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Hundreds of common genetic variants acting through
distinguishable physiologic pathways influence the risk of
type 2 diabetes (T2D). It is unknown to what extent the
physiology underlying gestational diabetesmellitus (GDM)
is distinct from that underlying T2D. In this study of >5,000
pregnant women from three cohorts, we aimed to identify
physiologically related groups of maternal variants asso-
ciated with GDM using two complementary approaches
that were based on Bayesian nonnegative matrix factoriza-
tion (bNMF) clustering. First, we tested five bNMF clusters
ofmaternal T2D-associated variants grouped on the basis
of physiology outside of pregnancy for association with
GDM. We found that cluster polygenic scores represent-
ing genetic determinants of reduced b-cell function and
abnormal hepatic lipid metabolism were associated with
GDM; these clusters were not associated with infant birth
weight. Second, we derived bNMF clusters of maternal
variants on the basis of pregnancy physiology and tested
these clusters for association with GDM. We identified
a cluster thatwas strongly associatedwithGDMaswell as
associated with higher infant birth weight. The effect size
for this cluster’s association with GDM appeared greater
than that for T2D. Our findings imply that the genetic and
physiologic pathways that lead to GDM differ, at least in
part, from those that lead to T2D.

Gestational diabetes mellitus (GDM) and type 2 diabetes
(T2D) share common clinical features and have at least some
shared genetic architecture (1–4). However, unlike T2D,
GDM occurs on the background of dramatic pregnancy-
related changes in glycemic physiology (5–8). These include
marked increases in both insulin secretory response and
insulin resistance as well as dynamic changes in both fasting
and postprandial glucose levels across gestation (5–8). Al-
though shared pathophysiologic features of GDM and T2D
have been emphasized, it remains unclear whether all phys-
iologic pathways that lead to hyperglycemia outside of
pregnancy are equally important during gestation (9,10).

More than 200 genetic loci are known to be associated
with T2D and are believed to act through distinct phys-
iologic pathways leading to hyperglycemia (11,12). In
previous work, Udler et al. (12) used clustering techniques
to group known T2D-associated genetic variants according
to physiologic effects in nonpregnant individuals. These
genetically anchored clusters (Udler clusters, Table 1)
highlight physiologic pathways leading to hyperglycemia
in T2D. Polygenic scores that are based on these clusters
identify individuals with T2D whose clinical features sug-
gest that one of these pathways plays a significant role in
their disease (12).
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To illuminate physiologic pathways leading to GDM, the
objective of the current study was to identify physiologically
related clusters of maternal genetic variants associated with
hyperglycemia in pregnancy using two complementary
strategies. First, we tested groups of T2D-associated var-
iants from clusters previously derived on the basis of
physiology outside of pregnancy (Udler clusters) for asso-
ciation with GDM and offspring birth weight (reflecting in
utero impact of maternal hyperglycemia) (13). Second, we
derived clusters of maternal variants on the basis of preg-
nancy physiology (as assessed by 35 metabolic traits) and
tested these novel clusters (pregnancy clusters) for associ-
ation with the same outcomes.

RESEARCH DESIGN AND METHODS

Cohorts, Traits, and Genotyping
Genetics of Glucose Regulation in Gestation and Growth
(Gen3G) is a cohort of pregnant women from Sherbrooke,
Quebec, Canada (N 5 1,034, enrolled 2010–2013) (14).
Centre Hospitalier Universitaire de Sherbrooke’s institu-
tional review board (IRB) approved the study; participants
provided written informed consent. Participants with
genetic data available (n 5 574) did not differ in age,
BMI, gravidity, ethnicity, or smoking status from those
who were not genotyped. Women enrolled in the first
trimester underwent measurement of height, weight, waist
circumference, and A1C and had a nonfasting 1-h 50-g
glucose challenge test (GCT). Women with first trimester
A1C $6.5% or a GCT result $186 mg/dL were excluded.
At 24–30 weeks’ gestation, participants had a fasting 75-g
oral glucose tolerance test (OGTT) during which glucose,
insulin, and C-peptide levels were measured. Weight,
fasting lipids and adipokines, and A1C were also mea-
sured. Those with GDM on the basis of the International
Association of Diabetes and Pregnancy Study Groups
criteria were referred for treatment (15). At delivery, birth
weight was recorded. Genotyping, imputation, and quality
control (QC) were performed as previously described (4).
Principal component (PC) analysis was performed using
PLINK.

