
1Scientific Reports |         (2019) 9:11939  | https://doi.org/10.1038/s41598-019-48458-w

www.nature.com/scientificreports

Assessing the Protective 
Metabolome Using Machine 
Learning in World Trade Center 
Particulate Exposed Firefighters at 
Risk for Lung Injury
George Crowley1, Sophia Kwon1, Dean F. Ostrofsky1, Emily A. Clementi1, 
Syed Hissam Haider1, Erin J. Caraher1, Rachel Lam1, David E. St-Jules2, Mengling Liu3,4, 
David J. Prezant5,6 & Anna Nolan   1,3,5

The metabolome of World Trade Center (WTC) particulate matter (PM) exposure has yet to be fully 
defined and may yield information that will further define bioactive pathways relevant to lung injury. 
A subset of Fire Department of New York firefighters demonstrated resistance to subsequent loss of 
lung function. We intend to characterize the metabolome of never smoking WTC-exposed firefighters, 
stratified by resistance to WTC-Lung Injury (WTC-LI) to determine metabolite pathways significant in 
subjects resistant to the loss of lung function. The global serum metabolome was determined in those 
resistant to WTC-LI and controls (n = 15 in each). Metabolites most important to class separation (top 
5% by Random Forest (RF) of 594 qualified metabolites) included elevated amino acid and long-chain 
fatty acid metabolites, and reduced hexose monophosphate shunt metabolites in the resistant cohort. 
RF using the refined metabolic profile was able to classify cases and controls with an estimated success 
rate of 93.3%, and performed similarly upon cross-validation. Agglomerative hierarchical clustering 
identified potential influential pathways of resistance to the development of WTC-LI. These pathways 
represent potential therapeutic targets and warrant further research.

Rescue workers of the Fire Department of New York (FDNY) exposed to World Trade Center particulate matter 
(WTC-PM) had heterogeneity in lung function outcomes1–6. Our group has identified metabolically active bio-
markers associated with WTC-Lung Injury (WTC-LI) resistance; however, little is known about the bioactive 
metabolites relevant after WTC exposure in this population3,7,8. Metabolomic profiling provides comprehensive 
quantification of small organic molecules, yielding a single-time-point snapshot9. In a non-invasive functional 
genetics approach to describing molecular complexity, the metabolome’s assessment is a proximal link to disease 
phenotype10.

However, similar to other high-throughput ‘omic platforms, there are two main challenges to data analysis: 
determining which variables are relevant to our endpoint, and visualizing this data to derive insight11. The classi-
cal biomarker methodology of significance-testing followed by post-hoc correction and multivariate regressions 
falls short due to its inability to analyze variable interaction early on in the workflow. This shortfall leads to the 
potential of false negatives and false positives. For this reason, we utilize a machine learning approach, which has 
become popular in recent years, is highly relevant in its application to metabolomic classification, feature selec-
tion, and feature projection, and can classify subjects based on non-trivial structures and variable interactions 
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inherent in the data, providing a better overview of the relevant metabolites. We rely on Random Forests (RF) 
for this initial selection of a refined metabolite profile maximally relevant to class differentiation. Briefly, RF is 
a non-parametric, ensemble-based classifier that rarely overfits, is not sensitive to variable scale, and works well 
on datasets with sizes similar to ours12. RF records an unbiased measure of each variable’s importance to classifi-
cation success rate, called mean-decrease-accuracy (MDA), and we can select the highest-MDA metabolites for 
our refined profile.

To further our data interpretation, dimension reduction techniques were employed. Specifically, principal 
components analysis (PCA) of the refined profile provided a low-dimensional view that captures maximal vari-
ance. We uncovered structure in the refined profile of the metabolome through agglomerative, hierarchical clus-
tering of the data and correlation matrices. We hypothesize that implementing high-dimensional data analysis 
and dimension reduction techniques on the metabolomic fingerprints of WTC-PM exposure in the serum of 
firefighters will further refine biologically relevant pathways of resistance to WTC-LI.

