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Singular sublimation of ice and snow crystals
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The evaporation (sublimation) of ice and snow has a major impact on global climate, since

the amount of ice and snow determines Earth’s albedo. Yet, due to their complex geometry

with several sharp regions which are singular for the evaporation, the precise evaporation

dynamics of snow and ice crystals remains challenging to predict. Here, we study the sub-

limation of snowflakes and pointy ice drops. We show that the evaporation rates of water and

ice drops are similar; they are both limited by the diffusive transport of the vapour. This

allows us to predict ice and snowflake evaporation quantitatively by solving the diffusive free-

boundary problem, which correctly predicts the rapid self-similar evolution of sharp edges

and points. Beyond providing a conceptual picture to understand the sublimation of ice

crystals, our results are more generally applicable to other diffusion problems such as the

dissolution of salt crystals or pharmaceuticals.
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Solids generally do not evaporate in ambient air. Common
sense thus suggests that ice also does not rapidly evaporate
(or sublimate) on Earth. Yet, ice and snow do in fact eva-

porate significantly in ambient air; a thin layer of snow can be
seen to disappear in typically a few days, even if the temperature
stays below freezing. Understanding the formation and sub-
sequent evolution of ice is crucial in various problems: de-icing1,
freeze-drying2, glaciology3,4 and to better understand the climate
of planets, such as the Earth or Mars5–8. As such, intense ongoing
research efforts are made to unravel water freezing9–14. Yet, the
evaporation (sublimation) of ice crystals, although very common,
has remained largely unexplored. Previous studies on evaporating
polygonal ice crystals have shown that the crystal edges, which are
sharper, were the first to recede. This has been previously
attributed to defects in the crystaline structure at the crystal
edge15; however no quantitative measurements or models exist of
the full evaporation process.

Here we demonstrate that contrary to crystal growth and
unlike what was previously thought15, the shape evolution of
sublimating ice and snow crystals has nothing to do with the
underlying crystal structure. We show that the rounding of sharp
edges and points is the direct consequence of the singular nature
of the evaporation mechanism through diffusion into the vapour
phase close to regions of high curvature and describe its dynamics
quantitatively for the first time. For liquid drops, the local
diffusion-limited evaporation rate diverges at the contact line (a
region of infinite curvature). If the drop contact line stays pinned,
an outward flow in the drop then replenishes the corner region,
driving the well-known “coffee-stain” effect16–18. As snowflakes
have many sharp points, we anticipate the evaporation to be
locally stronger there. However, because the mass loss due to
evaporation cannot be replenished in such a solid body, eva-
poration at the sharp points makes them recede first, resulting in
their self-similar smoothing.

Results
Snowflake sublimation. Subsequent experimental images of a
single snowflake evaporating in dry air are shown in Fig. 1a19.
Like polygonal ice crystals15, the outward pointing protrusions of
the crystal structure disappear first, suggesting that the evapora-
tion is enhanced at sharp regions and proceeds from the outside
towards the inside. To understand this dynamic evaporation

pattern, we first focus on the somewhat simpler case of pointy ice
droplets that exhibit an isolated singular point and subsequently
consider the snowflakes (Fig. 1b).

Pointy ice drop experiment. In a chamber of constant low
humidity (RH ≈ 5%), we deposit small water drops on a cold
substrate (at constant temperature Ts), freeze them and monitor
their evaporation (see Methods, Fig. 2 and Supplementary
Movie 2). In a typical experiment, the liquid drop reaches Ts < 0 °
C in a few seconds, but can remain supercooled for several
minutes while evaporating at the same time. Subsequently, the
drop solidifies and due to the expansion of water upon freezing, a
sharp conical tip forms at its top20,21. This pointy ice drop then
continues to evaporate (see Supplementary Movie 3). Figure 3
shows the volume of such a drop as a function of time. Perhaps
contrary to intuition, the ice drop volume decreases at almost the
same rate as the liquid drop; at first glance, water and solid ice
evaporate at the same rate. However, significant differences are
observed for the evolution of the drop shape (see Fig. 2 and
Supplementary Movie 3). The liquid drop evaporates with a
strongly pinned contact line in the usual constant contact radius
mode22, while the frozen drop radius clearly decreases during
evaporation. The drop’s contact line retracts and consequently,
the evaporation slows down over time22,23.