The Hyperglycemia and Adverse Pregnancy Outcomes
(HAPO) study is a multicenter, international, observational
study of glycemia in pregnant women (N5 25,505, enrolled
2000–2006) (13). The objective of HAPO was to relate
OGTT-measured glycemia to adverse pregnancy outcomes
(13). Participants provided written informed consent; the
IRB at each site approved the study. Participants underwent
a blinded 75-g OGTT at 24–32 weeks’ gestation. Those with
fasting glucose $105 mg/dL or 2-h postload glucose $200
mg/dL were excluded; the remaining participants were
observed without treatment. At the time of the OGTT,
C-peptide, lipids, height, and weight were measured. Birth
weight was recorded at delivery. We conducted our analysis
in women with genome-wide single nucleotide polymor-
phism (SNP) data available (n 5 4,431) (1). Participants
selected for genotyping were from a subset of HAPO clinical
sites. All participants genotyped from a given site shared the

same self-reported race/ethnicity as follows: Afro-Caribbean
participants from Barbados (HAPO-AC); non-Hispanic
White participants from the U.K., Canada, and Australia
(HAPO-EU);Mexican American participants fromCalifornia
(HAPO-MA); and Thai participants from Bangkok (HAPO-
TH). Hereafter, these sampling strata are referred to as
subcohorts. Genotyping, imputation, QC, and PC analysis
were performed separately within each subcohort, as pre-
viously described (1); likewise, we performed our analyses in
each subcohort separately and meta-analyzed them. In the
HAPO-AC subcohort, we selected proxies (R2 .0.80) to
replace two SNPs for which data were unavailable after QC.

The Massachusetts General Hospital (MGH) Maternal
Genetics and Health Study (MGH2) links clinical data from
women who received prenatal care atMGH (1998–2015) and
genomic data from the Partners Biobank (described below).
Clinical data were imported from the electronic medical
record into the study database. GDM cases were defined
using Carpenter-Coustan criteria applied to a 100-g OGTT
after 24 weeks’ gestation; controls were women who had
a screening GCT result,140 mg/dL (16). Genotyping and
imputation were conducted by the Partners Biobank.

The Partners Biobank contains genomic data and elec-
tronic health record–based clinical information from
patients affiliated with Partners Healthcare (Boston, MA)
(17,18). Participants consented to have their data used in
broad-based research. The Partners Biobank andMGH2were
approved by the Partners IRB. Genotyping was conducted on
Illumina multiethnic arrays (17). Imputation was performed
using a Minimac3 HRC (version r1.1 2016) reference panel
and SHAPEIT. Variants used in our analysis had an impu-
tation quality R2 metric$0.80, except rs13085136 at SHQ1
(R2 5 0.77) and rs2066827 at CDKN1B (R2 5 0.66).
Excluding or replacing these variants with proxies did not
change results.

A T2D case-control cohort was selected from the Part-
ners Biobank to test clusters for associations with hyper-
glycemia outside of pregnancy. T2D status, as previously
described, was derived from structured and unstructured
electronic medical record data using clinical, computational,
and statistical methods (12,19).

Variant-Trait Clusters Derived Outside of Pregnancy
(Udler Clusters)
Methods used by Udler et al. (12) to cluster traits and
variants with Bayesian nonnegative matrix factorization
(bNMF) were previously described in detail. In brief,
summary statistics from genome-wide association studies
(GWAS) in nonpregnant individuals, describing associa-
tions between traits and 94 T2D-associated variants, were
assembled in a trait-variant association matrix. The bNMF
procedure decomposes this matrix into two component
matrices containing the variant and trait weights for each
cluster, respectively. A Bayesian framework is used to
determine the number of clusters (k) that best fit the
data. Each cluster can be described by variants and traits
that are most highly weighted (12) (Table 1).
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Variant-Trait Clusters Derived in Pregnancy

SNP Selection
We selected 222 T2D-associated SNPs (primary signal at
each locus, minor allele frequency$5%) from a large GWAS
meta-analysis conducted in nonpregnant individuals (11)
(Supplementary Table 1). We added four SNPs (from in-
dependent loci near HKDC1, G6PC2, PCSK1, and PPP1R3B)
specifically associated with glycemia in pregnancy (1). We
tested the glucose-raising allele at each locus for association
with 35 traits measured in pregnant women from Gen3G
using linear regression (Supplementary Table 2). Most
traits were measured at 24–30 weeks’ gestation, although
we included BMI, body fat percentage, GCT result, A1C,
and waist circumference measured in the first trimester
as well as gestational weight gain (first trimester through
delivery).

bNMF Clustering
One hundred sixty-four SNPs whose glucose-raising alleles
had nominal associations (P, 0.05) with at least one trait
in Gen3G were used in bNMF clustering (Supplementary
Table 2). A matrix of standardized coefficients from linear
regression relating SNPs to traits was inputted into the
bNMF clustering procedure, which was run with 100 iter-
ations using previously described methods (12).