Results
Demographics.  Derivation of cases and controls as described in our methods are shown in Fig. 1. Overall, 
resistantWTC-LI with metabolome assessed did not differ from their parent cohort in spirometry, body mass index 
(BMI), age at exposure at the WTC site (age on 9/11), exposure intensity, lipid profiles (including triglycerides, 
high- and low-density lipoproteins), blood pressure, heart rate, leukocyte differential percents (neutrophil, lym-
phocyte, monocyte, basophil, and eosinophil), or serum sodium, chloride, potassium, glucose, uric acid, total 
protein, calcium, phosphorous, iron, CO2, albumin, blood urea nitrogen (BUN), creatinine, albumin/creatinine, 
or BUN/creatinine. Controls with metabolome assessed and their parent cohort did not differ in lipids, leukocyte 
differential percents, or serum sodium, chloride, potassium, glucose, uric acid, total protein, BUN, creatinine, or 
BUN/creatinine, Table 1.

Figure 1.  Study Design.
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ResistantWTC-LI had decreased serum levels of sodium compared to their parent cohort. Controls had signif-
icantly lower BMI at entry into WTC-Health Program (WTC-HP) and subspecialty pulmonary examination 
(SPE), and significantly higher heart rate and blood pressure than their parent cohort; however, the controls with 
metabolome assessed have similar BMIs at WTC-HP and SPE compared to resistantWTC-LI with metabolome 
assessed, and the same trend remains true for heart rate and blood pressure, Table 1.

As expected, controls that had their metabolome assessed had lower baseline lung function at SPE compared 
to resistantWTC-LI, as was the case with their respective parent cohorts. The BMI at WTC-HP entry and SPE of the 
control parent cohort was significantly increased compared to the resistantWTC-LI parent cohort, Table 1. Similarly, 
controls that had their metabolome quantified had higher serum levels of uric acid than resistantWTC-LI with 
metabolome assessed, but no differences in sodium, chloride, potassium, glucose, total protein, calcium, phos-
phorous, iron, CO2, albumin, BUN, creatinine, albumin/creatinine, BUN/creatinine, clinically available lipids, 
blood pressure, heart rate, or leukocyte subtype percents.

Metabolomics.  We have included raw area counts, mass, retention index, and the platform on which each 
metabolite was identified in a Supplementary File, Data S3. The raw area counts correspond to area under 
the curve measurements for each metabolite, thus serving as measurements of abundance level. Initially, 759 
metabolites were identified. Of these, 594 qualified for further analysis, Table S1. Preliminary PCA of this set of 
metabolites bore relatively weak class separation based on metabolite expression levels in the qualified profile of 
resistantWTC-LI and controls, Fig. 2A, and no clear metabolite clustering patterns, Fig. 3A. Metabolites that met 
qualification criteria were included in the first RF, which ranked metabolite importance to class separation, and 
yielded the refined metabolite profile, Fig. 4. In the second run of RF, only the refined metabolite profile was ana-
lyzed, achieving a 6.7% out-of-bag estimated error rate (estimated accuracy of 93.3%), Fig. 4.

A second pass of PCA, including only metabolites in the refined panel captured 76.7% of the variance in 7 
components as determined by scree plot inspection, Fig. S1B. Here, there was marked improvement in class clus-
tering compared to preliminary PCA, Fig. 2B. Additional, 2-dimensional PCA scores plots are available, Fig. S2. 
There were also localized clusters in the PCA loading weights plot, Fig. 3B.

Agglomerative hierarchical clustering was then performed on the data and correlation matrices of the refined 
profile, Fig. 5A,B. Linkage thresholds determined by inspection of the dendrograms were used to highlight clus-
ters of metabolites that may reflect mechanistic relations. For the data matrix, a linkage threshold of 0.73 was used 
to identify 6 distinct clusters of metabolites (A-F), Fig. 5A. A linkage threshold of 0.60 highlighted 4 clusters (1-4) 
in the correlation matrix, Fig. 5B.