Three observations can be made from these experiments. First,
the fact that the supercooled liquid contact line stays pinned,
while the ice contact line retracts is surprising, since the
anchoring of the ice drop to the rough surface is much stronger;
one needs a large force to detach the frozen drop from the plate.
Second, the evaporation of ice and supercooled water occurring at
roughly the same speed suggests that the evaporation of ice is
limited by the diffusion of water molecules in the vapour phase,
as is known to be the case for liquid drops. This can be explained
by the fact that ice and supercooled water molecules have similar
properties24 and a similar volatility25. Third, and most impor-
tantly, the evaporation of the pointy drop is qualitatively similar
to that of the snowflakes: regions of high curvature, in this case
the tip and contact line, are the first to disappear and the surface
smoothens in time (Fig. 2, Supplementary Movies 2 and 3).

Modelling framework. The early stage of evaporation is therefore
dominated by the regions of high curvature. It is important to

b

a

Fig. 1 Snowflake sublimation. a Sequence of images showing an evaporating snowflake (adapted from20, Copyright © 2007, 2010 by Kenneth Libbrecht). b
Snapshots of a 3D simulation of the same snowflake assuming uniform thickness with typical parameters: radius 1.1 mm, thickness 0.2 mm, Ts=−10 °C,
RH= 0%. Colours denote the vapour mass concentration ρ ranging from the saturation concentration ρ= ρsat (blue) to ρ= 0 (red); see Supplementary
Movie 1
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understand this stage, since the snowflake retains regions with
large curvatures almost through the whole evaporation process.
We therefore model ice sublimation by solving the diffusion
equation around the complex crystal geometries and because
there is no replenishing flows in solids, the receding velocity at
every point of the interface is completely determined by the local
evaporative flux. Since the ice and water evaporation rates are
similar, we assume as for liquid drops16–18,23 that ice evaporation
is slow enough to be quasi-static, and that the vapour mass
concentration ρ diffuses with a constant diffusion coefficient D
from its (constant) saturation value ρsat at the ice surface to a
fixed (lower) value ρ∞ far away from the ice (see Methods). The
problem then reduces to solving the coupled system of equations

∇2ρðrÞ ¼ 0; ρjr¼Ω ¼ ρsatðTsÞ; ρjr¼1 ¼ ρ1 ð1Þ

vn � jn ¼ � D
ρice

n � ∇ρðrÞjr¼Ω; ð2Þ

where ρice denotes the ice density, Ω the solid boundary whose
outward normal is n and vn and jn the speed and local (volume)
flux of the interface, respectively, in the normal direction.

Since Eq. (1) is Laplace’s equation, there is a strong analogy
with electrostatics: our diffusion problem for ρ(r) is mathema-
tically equivalent to the electric potential around a charged
conductor16,17,22. The strong curvature dependence we observe is
thus analogous to the known electrostatic tip effect. For a charged

cone of semi-angle α < 90°, the electric field at a distance r from
the tip apex scales as E � rν�1 with ν � 2:405

π�α � 1
2 and thus

diverges at the apex (r= 0)26. Since the electric field is
mathematically equivalent to the local evaporation rate j, we
thus expect a diverging flux at the tip and thus its smoothing, as
seen on our ice drops. Considering a single corner yields similar
results26 and since regions of high curvature locally consist of tips
and corners, the above arguments are general. However, contrary
to the previous literature on electrostatic tips and pinned liquid
drops, here the interface is free to move in all directions and the
tip shape does not remain conical. Therefore, these arguments are
only qualitative, and Eq. (1) must be fully coupled to Eq. (2) to
capture the dynamics quantitatively, making the problem much
more difficult; it cannot be solved analytically for complex
geometries such as the snowflake.