Cluster Polygenic Scores
The top weighted variants in each cluster were used to
build cluster polygenic scores (20). Polygenic scores con-
sisted of the sum of the number of glucose-raising alleles
carried by an individual, each multiplied by their weight
in the cluster (1,11). For Udler clusters, the threshold
for inclusion of variants in polygenic scores was pre-
viously described (12). For pregnancy clusters, we in-
cluded variants that had cluster weights in the top 5% of
all variant cluster weights. We standardized polygenic
scores within each cohort/subcohort to aid in cross-cohort
interpretation.

Statistical Analysis
We tested for relationships between cluster polygenic scores
and physiologic traits (35 in Gen3G, 14 in HAPO, 3 in
MGH2) in individual cohorts using linear regression. Ad-
justed models included PCs (first two PCs in each HAPO
subcohort, first four PCs in Gen3G, first six PCs in MGH2)
as covariates. In MGH2, adjusted models also included
genotyping/imputation batch. HAPO results were syn-
thesized across subcohorts using fixed-effects inverse
variance–weighted meta-analysis. Associations between
polygenic scores and traits were considered suggestive if
P , 0.05, given the descriptive nature of this part of the
analysis.

The primary outcome was GDM, defined in Gen3G and
HAPO using the International Association of Diabetes
and Pregnancy Study Groups criteria and in MGH2 using
Carpenter-Coustan criteria (15,16). Secondary outcomes
included birth weight percentile for gestational age and
large-for-gestational-age (LGA) birth weight (defined as
$90th percentile) (21). We tested for associations between
cluster polygenic scores and outcomes using logistic (for
GDM and LGA) or linear (for birth weight percentile)
regression in each cohort/subcohort. Adjusted models in-
cluded maternal age, PCs (as above), and genotyping/
imputation batch (in MGH2) as covariates.

We performed fixed-effects inverse variance–weighted
meta-analysis to synthesize results across cohorts (includ-
ing HAPO subcohorts). We excluded Gen3G from meta-
analyses evaluating the association between pregnancy
cluster polygenic scores and GDM because Gen3G glucose
levels were used to generate clusters. Because of known
limitations in translating polygenic scores across popula-
tions with different ancestries (22,23), we also conducted
meta-analyses for each cluster and outcome using the
cohorts with predominantly non-Hispanic White partici-
pants (HAPO-EU, MGH2, plus Gen3G in the Udler cluster
analyses), whose genetic ancestry was presumed to be
most similar to those in whom the clusters were derived

Table 1—Description of Udler clusters

Udler cluster Key genetic loci Key phenotypic traits Proposed mechanism

b-cell MTNR1B, HHEX, TNF7L2,
SLC30A8, HNF1A, HNF1B

↓Fasting insulin, insulin secretory
response, BMI

↑Proinsulin

Insulin deficiency: b-cell dysfunction,
downstream of proinsulin processing

Proinsulin ARAP1, SPRY2 ↓Fasting insulin, insulin secretory
response, BMI, proinsulin

Insulin deficiency: b-cell dysfunction,
upstream of proinsulin processing

Obesity FTO, MC4R ↑Fasting insulin, waist circumference,
BMI

↓Insulin sensitivity

Insulin resistance: obesity mediated

Lipodystrophy PPARG, ANKRD55, ARL15,
GRB14, IRS1, LYPLAL1

↑Fasting insulin, triglycerides
↓BMI, insulin sensitivity, HDL

Insulin resistance: fat distribution
mediated

Liver-lipid GCKR, CILP2/TM6SF2, PNPLA3 ↑Fasting insulin
↓Triglycerides, insulin sensitivity

Insulin resistance: abnormal hepatic lipid
metabolism*

From Udler et al. (12). *Variants in this cluster are associated with nonalcoholic fatty liver disease; functional studies of these variants
suggested that they lead to sequestration of the lipids in the liver, lowering the levels in the blood.
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(i.e., European predominant) (24). In meta-analyses, we
examined heterogeneity using I2 and Q metrics (25,26).
Associations between polygenic scores were tested at a 5
0.01 (Bonferroni corrected) to account for multiple testing
of the five polygenic scores in each of our two independent
analyses (Udler clusters and pregnancy clusters). A power
calculation suggested that with the available sample sizes,
we had 80% power to detect effect sizes for associations
between polygenic scores and GDM that produced odds
ratios (ORs) ,0.87 or .1.14 in three-cohort meta-analyses
(a 5 0.01) (27).