Cluster-A consisted largely of amino acids and their metabolites, including acyl/acetylated, branched-chain 
amino acids and those of the urea cycle. Meanwhile, cluster-B was more diverse, containing methylmalonate, 
some n-acetyl amino acids, and eicosapentanoate (EPA; 20:5n3). A total of three fatty acids (FA) comprised 
cluster-C, which was similar to clusters-A and -B. A second, relatively removed branch contained the remaining 
three clusters-D-F. Of these, clusters-D and -E were characterized by sugar intermediates of the pentose phos-
phate pathway, and cluster-F by cytosolic intermediates. Clusters 1-4 identified by the correlation matrix resem-
bled clusters-A-F in composition and structure. The intra- and intercluster correlations in Fig. 5B can be used 
to understand how metabolites and clusters interact, and corroborate patterns in Fig. 5A. As expected, strong 
correlations were found among related metabolites, Fig. 5B.

Measure

Parent Cohort Metabolomics Subcohort

Controls
n = 127

ResistantWTC-LI
n = 100

Controls
n = 15

ResistantWTC-LI
n = 15

PFT at SPE

FEV1, % Pred
a,b 93 (85–99) 113 (109–118) 92 (90–98) 118 (111–125)

FVC% Pred
a,b 96 (89–103) 110 (106–116) 97 (95–100) 112 (107–121)

FEV1/FVCa,b 76 (73–80) 82 (79–84) 75 (71–82) 82 (79–86)

BMI (kg/m2)

WTC-HP Entrya,c 28 (26–30) 27 (26–29) 26 (25–27) 27 (26–28)

SPEa,c 29 (27–31) 28 (26–30) 26 (24–28) 28 (25–30)

Age on 9/11 (years) 41 (37–45) 42 (37–46) 42 (38–46) 42 (38–46)

Exposure n(%)

Low 13 (10%) 9 (9%) 1 (7%) 2 (13%)

Intermediate 85 (67%) 71 (71%) 11 (73%) 8 (53%)

High 29 (23%) 20 (20%) 3 (20%) 5 (33%)

Duration (months)d 3 (1–5) 3 (1–6) 2 (1–5) 2 (1–3)

Lipids (mg/dL)

Triglyceridesa 164 (98–238) 124 (94–191) 126 (99–237) 128 (107–195)

HDL 47 (40–55) 47 (40–54) 48 (45–57) 50 (43–61)

LDL 131 (104–157) 128 (107–153) 134 (100–144) 142 (108–157)

Heart Rate (beats/min)c 72 (66–76) 72 (66–76) 66 (64–70) 72 (64–74)

BP (mmHg)
Systolicc 114 (108–124) 118 (110–122) 110 (100–112) 112 (108–120)

Diastolicc 70 (70–80) 72 (70–80) 70 (60–72) 70 (66–74)

Table 1.  Clinical Characterization of Parent Cohort and Metabolomics Subcohort. Values shown as n(%) or 
Median (IQR). Significance by Mann-Whitney U observed between: a—127 vs. 100; b—15 vs. 15; c—127 vs. 15 
controls. Data available for: d—14 subcohort resistantWTC-LI.
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Discussion
WTC-PM-exposed firefighters’ serum banked within 6 months of 9/11 is a metabolically diverse environment. 
While the metabolome describes multifaceted interactions amongst various parent cells, our data suggests, as 
expected, that the metabolites that are most bioactive and associated with WTC-LI are amino acids and lipids. 

Figure 2.  Demonstration of Model Optimization: PCA Scores Plot. (A) PCA of the qualified profile reveals 
heterogeneity in the data. (B) PCA of the refined profile demonstrates improved class separation produced by 
the refined profile compared to initial PCA (panel A).

Figure 3.  (A) Qualified Profile PCA Loading Weights Plot. Loading weights plot of PCA of the qualified profile 
shows ill-defined metabolite clustering. (B) Refined Profile PCA Loading Weights Plot was used to derive 
insight into possible associations of biomarkers.
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In studies of broader categories of obstructive airways disease, some of these metabolites have been found to be 
relevant. As hypothesized, under clustering analysis, these previously observed metabolites organized according 
to known mechanisms. There were, however clusters containing novel metabolites that may reflect as yet defined 
signaling cascades.