Initial evaporation of singular tips. Figure 4a shows the tip
profiles of an ice drop during the first half hour of an experiment,
where most of the smoothing occurs. These profiles are self-
similar as shown in Fig. 4b; they collapse on an hyperbola once
rescaled by the curvature κ. Because the tip profile is self-similar,
the full-tip shape during the smoothing process is solely given by
one (time-dependent) parameter: the curvature κ(t). The self-
similarity of the tip shape then allows us to also derive a similarity
solution that gives the scaling of the curvature in time by solving
Eqs. (1) and (2) for an hyperboloidal tip (see Supplementary
Note 1 and Supplementary Figures 1, 2 and 3). Such singularities
are characterised by a universal scaling that is independent of the
initial or boundary conditions, and in our case the singularity is
uniquely determined by the diffusion equation, giving the fol-
lowing scaling for the curvature:

κðtÞ ¼ A t þ t0ð Þ�1=2; ð3Þ

where t0= (A/κ(0))2 denotes the distance to the singularity at the
beginning of the experiment. We extract the tip curvatures at the
beginning of a typical experiment and plot it in Fig. 4c and d. The
data perfectly follow the −1/2 power law of Eq. 3.

Our similarity solution gives the dynamics of tip rounding and
should not be confused with a possible self-similar (fractal)
structure of the snowflakes, which is only a way to quantify the
geometry and says nothing about the dynamics. The smoothing
mechanism presented here is also original, as sharpening is
usually reported for seemingly similar free-boundary problems
governed by different physical mechanisms3,4,27,28

Late time evaporation of smooth drops. For the late stages of
evaporation, after about half of the total evaporation time tf, the
ice tip has completely disappeared (Fig. 2). Similarly, the drop
edge is also smoothed and the apparent contact angle θ rapidly
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Fig. 3 Water vs. ice evaporation. Volume as a function of time for a water
drop evaporating on a cold plate (Ts=−15 °C, RH= 2.8%). The drop is
initially supercooled (blue background) and freezes after 92min (white
background, see Supplementary Movie 3). Red symbols are experimental
results, the black curve is the result of the analytical model (see
Supplementary Note 2)
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Fig. 2 Evaporation of a pointy ice drop. Sequence of images documenting the evaporation in air of a pointy ice drop of initial volume V0= 4.4 μL on a cold
surface (Ts=−10 °C, RH= 4.8%; see Supplementary Movie 2). The pictures include the drop’s reflection on the substrate surface (highlighted by the
dashed line). Scale bar 1 mm
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evolves towards 90° (see Supplementary Figure 4). A phenom-
enon very similar to the tip smoothing thus also occurs at the
drop edge but in two dimensions (neglecting the much larger
drop curvature). We thus expect a similar derivation considering
hyperbolas instead of hyperboloids to be able to capture the
phenomenon quantitatively (as there should be differences since
the geometry is different).

We show in Fig. 5 the global evolution of the volume and shape
of the drop presented in Fig. 2. The total evaporation flux, shown
in inset of Fig. 5a, scales with the drop radius and not its surface
area confirming the purely diffusive picture29. Repeating the
experiment on substrates with different wettability (20° < θ <
120°) yields similar results: the drop always reaches a smooth self-

similar spheroidal shape whose aspect ratio depends on θ (see
Supplementary Figure 5). Again, because the shape is self-similar,
we can analytically solve the diffusion-limited sublimation
problem, Eqs. (1) and (2), for general ellipsoids (see Supplemen-
tary Note 2 and Supplementary Figure 6). We recover the same
scalings as for evaporating liquid drops without a pinned contact
line22, droplet radius R � ðtf � tÞ1=2 and volume V � ðtf � tÞ3=2,
but with different prefactors, which depend on the ellipsoid
aspect ratio (controlled by θ, see Supplementary Figure 5). The
late time theoretical prediction is compared with experiments in
Figs. 3, Fig. 5ab and Supplementary Figure 7. The model agrees
very well with experiments at late time (t > tf/2) and captures the
complete shape evolution. For t < tf/2, the agreement is less
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Fig. 5 Global ice drop evaporation. a Evolution of the volume V of the drop shown in Fig. 2; the inset shows the instantaneous volume flux dV/dt as a
function of the drop radius. b radius R (red circles) and height H (blue circles) for the same drop. The dashed and solid lines denote the numerical
simulation and analytical results, respectively (see Supplementary Note 2). c Experimental and numerical profiles taken every 15 min for the same drop