Effect sizes (b or OR) for models relating polygenic
scores to traits and outcomes are given for a 1-SD increase
in polygenic score, with SD defined within each cohort.
Statistical analyses were conducted in R 3.5.3 and 3.6.1
statistical software.

Data and Resource Availability
The Gen3G and MGH2 data sets analyzed in this study are
not publicly available because of IRB restrictions. These
data sets are available from the corresponding author upon
reasonable request and both institutional and IRB ap-
proval. The HAPO genotype data and accompanying phe-
notype data are currently available through the database
of Genotypes and Phenotypes (https://www.ncbi.nlm.nih
.gov/gap).

RESULTS

Participant Characteristics
Characteristics of pregnant participants are given in Table 2.
In addition to having higher glucose levels, women with
GDM were older and had higher BMI. In Gen3G and
HAPO (where these measurements were available), women
with GDM had lower insulin sensitivity and higher fasting
triglycerides.

Udler Cluster Associations With Glycemic Traits in
Pregnancy
Associations between cluster polygenic scores for T2D
trait-variant clusters derived outside of pregnancy (Udler
clusters) and selected traits in each pregnancy cohort are
given in Table 3. Trait associations were considered sug-
gestive if P , 0.05.

The b-cell cluster polygenic score was associated (P ,
0.05) with higher postload glucose and lower insulin
secretory response in Gen3G. In HAPO, there were no
trait associations with the b-cell cluster polygenic score,
although there were trends toward association with higher
fasting and 2-h postload glucose. The fasting glucose trend
was driven by HAPO-EU (b 5 0.45 mg/dL, P 5 0.01). In
MGH2 the b-cell cluster polygenic score was associated
with lower first trimester BMI.

The proinsulin cluster was associated (P , 0.05) with
a higher GCT result in MGH2. It was not associated with
traits in Gen3G or HAPO.

The obesity cluster polygenic score was associated (P,
0.05) with higher BMI in each of the cohorts. In Gen3G,

the obesity cluster was also associated with first trimester
waist circumference (b 5 0.62 cm, P 5 0.01), body fat
percentage (first trimester: b 5 0.78%, P 5 0.03; 24–
28 weeks’ gestation: b 5 0.57%, P 5 0.04), A1C at 24–
30 weeks’ gestation (b 5 0.03%, P 5 0.02), and lower
gestational weight gain. In HAPO, in addition to BMI, the
obesity cluster polygenic score was associated with higher
fasting (b 5 0.04, P 5 0.008) and 1-h postload C-peptide
z-score and lower insulin sensitivity.

In Gen3G, the lipodystrophy-like cluster was associated
(P , 0.05) with higher postload glucose (including first
trimester GCT: b 5 2.3 mg/dL, P 5 0.047), lower insulin
sensitivity, higher postload insulin (1-h postload: b5 95.9
pg/mL, P 5 0.04; 2-h postload: b 5 120.3 pg/mL, P 5
0.02), higher triglycerides, lower HDL (b521.75 mg/dL,
P5 0.01), and higher first trimester (but not 24–30-week)
A1C (b 5 0.02%, P 5 0.02). In HAPO, there were
associations with higher 1-h postload C-peptide z-score,
lower 1-h postload nonesterified fatty acid (NEFA) z-score
(b 5 20.08, P 5 0.002), and a trend toward association
with lower insulin sensitivity.

The liver-lipid cluster was associated (P, 0.05) with lower
triglycerides and fasting NEFA z-score (b520.10, P5 0.01)
in Gen3G. In HAPO, this cluster was associated with higher
fasting glucose, higher fasting (b 5 0.06, P 5 3.71 3 1025)
and 1-h postload C-peptide z-score, lower insulin sensitivity,
and lower fasting NEFA z-score (b 5 20.06, P 5 0.04).
Associations between Udler clusters and traits in HAPO
subcohorts are given in Supplementary Table 3A.

