality is comodulated by underlying
factors that influence success, including scene com-
plexity and spatial bias.

It is known that some of the prediction quality of
fixation models comes from the effective modeling of
the center bias (Tseng, Carmi, Cameron, Munoz, & Itti,
2009; Bindemann, 2010; Nuthmann & Henderson,
2010; Borji & Tanner, 2016). Shuffle controls can be
used to disentangle the effects that are specific to a
given image from general location biases. All the
models were far better at predicting fixations on the
actual images versus the shuffle control (Figure 6).
Shuffle-control predictions for the context model are
slightly higher than those for the other models (Figure
3), lowering the difference between the shuffled and
unshuffled predictions (Figure 6). This should be
expected because the context model will naturally
include a strong center bias.

In the standard model, the context is provided by a
trained computational algorithm; however, as context
deals with the meaning of the scene, this is a difficult
problem to solve by computational methods alone.
Ehinger et al. introduced an additional method by
which humans indicate where in the image pedestrians
might meaningfully be found. The model obtained was
called the context oracle and is better at describing
human fixations during pedestrian search. We find that
using the human context oracle instead of the
computational algorithm for context also leads to
better predictions of eye movements for the monkeys.
The average predictions for the first three fixations in
correct trials were 71% for context versus 87% for
context oracle (p , 0.001). This suggests that monkeys
and humans share a common ability to properly
understand the complex context defining a visual scene.

For each daily data-collection session, a monkey
performed the pedestrian search task with a subset of
102 images. The image for a given trial was selected in a
pseudorandom fashion from the group of 102 images
used for that day to ensure that the images were
presented in roughly equal numbers of trials. With
about 1,000 trials analyzed per session, the monkey saw
repeated presentations of each image up to 10 times per
session, and we may expect an effect of presentation
order. To determine if the effectiveness of the models in
predicting fixations remained about the same for
repeated presentations of an image, we compared
model predictions for the first and fifth presentations of
an image (Figure 7). This analysis shows a slight
reduction for salience—but not relevance, context, or

combined models—between the first and fifth scene
presentations. In fact, there was no significant differ-
ence (p . 0.4) for all four model predictions of first
versus fifth presentation of the scene for either monkey.
The same result was obtained when we compared the
models’ ability to predict fixations for Presentations 1–
4 to those for Presentations 5–8 (not shown). Presen-
tation order does not seem to be an important driver of
search behavior.

Because context was, somewhat surprisingly, highly
effective at predicting monkey fixations, we wondered if
there could be ways of disrupting it. We thus tested the
monkeys with an inverted set of the same pedestrian-
task images (Figure 8). Surprisingly, the monkeys were
able to locate the pedestrian at a rate similar to that for

Figure 6. Comparing model predictions for original versus

shuffle-control images for correct trials, first three fixations.

Values on the y-axis represent the percentage increase of the

model prediction for the distribution of fixations on the original

search image in comparison to the predictions for the same

fixations placed on a shuffle image chosen at random from the

image set. If predictions for the original image were equal to

predictions for the shuffle image, the percentage increase was

zero.
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upright images (average correct trials ¼ 69% upright,
64% inverted). To assess the strength of the models in
this version of the task, we applied them to the inverted
images and looked for correspondence between the
model predictions and the locations where the monkeys
fixated during the first presentation of each image
(Figure 9A). The salience model appeared to perform
as well on the inverted images as on the original upright
images. The difference between the salience predictions
for fixations on the inverted image versus an inverted
shuffle control was highly significant for both monkeys
(p , 0.001). This result could be expected, since
although orientation contributes to the salience map,
the salience model is not sensitive to the cardinal
orientation of the bottom-up visual features that are
the basis for its predictive power. In contrast, the
relevance model developed for upright images was not
successful in predicting fixations on inverted images.
Predictions for the relevance model were not signifi-

cantly different from those for inverted shuffled images
(M15: p . 0.05; M16: p . 0.8). This might be expected
since, intuitively, the relevance model searches for
objects resembling a human figure with head above
arms and torso, above legs. The context model also
generated predictions that were not significantly
different from the shuffle predictions (M15: p . 0.20;
M16: p . 0.05). This also was not surprising, because
context is also disrupted by image inversion. Lastly, the
combined model’s predictions were small but signifi-
cantly different from the predictions for shuffled images
for both monkeys (p , 0.001). This effect was largely
due to the inclusion of salience in the combined model.
The average percentage of fixations predicted by the
combined model for inverted images was substantially
less than that predicted by the combined model when
the monkeys searched upright images (25% vs. 82%).