a b

0

10

20

30

40

50

60

70

80

0 5 10 15 20

10

100

10 100 1000 1041

c d

Experiment

t + t0 (s)t + t0 (min)

–1/2

� (mm–1)

� 
(m

m
–1

)

Theory � ∼ (t + t0)–1/2

Fig. 4 Tip smoothing. a Experimental tip profiles taken every 2min during the first half hour of an experiment (see Supplementary Movie 4; V0= 3.5 μL,
Ts=−12 °C, RH= 5.1%). Scale bar 100 μm. b Same profiles multiplied by the tip curvature κ. The dashed black line is a hyperboloid. c Tip curvature at
short times (Ts=−15 °C, RH= 4.6%). The dashed line is a fit of our similarity solution: κ=A(t+ t0)−1/2 with A= 2.32 ⋅ 105 s1/2m−1 (t0= (A/κ(0))2= 9 s).
d Same data on a log-log scale
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satisfactory, since sharp regions are still present and influence the
evaporation. The full evaporation dynamics can however be easily
obtained with finite element simulations (see Methods). We
extract half of the initial pointy ice drop shape by image
processing and use it as an initial condition for the simulation.
Figure 5a,b shows the results of the simulation for the drop
volume, radius and height. The agreement is excellent and even
the drop profiles at various times (Fig. 5c) are well reproduced.
Interestingly, if we now look at the influence of the drop contact
angle, we observe a non-monotonic dependence of the evapora-
tion rate on the drop aspect ratio, which is captured by our model
(see Supplementary Figure 7). For a given volume, temperature
and humidity, hemispherical ice drops are the slowest to
evaporate. Therefore, we conclude that the droplet curvature also
plays a role at the scale of the drop itself, since elongated drops
with points of high curvature evaporate faster.

Simulations of evaporating snowflakes. The study of pointy ice
drops provides us the ingredients to understand the evaporation
of snowflakes. However, their geometry is more complex with
several sharp regions next to each other. It was shown for arrays
of evaporating drops that to first order, they do not influence each
other if they are more than their characteristic size apart29. This is
not the case for the branches of the snowflakes, which are very
close and interact with each other. Thus, the problem cannot be
solved analytically, but we can nonetheless solve Eqs. (1) and (2)
numerically using finite element simulations, which include these
interactions (see Methods). We extract the initial projected
snowflake shape by image processing and assume a uniform
thickness as a first approximation. Then assuming typical
experimental parameters, we compute the snowflake shapes at
later times (Fig. 1b and Supplementary Movie 1). Because the
shape evolution is governed by the geometry, this is sufficient to
perfectly reproduce the snowflake shapes at various times, con-
firming that the very specific time evolution comes solely from
the singular nature of the diffusion equation close to sharp points.
Therefore, even more complex objects such as snow aggregates
could be simulated, provided the full three-dimensional (3D)
initial shape is known.

Application to dissolving solids. Our findings are relevant for
studies of the ageing of snow or de-icing, but the methodology
presented here is general to all free-boundary diffusive processes
and can also be applied to the dissolution of solids, for instance to
control the smoothness of surfaces during synthesis or to opti-
mise crystalline shapes for drug dissolution (see Supplementary
Note 2 and Supplementary Figure 8).