ResistantWTC-LI had increased concentrations of a variety of amino acid-related compounds, including numer-
ous acetylated/acylated metabolites of aliphatic, aromatic, and branched-chain amino acids13,14. Specifically, these 
leucine, isoleucine, and valine metabolites included those with the top four MDA scores—isobutyrylglycine, 
n-acetylisoleucine, n-acetylleucine, and isovalerylglycine. The biologic function of these molecules in relation to 
lung injury are unclear, and their relative accumulation could indicate more acetyl/acyl donors or higher protein 
intakes among firefighters without lung injury15. The increased concentrations of urea cycle intermediates, cit-
rulline and arginine, support the latter hypothesis16. Generalized increases of these proteins are reflected by the 
metabolites in cluster-A, Fig. 5A. Although adequate protein is important for resistance and response to damage 
from PM exposure, it seems unlikely that protein deficiency was a major issue among active firefighters; however, 
differences in protein intakes could result from other characteristics of firefighters that were related to lung injury 
status17,18.

Numerous lipid metabolites were also associated with protection from lung injury. In particular, eicosapen-
taenoic acid (EPA, 20:5n-3), a long-chain n-3 FA, was increased in firefighters without lung injury. EPA is a pre-
cursor for local signaling molecules, notably eicosanoids, which are important for mediating inflammatory and 
immune response to injury, Fig. 6. Eicosanoids derived from EPA are widely regarded as being responsible for the 
anti-inflammatory effects of n-3 FAs, and may have helped reduce the lung damage caused by exposure to dust and 
smoke19. This explanation is in line with our prior observation of EPA metabolites, specifically docosahexanoate 
derivatives, as protective against WTC-LI20. We have also previously identified high levels of arachidonate, an eicos-
anoid and n-6 FA derivative20. The metabolism of n-3 and -6 FA derivatives induce anti- and pro-inflammatory 
responses, respectively21,22. In this context, the n-6/n-3 FA ratio determines the nature of the response, can be 
regulated through unsaturated fat intake, and may serve as preventive or regulatory treatment for WTC-LI22–25. 

Figure 4.  Random Forests Variable Importance in Projection. RF variable importance in projection is 
measured by mean decrease accuracy; the top 5% of metabolites important to class separation are shown. The 
confusion matrix shows classification accuracy of the refined profile.
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Interestingly, the n-3 FA we observed, EPA, was negatively correlated with members of clusters D-F, which contain 
intermediates of the hexose monophosphate shunt (HMS; also called the pentose phosphate pathway).

Lastly, intermediates of the HMS were reduced in resistantWTC-LI. The HMS runs parallel to glycolysis in 
cells, generates ribose-5-phosphate, and reduced nicotinamide adenine dinucleotide phosphate (NADPH), 
Fig. 6. These components are needed for synthesizing nucleotides and lipids, and regenerating the antioxidant 
glutathione (GSH). It is unclear whether low HMS intermediate concentrations indicate high or low pathway 
activation. One possible explanation for this finding is that lung injury increases the demand for nucleotides for 
reparative cell division and antioxidants for removing free radicals, causing an increase in HMS intermediates 
among those with lung injury16. An increase in free radicals may be due to the heavy metals, asbestos, and silica in 
WTC-PM, which can induce oxidization of GSH26–28 and turnover of phosphatidylcholines to activate pro- and 
anti-inflammatory pathways21,22.

Figure 5.  Agglomerative, Hierarchical Clustering. (A) Data Matrix. Clustering of the data matrix identified 6 
clusters of metabolites (A-F) and separated resistantWTC-LI from controls. (B) Correlation Matrix. Clustering of 
the correlation matrix reveals 4 clusters of metabolites (1-4) and intercluster correlations.