Udler Cluster Associations With Outcomes
The b-cell cluster was not significantly associated with
GDM in the all-cohort meta-analysis (adjusted OR 1.08,
P 5 0.06) (Fig. 1A). In the European-predominant meta-
analysis, there was a significant association (P , 0.01) in
the unadjusted model (OR 1.19, P5 0.009) and a nominal
association (P, 0.05) in the adjusted model (OR 1.18, P5
0.015) (Fig. 1B). The association was driven by a strong
effect in Gen3G (adjusted OR 1.55, P 5 0.006), with
a consistent direction of effect in HAPO-EU (adjusted OR
1.15, P 5 0.10).

The liver-lipid cluster was significantly associated (P ,
0.01) with GDM in the all-cohort meta-analysis (adjusted
OR 1.15, P 5 0.002) (Fig. 1A), driven by associations in
HAPO-EU (OR 1.29, P 5 0.004) and HAPO-TH (OR 1.24,
P 5 0.005), and a consistent direction of effect in MGH2

(adjusted OR 1.22, P 5 0.23). There was evidence of
heterogeneity in this meta-analysis (I2 5 0.59, Q 5 12.1,
PQ5 0.03), likely because of the opposite direction of effect
in Gen3G (adjusted OR 0.76, P5 0.09).We found a nominal
association (P , 0.05) between the liver-lipid cluster and
GDM in the European-predominantmeta-analysis (adjusted
OR 1.15, P 5 0.04) (Fig. 1B).

The proinsulin, obesity, and lipodystrophy-like clusters
were not significantly associated with GDM (Fig. 1). None
of the Udler clusters were associated with birth weight
(Supplementary Fig. 1) or LGA.
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Table 3—Associations between Udler cluster polygenic scores and glycemic traits in pregnancy

Fasting
glucose
(mg/dL)

1-h glucose
(mg/dL)*

2-h glucose
(mg/dL)

BMI
(kg/m2)1

Insulin
secretory
response** ISI†

Gestational
weight
gain (lb)

Triglycerides
(mg/dL)

b-Cell
Gen3G
b 0.46 4.57 2.33 0.31 246.5 20.073 20.70 20.21
P 0.11 1.33 3 1024 0.02 0.20 0.02 0.75 0.10 0.93

HAPO
b 0.15 0.017 0.51 0.04 20.014 0.014 3.25
P 0.09 0.96 0.05 0.58 0.31 0.52 0.18

MGH2

b 0.70 20.44 0.56
P 0.50 0.048 0.24

Proinsulin
Gen3G
b 0.03 0.60 0.75 0.15 24.06 20.05 20.12 3.23
P 0.93 0.62 0.45 0.55 0.83 0.82 0.77 0.16

HAPO
b 20.15 20.26 20.10 0.10 0.007 20.003 4.14
P 0.09 0.43 0.72 0.17 0.61 0.90 0.09

MGH2

b 2.98 0.03 20.49
P 0.005 0.89 0.31

Obesity
Gen3G
b 0.54 1.88 1.82 0.62 29.15 20.31 21.09 21.26
P 0.06 0.12 0.07 0.01 0.64 0.17 0.01 0.59

HAPO
b 0.10 0.14 0.036 0.35 0.031 20.07 20.49
P 0.27 0.68 0.89 7.00 3 1027 0.03 0.001 0.84

MGH2

b 0.104 0.58 0.28
P 0.92 0.008 0.55

Lipodystrophy
Gen3G
b 0.065 2.41 1.86 0.036 27.33 20.63 0.44 5.52
P 0.82 0.04 0.06 0.88 0.15 0.005 0.30 0.02

HAPO
b 0.022 0.10 20.30 0.026 0.03 20.04 21.21
P 0.81 0.76 0.26 0.71 0.02 0.06 0.63

MGH2

b 0.98 20.20 0.48
P 0.35 0.37 0.31

Liver-lipid
Gen3G
b 0.40 20.81 21.83 0.43 33.52 0.04 0.44 211.02
P 0.17 0.50 0.07 0.08 0.08 0.87 0.30 1.91 3 1026