Because the relevance and context models were not
designed to detect these features in inverted images, we

Figure 7. Effect of repeated scene presentations: Percentages of fixations predicted by the models for the first three fixations in all

trials. Here, data are divided based upon model predictions when the monkey was presented a scene for the first time (blue) versus

when presented for the fifth time (green) during a single data session.
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compared model predictions for the upright versions of
the models to the monkeys’ fixations on the inverted
images. In other words, the predictions for each model
were made using the original, upright image, and then
we inverted these predictions and compared them to the
monkeys’ fixations on the inverted images (Figure 9B).
This method was successful at predicting the monkeys’
fixations on inverted images. However, the percentages
of fixations predicted with this method were not as high
as those obtained when the monkeys viewed upright
images. Predictions were lower for both monkeys, but
especially notable for M16 (compare Figure 5B to
Figure 9B). Inverting images does not diminish the
monkeys’ success in finding the pedestrian but does
substantially reduce the ability of all models except
salience to predict the location of fixations.

With the combination of all three models providing
the best predictions of fixations for both upright and
inverted images, we looked at the performance of two-
source models for comparison (Figure 10). This
comparison underlines the fact that each of the
models—salience, relevance, and context—make an
important contribution to the predictions. The two-
source models show substantial increases in percentage
of fixations predicted over single-source models (com-
pare to Figure 5B). The percentages of fixations
predicted by the salience-plus-relevance and relevance-
plus-context models are slightly lower, and significantly
different from the three-source model (p , 0.004).
However, the percentage of fixations predicted by the
salience-plus-context model is not significantly different
from that of the combined model for either monkey
(M15: p ¼ 0.47; M16: p¼ 0.71). This suggests that a
two-source model that combines context with salience
or relevance performs about as well as the three-source
model that includes context, salience, and relevance.

How does model performance vary between humans
and monkeys? The monkeys performed the pedestrian

search task on exactly the same images as in the
original study by Ehinger et al., and we applied the
same models as used in the human study. This allows us
to compare the results of our model fits on monkey
behavior with the behavior of humans (Figure 11).
Prediction qualities of all the models are surprisingly
similar between monkeys and humans, suggesting
similar search strategies for both species. In addition,
this favors the monkey as an ideal model system if we
want to understand how the brain solves the problem
of fixation choice in natural scenes.

Discussion

In this study, we have taken visual-search behavior
models that have been optimized to predict human
search performance and examined the applicability of
these models to monkeys performing a pedestrian
search task. Using hundreds of images of outdoor real-
world environments, the two monkeys searched for a
pedestrian in each natural scene. Their eye movements
were recorded and we applied the four computational
models that Ehinger et al. (2009) constructed from
human visual-search behavior in the same search task.
Salience, relevance, and context models of human
visual-searching behavior, when applied to rhesus-
monkey visual-searching behavior, predicted monkey
saccades about as well as human saccades.

We used the same way of evaluating the model
predictions as Ehinger et al., but one could easily take
issue with the implementation. The models estimate,
for each pixel of the image, how likely a saccade to that
location is. Then they choose the 20% of pixels with the
highest expected probability. The percentage prediction
estimates are the proportion of trials where the eyes
land within those 20% of chosen pixels. This metric is

Figure 8. Search for pedestrian in inverted images: Examples of successful and unsuccessful trials where the monkey searched for a

pedestrian in an inverted image. As in Figure 1, each trial begins with fixation on the green dot in the center of the image. The trial

ends with fixation at the location marked by the gold star when the monkey correctly finds and fixates the pedestrian (left panel), or

when the monkey fails to find the pedestrian after making 20 saccades. Blue dots mark eye position sampled at 1 kHz. Red dots mark

saccade endpoints.
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Figure 9. Model predictions for inverted-image search. These data include the first three fixations for trials when the monkeys

searched a particular inverted image for the first time. Two methods of analysis were used. (A) Model predictions were made based