Figure 6.  Pathway Schematics. Pathway schematics of fatty acid metabolism and the hexose monophosphate 
shunt. Node size correlates to fold change, red indicates fold change >1, resistantWTC-LI/control.
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There are several limitations to this study. This analysis is a single-time-point assessment of the metabolome. 
Therefore, we attempt to minimize false discoveries through the use of machine learning algorithms that are 
robust to noise, and we emphasize the exploratory nature of this analysis. A discussion of the strengths and limi-
tations of the methods of analysis is therefore warranted. The RF, PCA, and clustering algorithms allow us to effi-
ciently identify inherent patterns and intermetabolite relations within the data. That being said, our analyses and 
data characteristics preclude us from establishing causation; we aim to elucidate pathways of interest to be exam-
ined in a larger cohort, in-vivo, and in-vitro. High variable-to-noise ratios can typically result in fitting models to 
noise. While the RF model built in this study is specific to this dataset, RF uses a repeated random subsampling 
procedure (also known as bootstrap-aggregating or “bagging”) that averts, to the extent possible, the issues raised 
by the sample size. We use out-of-bag classification as an internal cross-validation method, and plan to externally 
validate our findings in a larger cohort.

Additional attempts to control the integrity of the dataset include efforts made in case selection; the groups 
are, for the most part, similar, save for select metabolic biomarkers. While we observe BMI differences at baseline, 
potential related effects were controlled by the use of lung function percent predicted values as case definition. 
Additionally, this analysis is limited to never-smokers; the metabolome of the ever-smoking, WTC-exposed pop-
ulation remains to be quantified. Drug therapy may also influence the metabolome. The unknown prevalence of 
medication use in the current study emphasizes the need for larger-scale validation, but a small group of patients 
with drug therapy are unlikely to sway the present analysis.

The control population in this manuscript was considered in our prior publication that assessed active path-
ways in patients that developed WTC-LI20. While the control population is shared by both papers, the case 
definition of interest in this paper focuses on resistance to WTC-LI (as opposed to susceptibility in the prior pub-
lication). Thus, the metabolite profiles differ; the qualified profiles were substantively different, and each refined 
profile consists of distinct metabolites. This indicates that the molecular pathways involved in WTC-LI resistance 
may be independent of those involved in WTC-LI pathogenesis. Therefore, the works presented are each biolog-
ically significant in their own right, and contribute new and unique information regarding biologically plausible 
cascades.

Pathogenesis in the lung following PM exposure is a complex process involving a wide variety of pro- and 
anti-inflammatory signaling cascades. Large-scale omics research such as this is important to describing these 
processes. Using our approach, we may then be able to isolate the most active set of pathways involved in disease 
and set these as the target for tailored pharmacotherapy. To this end, we highlight several metabolically active 
pathways, including branched-chain and other amino acid metabolism, essential n-3 FAs, and the HMS. These 
pathways may represent modifiable risk factors that can be targeted to ameliorate disease state. Further research 
includes the validation of the pathways identified in this paper in a larger cohort, and a dietary intervention to 
improve lung function in firefighters by targeting some of these pathways.

Methods
Study design.  Both cases and controls were sampled from symptomatic individuals referred for SPE from 
10/1/2001 to 3/10/2008, as previously described1,7,29. This study’s parent cohort included subjects resistant to 
WTC-LI (resistantWTC-LI; n = 100) and was defined as having an FEV1,%Pred within one standard deviation of the 
highest FEV1,%Pred at SPE, while controls (n = 127) were randomly sampled from tertiles of BMI and FEV1,%pred at 
WTC-HP entry1,7,29.

Subjects that underwent untargeted metabolomics were identified using the following inclusion criteria: hav-
ing a stable resistantWTC-LI/control assignment (including the most recent spirometric measures on their annual 
health physical), and not having a diagnosis of chronic rhinosinusitis. Based on these criteria and availabil-
ity of subjects, (n = 15) resistantWTC-LI at a 1:1 ratio with randomly selected controls (n = 15) were identified, 
Fig. 1 1,29–31.

Demographics were obtained from the WTC-HP. WTC exposure intensity was categorized by the 
FDNY-WTC Exposure Intensity Index according to first arrival time at the WTC site5,32,33. High exposure sub-
jects are those that arrived during the morning of September 11, 2001. Intermediate exposure subjects arrived in 
the afternoon of September 11, 2001. Low exposure subjects arrived on September 12, 2001. Duration is the num-
ber of months spent performing rescue and recovery efforts at the WTC site31. BMI was measured at HP enroll-
ment and SPE. All subjects at the time of their enrollment signed informed consent and agreed to the analysis of 
their data and samples. Overall, the consent and the experimental protocol were approved by the Institutional 
Review Boards at Montefiore Medical Center (#07-09-320) and New York University (#16-01412). Furthermore, 
all experiments conformed to the relevant regulatory standards.