HAPO
b 0.30 0.35 20.11 20.08 0.05 20.10 24.51
P 0.001 0.30 0.67 0.26 3.49 3 1024 1.82 3 1026 0.06

MGH2

b 0.24 0.013 20.21
P 0.82 0.95 0.67

Associations between clusters and traits in Gen3G (n 5 574), HAPO (n 5 4,431), and MGH2 (n 5 621) are adjusted for PCs (and
genotyping/imputation batch in MGH2 only). Associations with P , 0.05 were considered suggestive and are highlighted in bold. ISI,
insulin sensitivity index. *One-hour postload glucose from the fasting 75-gOGTT in the Gen3G andHAPO cohorts; 50-gGCT result for the
MGH2 cohort. 1BMI from first trimester study visit for the Gen3G cohort, 24–32 weeks’ gestation at OGTT for the HAPO cohorts, and the
first prenatal visit for the MGH2 cohort. **Insulin secretory response is quantified by the Stumvoll first phase estimate from Gen3G cohort
and 1-h C-peptide z-score from HAPO cohorts (43,44). †ISI is defined by the Matsuda index in the Gen3G cohort and by a modified
Matsuda index using C-peptide concentrations in the HAPO cohorts (45,46).
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Pregnancy Cluster Associations With Glycemic Traits
In 100 iterations of bNMF using associations between traits
and variants in Gen3G, five pregnancy clusters emerged in
the plurality of iterations (49 of 100) (Supplementary Fig. 2).
In 48 of the 51 remaining iterations, the number of clusters
was four (24 iterations) or six (24 iterations), representing
collapsing or splitting of two clusters. Figure 2 depicts the
highest weighted variants and traits in each cluster. Table 4
provides associations between pregnancy cluster polygenic
scores and selected traits in each pregnancy cohort. Trait
associations were considered suggestive if P , 0.05.

In pregnancy cluster 1 (Fig. 2A), the highest weighted
glycemic traits included higher postload glucose levels,
lower disposition index, and higher adiposity measures.
Higher fasting glucose also appeared in this cluster but was
less strongly weighted than postload glucose. The highest
weighted genetic loci included several known or suspected
to be associated with diminished b-cell function (MTNR1B,
GLP2R, CRHR2) and obesity (MC4R, FTO), along with
others with unknown effects (PURG, MRPS30, SHQ1)
(11,12,28–31). Also highly weighted in this cluster was
the SLC2A2 locus, known to be involved in glucose transport
into hepatocytes and islets and associated with metformin
response, and the PI3KR1 locus, which is less well charac-
terized but appears to be associated with insulin resistance–
related traits outside of pregnancy (32–34). In HAPO, the
pregnancy cluster 1 polygenic score was associated (P ,
0.05) with higher fasting glucose, higher BMI, and lower
insulin sensitivity.

Highly weighted traits in pregnancy cluster 2 (Fig. 2B)
included those representing increased fasting insulin and
greater insulin secretory response (unadjusted and adjusted
for insulin sensitivity). In addition, higher levels of tumor
necrosis factor-a (TNF-a), which has been linked to insulin
resistance in pregnancy, was highly weighted (35,36). Among
the highest weighted loci in pregnancy cluster 2 were PIM3,
BNIPL, GLI2, and PHF15, each of which has evidence for
acting through insulin resistance mechanisms outside of
pregnancy (11,28,32). In HAPO, this cluster was associated
(P , 0.05) with lower A1C (b 5 20.01, P 5 0.03) and
higher HDL (b 5 1.28 mg/dL, P 5 0.01).

Highly weighted traits in pregnancy cluster 3 (Fig. 2C)
included those representing favorable glucose metabolism,
including higher oral disposition index, greater insulin sen-
sitivity, and lower postload glucose. The highest weighted
loci in this cluster contained a mix of those with unknown
function as well as some b-cell–, obesity-, and insulin
resistance–associated loci (28,32). No traits were associated
with this cluster in HAPO or MGH2.

Highly weighted traits in pregnancy cluster 4 included
those representing reduced adiposity. The three highly
weighted loci in this cluster were TCEA2, YWHAH, and
PPP1R3B; T2D-associated alleles at these loci have evi-
dence for association with reduced BMI outside pregnancy
(32). In HAPO, this cluster was associated (P, 0.05) with
higher fasting glucose, higher fasting C-peptide z-score,
lower postload glucose, lower insulin sensitivity, and lower

NEFA z-scores (fasting: b 5 20.08, P 5 0.004; 1-h post-
load: b 5 20.08, P 5 0.002).

Highly weighted traits in pregnancy cluster 5 included
those representing lower fasting insulin and insulin secre-
tory response. Highly weighted loci in this cluster included
many known or suspected to be associated with reduced
b-cell function, including ABO, CDKN2AB, SLC30A8, CDKN1B,
and ST6GAL1 (11,12). Although the pregnancy cluster
5 polygenic score was associated (P , 0.05) with lower
fasting insulin and C-peptide and lower insulin secretory
response in Gen3G, there was no association with glucose
levels (Table 4). In HAPO, this cluster was associated with
higher postload glucose and a trend toward lower 1-h
postload C-peptide z-score as well as higher total cholesterol
(b 5 4.32, P 5 0.01) and LDL (b 5 4.14, P 5 0.008).
Associations between pregnancy clusters and traits in
HAPO subcohorts are given in Supplementary Table 3B.