upon the inverted images, then compared to the locations where the monkeys fixated while searching for the pedestrian on the

inverted image. (B) Model predictions were made based upon the original upright orientation of the image. These predictions were

then rotated 1808 and compared to the monkeys’ fixations for inverted images. Although the numbers of trials and fixations were

small compared to data obtained for viewing of upright images, the standard error of the mean was always less than 2%.
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arbitrary, and we primarily used it for comparison to
the original study. However, the other metrics in the
field have similar problems. The commonly used area
under the curve will give a value of 50% for random
guesses and basically deals with the trade-off of the
proportion of wrongly chosen pixels and rightly chosen
pixels. Therefore, it does not seem as if there is an easy
way around this issue. For a review about the choice of
metric, see Wilming, Betz, Kietzmann, and König
(2011). We just have to be aware that even if our
models predicted a very high percentage of fixations,
this would not imply that we have perfectly understood
saccade choice.

The models that we have used clearly omit important
variables that influence behavior. There are many
factors—for example, planning (Phillips & Segraves,

2010) and optimal visual sampling (Najemnik &
Geisler, 2005)—that influence saccade choice. Further
evidence of the shortcomings of our current models is
that the context oracle developed by Ehinger et al. is a
far better predictor of human and monkey fixations
than any of the computational models. Developing
better models for fixation choice is important, because
it both leads to insights into the mechanisms and is
practically relevant, for example, in the context of user
interfaces (McCormick & Sanders, 1982). However, in
the context of this article we wanted to focus on the
differential behavior between monkey fixation choice
and that of human subjects.

Recent work has shown a new strategy for predicting
eye movements that can produce considerably better
fixation-choice predictions than conventional ap-

Figure 10. Two- versus three-source model comparison: Percentages of fixations predicted by combinations of two models compared

to the combination of all three models. Data are for the first three fixations of correct trials. The same data using single-source model

predictions are shown in Figure 5B. The predictions of two-source models shown here represent substantial increases over the

predictions of single-source models.
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proaches (Kümmerer et al., 2015). For these ap-
proaches, large artificial neural networks are trained to
identify objects in the real world. The internal structure
of these networks is then used to create regressors for
estimating eye movements. These approaches are quite
powerful, but they are relatively opaque when it comes
to determining which features drive successful predic-
tions. We therefore decided not to compare our results
with these models. However, understanding how these
models can be so successful is an important task for
future work.

The monkeys in our experiment are, arguably, far
more motivated than humans at successfully finding the
pedestrian. After all, their water intake is controlled,
and each successfully found pedestrian gives them a
water reward. On the other hand, the typical under-
graduates used in human behavioral studies have no
such reward incentives. However, these undergraduates
are very much motivated by task success, and we know
that high scores during psychophysical tasks activate
reward-related areas (Vilares, Howard, Fernandes,
Gottfried, & Kording, 2012). Still, there is the

possibility that higher motivation resulted in elevated
performance in the monkeys in comparison to humans.
This difference in performance might have narrowed
the gap in the model predictions for monkeys versus
humans. However, it is not clear that this is detrimen-
tal. After all, for a physiological study of fixation
choice, we would use motivated monkeys as a stand-in
for arguably less motivated human beings.

Monkeys in our experiment saw the same image
multiple times: We used a total of 408 images and the
monkeys participated in thousands of trials, about 10
trials per image. Although each data set includes a total
of four 120-min sessions with a different set of 102
images displayed in each session, there is a concern that
the monkey would learn by heart how to find the
pedestrians. However, neither of the monkeys seems to
have used such a strategy, because performance (based
upon model predictions) stayed constant throughout
the experiment (Figure 7). In addition, it has been
shown that repeated presentation of images to human
subjects has limited effects on the distribution of
fixations in a free viewing task (Kaspar & König, 2011).
However, across images it is possible that the monkeys
learned how context works. After all, they do get to see
countless images and get to see where they do find the
pedestrian. For the interpretation of our study, though,
this is irrelevant: Either the monkeys understood
context to start with or they quickly learned it from the
images. Future work could look at how monkeys learn
to properly deal with context.