Methods
Experimental design. The relative humidity (RH) is set between 1 and 7% by
gently blowing dry nitrogen into an acrylic box housing the experiment (0.4 × 0.5 ×
0.7 m) and monitored with a thermo-hygrometer Testo 645 (accuracy ± 2%).
Pointy ice drops are produced by depositing small volumes (V ~ 5 μL) of de-ionised
water on clean surfaces of various wettability (and roughness) held at temperature
Ts by a water-cooled Peltier system (Anton Paar TEK 150P-C). The surfaces
include the (rough) Peltier surface (contact angle θ ~ 70°), thermal grease (θ ~ 95°)
and treated microscope coverslips (Menzel–Gläser #1) glued with thermal grease.
Superhydrophobic surfaces (θ ~ 120°) are obtained by a soot-layer deposition,
followed by a silica coating30, hydrophobic ones (θ ~ 85°) by a Parylene-C coating
(SCS Labcoter PDS 2010); hydrophilic ones are glass (θ ~ 50°) or plasma-treated
glass (θ ~ 20°, Diener Zepto). To have a better control over our initial ice drop
shape and volume, we avoid long supercooling periods where the drop evaporates
by applying a cold shock. We ramp the surface temperature to its minimal value Ts
=−25 °C to quickly freeze the drop, then as soon as the drop has started to freeze,
the temperature is set to the desired value between −15 and −3 °C.

The time evolution of the drop profile is recorded with a Canon EOS 600D
camera mounted with a high-magnification objective (Navitar). The images are
then analysed using ImageJ and Matlab. The tip profile is extracted with a custom
sub-pixel edge detection code and fitted with an hyperbola to measure the

curvature (typical accuracy on the radius of curvature ± 3–10 μm). The full-drop
profile is extracted with regular edge detection, the drop volume is measured by
numerically integrating the profile (assuming axisymmetry) and the contact angle
with the tangent method.

We convert our experimental parameters Ts, RH and room temperature T0 ≈
23–24 °C into the one used in Eqs. (1) and (2) with the following procedure. The
vapour concentration at the ice surface ρsat(Ts) and the one far from the drop ρ∞=
RHρsat(T0) are obtained from the saturation pressure with the ideal gas law, the
later being calculated using Eqs. (7) and (10) of ref.25 For the water–air diffusion
coefficient, we assume a constant value D(T0) that we calculate with the equation in
ref.31, figure 78. The ice density is taken as ρice= 918.9 kg m−3.

Model assumptions. When deriving Eqs. (1) and (2) with the bulk saturation
pressure ρsat(Ts), we have used the usual assumptions from the liquid droplet
evaporation literature, which should also be valid here as the phenomenon is very
similar. We have assumed a quasi-static process, neglected convection as it only
applies in the presence of wind or very large drops29, kinetic effects and the Kelvin
effect, as it only applies to microscopic drops32. For ice surfaces, the presence of a
microscopic amorphous layer at the surface33–35 could also lead to a slight change
in the saturation pressure. However, as this pre-melted layer is also present in
previous studies measuring ρsat, this effect should already be implicitly taken into
account: if temperature induced thickness variations in the layer, change the
saturation pressure here; it should do so in all previous literature, and so is
automatically included in the thermodynamic variation of the saturated vapour
pressure with temperature (Eq. (7) of Ref.25). Finally, we assumed for simplicity a
constant diffusion coefficient and that the ice surface was at the substrate tem-
perature, thus neglecting thermal gradients (including the effect of evaporative
cooling). This assumption being usually reasonable for liquid drops, except on
heated substrates36 or for very volatile liquids37, we expect it to be even more valid
for ice drops, as the ice thermal conductivity is about 4 times higher than water and
10 times higher than most organic liquids. The heat from the substrate is thus
transported more efficiently to the ice surface. Moreover, the latent heat loss being
proportional to the evaporation rate, since our cold ice evaporates at a much slower
pace than room temperature water, we expect a much smaller evaporative cooling.
At the tip though, the evaporation rate diverge for an infinitely sharp tip and thus
the evaporative cooling with it. However, this occurs for a very short time only as
the singularity quickly regularises itself, probably explaining why we do not need to
take it into account to describe our data within our spatio-temporal resolution. We
further checked the validity of the constant temperature assumption with a thermal
camera (Flir C3) and found no gradients within the camera accuracy (±2 °C and
±100 μm).