Pregnancy Cluster Associations With Outcomes
Pregnancy cluster 1 was associated with GDM in Gen3G
(adjusted OR 1.61, P 5 0.003). In a meta-analysis in-
cluding the remaining cohorts, a significant association
(P , 0.01) between pregnancy cluster 1 and GDM was
replicated (adjusted OR 1.24, P 5 6.2 3 1027) (Fig. 3A).
Exclusion of the MTNR1B locus from the polygenic score
did not affect the magnitude or statistical significance of
the results (adjusted OR 1.20, P 5 0.004). The significant
association between pregnancy cluster 1 and GDM was
also present in the European-predominant meta-analysis
(adjusted OR 1.35, P5 1.913 1025) (Fig. 3B). There were
no statistically significant associations between GDM and
the other pregnancy clusters (Fig. 3A).

In the all-cohort meta-analysis, there was a nominal
association (P , 0.05) between the pregnancy cluster
1 polygenic score and higher offspring birth weight per-
centile (adjusted b 5 0.91 percentile points, P 5 0.02)
(Supplementary Fig. 1C) that did not meet criteria for
statistical significance. This association was statistically
significant (P, 0.01) in the European-predominant meta-
analysis (adjusted b 5 1.54 percentile points, P 5 0.007)
(Supplementary Fig. 1D). There was no association
between pregnancy cluster 1 and LGA in the all-cohort
meta-analysis, although there was a nominal (but not sta-
tistically significant) association in the European-predominant
meta-analysis (adjusted OR 1.18, P 5 0.01). None of the
other pregnancy clusters were nominally or significantly
associated with birth weight (Supplementary Fig. 1) or LGA
in meta-analyses.

Cluster Associations With T2D
In the T2D case-control set (n 5 4,910 cases, n 5 28,206
controls) (Supplementary Table 4), we tested for associa-
tions between each cluster and T2D (Fig. 4). Of the Udler
clusters, the b-cell, obesity, and lipodystrophy-like clusters
were significantly associated (P , 0.01) with T2D. The
proinsulin and liver-lipid clusters had nominal associations
(P , 0.05). For the lipodystrophy-like cluster, the effect
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size for the association with T2D appeared larger than that
for GDM (T2D OR 1.17 [95% CI 1.13–1.21]; GDM meta-
analysis OR 1.03 [0.95–1.12]). Of the novel pregnancy
clusters, pregnancy cluster 1, pregnancy cluster 3, and
pregnancy cluster 5 were significantly associated with
T2D (P , 0.01); pregnancy cluster 2 was nominally
associated (P , 0.05), and pregnancy cluster 4 was not
associated (P $ 0.05). For pregnancy cluster 1, the effect
size for association with GDM appeared greater than that
for T2D (GDM meta-analysis OR 1.24 [1.14–1.35]; T2D
OR 1.11 [1.07–1.14]); the effect size for GDM also
appeared greater than that for T2D in the European-
predominant GDM meta-analysis (OR 1.35 [1.18–1.55])
(Supplementary Fig. 3).

DISCUSSION

In this study of .5,000 pregnant women, we identify
physiologically grouped sets of genetic variants associated
with GDM. Observed associations with clusters derived
outside of pregnancy imply that b-cell dysfunction and
abnormal hepatic lipid metabolism are pathophysiologic
mechanisms shared between GDM and T2D. We also iden-
tified a strong association between GDM and a novel cluster
of variants derived using pregnancy physiology (pregnancy
cluster 1). We replicated this association across independent
cohorts; notably, the effect size for the association of this
cluster with GDM appeared greater than that for T2D.
Carrying a greater number of glucose-raising alleles from
pregnancy cluster 1 was also nominally associated with
having an infant with higher birth weight, presumably as
a consequence of maternal hyperglycemia. To our knowl-
edge, we are the first to apply bNMF clustering to the study
of GDM and gestational glucose metabolism.