Metabolomics.  Serum was collected and stored within 200 days after 9/11/20011,7,29,34,35. Serum aliquots 
dedicated for metabolomics were stored at −80 °C until processed and quantified using the automated MicroLab 
STAR® (Hamilton)20.

Proteins were methanol precipitated and the extract was aliquoted into 5 fractions, each of which was 
used to identify different subtypes of metabolites: 2 for reverse phase (RP)/Ultrahigh Performance Liquid 
Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) methods with positive ion mode electrospray ioniza-
tion (ESI), one for RP/UPLC-MS/MS with negative ion mode ESI, one for HILIC/UPLC-MS/MS with negative ion 
mode ESI, and one backup sample was maintained. All methods utilized a Waters ACQUITY ultra-performance 
liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 
mass resolution. The sample extract was dried, then reconstituted in solvents compatible with each of the four 
methods. Each reconstitution solvent contained a series of standards at fixed concentrations to ensure injection 
and chromatographic consistency.

https://doi.org/10.1038/s41598-019-48458-w
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The four aliquots were analyzed as follows: 1) using acidic positive ion conditions, chromatographically opti-
mized for more hydrophilic compounds. In this method, the extract was gradient eluted from a C18 column 
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropenta-
noic acid (PFPA) and 0.1% formic acid; 2) using acidic positive ion conditions, chromatographically optimized 
for more hydrophobic compounds. In this method, the extract was gradient eluted from the same aforemen-
tioned C18 column using methanol, acetonitrile, water, 0.05% PFPA, and 0.01% formic acid, and was operated 
at an overall higher organic content; 3) using basic negative ion optimized conditions using a separate, dedi-
cated C18 column. The basic extracts were gradient eluted from the column using methanol and water, however, 
with 6.5 mM ammonium bicarbonate at pH 8; 4) via negative ionization following elution from a HILIC column 
(Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 
10 mM ammonium formate, pH 10.8. The MS analysis alternated between MS and data-dependent, nth-order MS 
scans using dynamic exclusion. The scan range varied between methods but covered 70-1,000 mass-to-charge.

Several types of controls were analyzed in concert with the experimental samples: a pooled matrix sample gen-
erated by taking a small volume of each experimental sample (or alternatively, use of a pool of well-characterized 
human plasma) served as a technical replicate throughout the data set; extracted water samples served as process 
blanks; and a cocktail of quality control standards that were carefully chosen not to interfere with the meas-
urement of endogenous compounds were spiked into every analyzed sample, allowed instrument performance 
monitoring, and aided chromatographic alignment.

The bioinformatics system consisted of four major components, the Laboratory Information Management 
System (LIMS), the data extraction and peak-identification software, data processing tools for quality control and 
compound identification, and a collection of information interpretation and visualization tools. The hardware 
and software foundations for these informatics components were the local-area network backbone, and a data-
base server running Oracle 10.2.0.1 Enterprise Edition. The scope of the Metabolon LIMS system encompasses 
sample accessioning, sample preparation and instrumental analysis, and reporting and advanced data analysis. 
All of the subsequent software systems are grounded in the LIMS data structures. It has been modified to lever-
age and interface with the in-house information extraction and data visualization systems, as well as third party 
instrumentation and data analysis software.

In-house peak detection and integration software produced data output including mass-to-charge ratios, 
retention indices, and area under the curve values. Biochemical identification was performed by matching com-
pounds to a library of mass, retention index, and spectral data as previously described20,36–39. Metabolite iden-
tification was based on three criteria: retention index within a narrow retention index window of the proposed 
identification, accurate mass match to the library +/− 10 parts per million, and the MS/MS forward and reverse 
scores between the experimental data and authentic standards. The MS/MS scores are based on a comparison 
of the ions present in the experimental spectrum to the ions present in the library spectrum. The library entries 
were built using the exact methods used in the current study to assure the greatest comparability between the 
experimental values and the library values. Further quality control and curation achieved consistent identification 
of valid metabolites, and removal of system artifact, mis-assignments, and noise. Every metabolite assignment 
was manually approved, and the assignment was confirmed by a second reviewer. This renders the majority of 
the identifications as Metabolomics Standards Initiative level 1 when using the classification of Sumner et al. 
Further details about this process are available40–42. Missing data was imputed with the minimum observed level 
per metabolite20,43.