Simulations. Two-dimensional (2D) axisymmetric and 3D finite element simula-
tions are performed with the commercial software COMSOL 5.2a. We assume that
evaporation is quasi-static, isothermal and purely diffusive. We thus solve the
coupled Eqs. (1) and (2) for the vapour concentration and interface movement.
The mesh deformation is done with the arbitrary Lagrangian–Eulerian formulation
(moving mesh ALE module with Yeoh smoothing). As the mesh quality degrades
during the process, we included a small stabilising term, which penalises the for-
mation of local curvature artefacts at the boundaries (moving boundary smoothing
option), and checked that it did not influence the outcome (see Supplementary
Figure 2A). Nonetheless, for complex shapes such as the snowflakes the domain
needed to be re-meshed manually during the simulation.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request (e.a.m.jambonpuillet@uva.nl).

Received: 22 May 2018 Accepted: 18 September 2018

References
1. Dalili, N., Edrisy, A. & Carriveau, R. A review of surface engineering issues

critical to wind turbine performance. Renew. Sust. Energ. Rev. 13, 428–438
(2009).

2. Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build
complex composites. Science 311, 515–518 (2006).

3. Bergeron, V., Berger, C. & Betterton, M. D. Controlled irradiative formation of
penitentes. Phys. Rev. Lett. 96, 098502 (2006).

4. Claudin, P., Jarry, H., Vignoles, G., Plapp, M. & Andreotti, B. Physical
processes causing the formation of penitentes. Phys. Rev. E 92, 033015
(2015).

5. Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of arctic
precipitation under present and glacial conditions. Tellus B 41B, 452–468
(1989).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06689-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4191 | DOI: 10.1038/s41467-018-06689-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


6. Khain, A., Rosenfeld, D. & Pokrovsky, A. Aerosol impact on the dynamics and
microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 131, 2639–2663
(2005).

7. Wallace, D. & Sagan, C. Evaporation of ice in planetary atmospheres: Ice-
covered rivers on mars. Icarus 39, 385–400 (1979).

8. Clifford, S. M. A model for the hydrologic and climatic behavior of water on
mars. J. Geophys. Res. Planets 98, 10973–11016 (1993).

9. Jung, S., Tiwari, M. K. & Poulikakos, D. Frost halos from supercooled water
droplets. Proc. Natl Acad. Sci. USA. 109, 16073–16078 (2012).

10. Gallo, P. et al. Water: a tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).
11. Ghabache, E., Josserand, C. & Séon, T. Frozen impacted drop: from

fragmentation to hierarchical crack patterns. Phys. Rev. Lett. 117, 074501
(2016).

12. Graeber, G., Schutzius, T. M., Eghlidi, H. & Poulikakos, D. Spontaneous self-
dislodging of freezing water droplets and the role of wettability. Proc. Natl
Acad. Sci. USA. 114, 11040–11045 (2017).

13. Campbell, J. M., Meldrum, F. C. & Christenson, H. K. Observing the
formation of ice and organic crystals in active sites. Proc. Natl Acad. Sci. USA
114, 810–815 (2017).

14. Campbell, J. M. & Christenson, H. K. Nucleation- and emergence-limited
growth of ice from pores. Phys. Rev. Lett. 120, 165701 (2018).

15. Nelson, J. Sublimation of ice crystals. J. Atmos. Sci. 55, 910–919 (1998).
16. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid

drops. Nature 389, 827 (1997).
17. Deegan, R. D. et al. Contact line deposits in an evaporating drop. Phys. Rev. E

62, 756–765 (2000).
18. Larson, R. G. Transport and deposition patterns in drying sessile droplets.