Apart from replicating the Ehinger et al. study with
monkeys, we also introduced the inversion condition.
Strikingly, monkey performance was virtually unaf-
fected by inversion. This means that whatever strategy
they are using, they must be able to adapt it to a 1808
rotation. We observed that if we use the original
Ehinger et al. relevance and context models, they do
very poorly at predicting the actual fixations. Instead,
the monkey behavior can be well predicted by rotating
the relevance and context predictions from the original
upright image. This might be predicted, because
humans can efficiently deal with image rotations even
when they are unable to do mental rotation (Farah &
Hammond, 1988). In whatever way the monkey
represents its fixation choice, it must have the ability to
represent or compute with whole-scene rotations.
Future research could ask how the brain solves this
problem.

In behavioral science, it is important to show
generalization. Fitting a model to one behavior will
generally be good at describing that behavior but worse
at describing similar but related behaviors. General-
ization studies are therefore important in asking if the
model also works in other situations—for example,
differences in gender, socioeconomic status, and so on
(Henrich, Heine, & Norenzayan, 2010). Our study

Figure 11. Average model predictions for both monkeys using

first three fixations in correct trials (Figure 5B), compared to

predictions of human performance for first three fixations with

target-present images (Ehinger et al., 2009, table 1).
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shows that the results of the Ehinger et al. study
generalize across species.

We had expected that salience and relevance would
be important for monkey eye movements (Fecteau &
Munoz, 2006), but we had, among ourselves, not been
able to agree on our expectations for the context model.
We found that the context model explains a great deal
of variance for the monkey—about as much as it does
for the human. This shows that context matters to the
monkeys. Even the human oracle, in which the model is
derived from judgments by other humans about where
the target might be, is predictive of monkey behavior. It
thus seems that understanding visual scenes in terms of
the relevant context, the meaning of the scene, can be
solved well by monkeys. The origin of this convergence
is interesting. Do humans and monkeys share algo-
rithms for dealing with space and physics? Or
alternatively, do they share some experiences—for
example, watching television, where pedestrians are
often shown—which produce the understanding of
context? We must also recognize that a variety of other
factors may aide the localization of the pedestrian in
this task that do not depend directly upon salience,
relevance, and context (Biederman, Mezzanotte, &
Rabinowitz, 1982; Hollingworth & Henderson, 1998;
Castelhano, Mack, & Henderson, 2009). These ques-
tions are interesting because they ask how cognitive
abilities or viewing experiences are shared between
humans and nonhuman primates.

No matter what the origin of this similarity is, our
study shows that the algorithm for fixation choice is
similar between humans and monkeys. While there
exist some differences—for example, in the Ehinger et
al. study humans made an average of 3.5 fixations per
trial, while monkeys in our study made an average of
9.4 fixations per trial—the current findings suggest that
monkeys can be a good proxy to understand how the
human brain deals with fixation problems. It also
suggests that physiological experiments on monkeys
may shed light on the ability of humans to look at what
matters to them in cluttered real-world visual scenes.

Conclusions

To understand how the brain guides eye movements
during visual search ultimately requires an under-
standing of how the brain solves the kinds of tasks
encountered during everyday life. Studies of human
visual search have developed algorithms which are able
to predict fixation choices with a high degree of
accuracy during search of complex visual scenes. Three
important visual features predicting human visual-
search behavior are the distinctiveness of a location
(salience), similarity to the target (relevance), and

features of the environment that predict where the
object might be (context). The ideal animal model for
studying the brain’s control of visual search is the
rhesus monkey. In this study, we trained and tested two
monkeys on a behavioral task in which they searched
for pedestrians in images of urban environments
(Ehinger et al., 2009). Monkey eye-movement behavior
was then compared to the predictions of the models
developed by Ehinger et al. to predict human behavior
in this task. The salience, relevance, and context models
optimized for human search were all predictive of
monkey eye fixations, and a model combining all three
was accurate to a level that approached the model’s
predictions for human behavior. One of the most
striking findings was that models of scene context
developed for humans were also excellent predictors of
monkey fixations. This suggests not only that rhesus
monkeys rely upon scene context to guide their search
but that monkeys and humans might share similar
strategies for incorporating scene context into their
search behavior.

Keywords: visual search, real-world scene, eye
movement, salience, contextual guidance, target features,
behavior
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