Database management and statistics.  The database was maintained and handled in SPSS-23 (IBM). 
Continuous and ordinal variables were expressed as median and inter-quartile range. Mann-Whitney U-test was 
used to compare continuous and ordinal data. Count and proportions were used to summarize categorical data 
and Pearson-𝜒2 was used for comparison.

Feature selection—machine learning.  Metabolite data pre-processing isolated metabolites that were 
observed in ≥80% of subjects per group with ≥15% relative standard deviation20,40. Using RF (randomForest 
Package R-3.4.3, R-Project) we identified our qualified metabolite profile and analyzed it in an iterative process of 
variable selection and assessment of classification accuracy of selected variables. The default number of metabo-
lites were assessed at each node, and 10 replicates of the model were trained on the same data and assessed via esti-
mated out-of-bag error rate to verify stability. The first round of RF output 10 unique-but-similarly-performing 
models consisting of 106 trees to ensure stability. Metabolites with MDA scores within the highest 5% of scores 
of the best-performing model (as measured by estimated out-of-bag error rate) comprised the refined metabolite 
profile. In the second round of RF, models consisting of 103 trees were trained on the refined profile12.

Hyperparameter tuning.  Due to the exploratory nature of this study, our goal was to identify the most 
discriminative metabolites in our study cohort. Therefore, the size of the forests was determined to discover the 
set of most discriminative metabolites by maximizing refined profile membership and rank consistency. This 
was accomplished by assessing these factors within the prospective refined profiles (the top 5% of metabolites 
by mean decrease accuracy) of many random forests; the hyperparameter tuning was performed by searching 
half-magnitude steps of the size of the forest, ranging from 100 to 106 trees. In each stratum, 10 random forests 
were grown, the pairwise hamming distances and number of unique elements in the prospective refined profiles 
were calculated, and reported as an average per forest size. The final qualified random forests model of 106 trees 
minimized variations in the average hamming distance and prospective refined profile membership. We present 
the tuning process of the qualified random forests in Fig. S3A.

Then, we aimed to assess the classification utility of the refined metabolite profile. We developed a procedure 
in which 10 replicate random forest models were grown using 5-fold cross-validation at each forest size, again 
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scanning the range from 100 to 106 in half-magnitude steps. The classification accuracy per forest was measured 
as the average accuracy of all its folds. We then calculated the mean and standard deviation of the classification 
accuracies per forest size, and determined the optimal forest size as that which minimized the spread of classifi-
cation accuracy across replicate models and maximized classification accuracy. We present the tuning process of 
the refined profile random forests in Fig. S3B.

Feature projection.  PCA (SPSS 23, IBM) was used to obtain a low-dimensional representation of the qual-
ified and refined profiles. PCA was performed on the qualified profile, then on the refined profile. This process 
allowed visualization of the increasing resistantWTC-LI/control separation as metabolites present in the qualified 
profile but not relevant to the clinical endpoint were removed from consideration. PCA scores are plotted to 
estimate where subjects reside in higher-dimensional space; loading weights are plotted to indicate the influence 
of the metabolites on the components, and can reveal intermetabolite associations by correlation. The variance 
captured with PCA is calculated as the sum of the variance captured by the principal components identified in 
the scree plot.

Additionally, unsupervised, agglomerative, hierarchical clustering was carried out on data and correlation 
matrices of the refined metabolite profile. For both matrices, the average linkage method was used. For the data 
matrix, the spearman distance was used as a similarity measure on log-transformed data to control for outli-
ers and scale differences. For the correlation matrix, the correlation distance was used as a similarity measure 
(MATLAB, MathWorks).
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