AIChE J. 60, 1538–1571 (2014).
19. Libbrecht, K. The Art of the Snowflake: A Photographic Album (Voyageur,

MN, 2007).
20. Snoeijer, J. H. & Brunet, P. Pointy ice-drops: How water freezes into a singular

shape. Am. J. Phys. 80, 764–771 (2012).
21. Marín, A. G., Enríquez, O. R., Brunet, P., Colinet, P. & Snoeijer, J. H.

Universality of tip singularity formation in freezing water drops. Phys. Rev.
Lett. 113, 054301 (2014).

22. Picknett, R. & Bexon, R. The evaporation of sessile or pendant drops in still
air. J. Colloid Interface Sci. 61, 336–350 (1977).

23. Shahidzadeh-Bonn, N., Rafaï, S., Azouni, A. & Bonn, D. Evaporating droplets.
J. Fluid. Mech. 549, 307–313 (2006).

24. Ramírez, R., Singh, J. K., Müller-Plathe, F. & Böhm, M. C. Ice and water
droplets on graphite: a comparison of quantum and classical simulations. J.
Chem. Phys. 141, 204701 (2014).

25. Murphy, D. M. & Koop, T. Review of the vapour pressures of ice and
supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 131,
1539–1565 (2005).

26. Jackson, J. D. Classical electrodynamics, Third edition (John Wiley & Sons,
New York, 2007).

27. Ristroph, L., Moore, M. N. J., Childress, S., Shelley, M. J. & Zhang, J. Sculpting
of an erodible body by flowing water. Proc. Natl Acad. Sci. USA 109,
19606–19609 (2012).

28. Nakouzi, E. & Goldstein, R. E. & Steinbock, O. Do dissolving objects converge
to a universal shape? Langmuir 31, 4145–4150 (2015).

29. Carrier, O. et al. Evaporation of water: evaporation rate and collective effects.
J. Fluid. Mech. 798, 774–786 (2016).

30. Deng, X., Mammen, L., Butt, H. & Vollmer, D. Candle soot as a template for a
transparent robust superamphiphobic coating. Science 335, 67–70 (2012).

31. Marrero, T. R. & Mason, E. A. Gaseous diffusion coefficients. J. Phys. Chem.
Ref. Data 1, 3–118 (1972).

32. Semenov, S., Starov, V. M., Rubio, R. G. & Velarde, M. G. Computer
simulations of evaporation of pinned sessile droplets: Influence of kinetic
effects. Langmuir 28, 15203–15211 (2012).

33. Golecki, I. & Jaccard, C. Intrinsic surface disorder in ice near the melting
point. J. Phys. C. 11, 4229 (1978).

34. Döppenschmidt, A. & Butt, H.-J. Measuring the thickness of the liquid-like
layer on ice surfaces with atomic force microscopy. Langmuir 16, 6709–6714
(2000).

35. Engemann, S. et al. Interfacial melting of ice in contact with Sio2. Phys. Rev.
Lett. 92, 205701 (2004).

36. Dash, S. & Garimella, S. V. Droplet evaporation on heated hydrophobic and
superhydrophobic surfaces. Phys. Rev. E 89, 042402 (2014).

37. Jambon-Puillet, E. et al. Spreading dynamics and contact angle of completely
wetting volatile drops. J. Fluid. Mech. 844, 817–830 (2018).

Acknowledgements
We thank L. Dupin for her assistance with preliminary experiments and K. Libbrecht for
providing the snowflakes pictures.

Author contributions
E.J.-P. performed the research, E.J.-P., N.S. and D.B. designed the research and wrote the
paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-06689-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06689-x

6 NATURE COMMUNICATIONS |  (2018) 9:4191 | DOI: 10.1038/s41467-018-06689-x | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-06689-x
https://doi.org/10.1038/s41467-018-06689-x
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Singular sublimation of ice and snow crystals
	Results
	Snowflake sublimation
	Pointy ice drop experiment
	Modelling framework
	Initial evaporation of singular tips
	Late time evaporation of smooth drops
	Simulations of evaporating snowflakes
	Application to dissolving solids

	Methods
	Experimental design
	Model assumptions
	Simulations

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