Previous studies have tested T2D-associated variants
for association with GDM, but few have probed variants
grouped on the basis of more specific physiology (2,4,37–39).
In a previous study in Gen3G andHAPO-EU, we found that
trait-based polygenic scores (with component variants
selected on the basis of effects outside pregnancy) for
fasting glucose, fasting insulin, insulin secretion, and in-
sulin sensitivity were associated with GDM (4). Similarly,
Moen et al. (37) found associations between polygenic scores
for fasting glucose, BMI, and T2D and glucose levels in
pregnancy. The current study builds upon this literature by
testing variants grouped by physiologic pathway (rather
than by effects on a single trait) for associations with preg-
nancy glycemic traits and GDM; this allows us to identify
physiologic pathways that play a role in GDMpathogenesis. A
role for b-cell dysfunction and abnormal hepatic lipid
metabolism in GDM pathogenesis is implied by the asso-
ciations we found with the b-cell and liver-lipid cluster
polygenic scores. While we may have lacked power to
detect associations of modest size between GDM and other
Udler clusters, abnormal fat distribution may be less
important in GDM than in T2D, given that the effect
size for the lipodystrophy-like cluster polygenic score with
GDM was lesser than that for T2D.

Our findings highlight the existence of pathophysiology
underlying GDM that appears unique to pregnancy. Spe-
cifically, we implicated a novel cluster of T2D-associated
genetic variants (pregnancy cluster 1) in pregnancy glyce-
mia and fetal growth. The robustness of the association of
this cluster with GDM is bolstered by replication in in-
dependent cohorts. This cluster appeared to have a stron-
ger association with GDM than with T2D. The variants
that were highly weighted in pregnancy cluster 1 did not

Figure 1—Associations between Udler cluster polygenic scores and GDM. Shown are the results from meta-analyses of associations
between Udler cluster polygenic scores and GDM. A: Meta-analysis of all cohorts (Gen3G, HAPO-AC, HAPO-EU, HAPO-MA, HAPO-TH, and
MGH2; n5 810 cases, n5 4,816 controls). B: Meta-analysis of cohorts with presumed European-predominant ancestry (Gen3G, HAPO-EU,
andMGH2; n5 297 cases, n5 2,267 controls). Prior tometa-analysis, associations from logistic regressionwere adjusted for PCs and age. In
the MGH2 cohort, we also adjusted for genotyping/imputation batch. ORs, ●. Error bars show the 95% CIs of the ORs. P , 0.01 was
considered statistically significant.
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appear to represent a single physiologic pathway, leading
us to speculate that the commonality resulting in their
grouping was their strong effects on pregnancy glycemia.
In contrast, despite apparent associations with insulin

resistance and deficiency in pregnant women, polygenic
scores for pregnancy clusters 2 and 5 did not seem to be
specifically associated with GDM, although larger studies
are required to provide more accurate effect estimates and

Figure 2—Highly weighted traits and variants in pregnancy clusters.A–E: Highly weighted traits and variants (lying in the top 5% of all cluster
weights) are given for newly described pregnancy clusters. The height of the bar for each trait (pink/blue) or locus (green) indicates the
strength of the weight in the relevant cluster. Traits with pink bars are positively associated with the cluster; traits with blue bars are negatively
associated with the cluster.
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Table 4—Associations between pregnancy cluster polygenic scores and glycemic traits in pregnancy

Fasting
glucose
(mg/dL)

1-h glucose
(mg/dL)*

2-h glucose
(mg/dL)

BMI
(kg/m2)1

Insulin
secretory
response** ISI†

Gestational
weight
gain (lb)

Triglycerides
(mg/dL)

Cluster 1
Gen3G
b 1.57 6.07 4.01 1.37 25.5 20.99 20.96 4.88
P 3.24 3 1028 3.04 3 1027 4.39 3 1025 1.15 3 1028 0.18 9.20 3 1026 0.02 0.03

HAPO
b 0.44 0.58 0.23 0.23 0.012 20.064 22.21
P 9.06 3 1027 0.08 0.38 8.39 3 1024 0.42 0.003 0.38

MGH2

b 1.48 20.084 0.53
P 0.15 0.70 0.26

Cluster 2
Gen3G
b 0.66 21.28 20.73 0.43 107.45 20.64 0.91 23.85
P 0.02 0.29 0.46 0.08 1.73 3 1028 0.004 0.03 0.10

HAPO
b 0.84 20.02 20.12 0.04 0.004 20.003 20.67
P 0.34 0.94 0.63 0.53 0.80 0.90 0.79

MGH2

b 1.01 0.31 20.37
P 0.32 0.16 0.43

Cluster 3
Gen3G
b 21.03 25.37 24.08 0.064 211.15 1.31 0.0019 27.51
P 3.22 3 1024 6.08 3 1026 3.13 3 1025 0.79 0.56 3.15 3 1029 .0.99 0.001

HAPO
b 0.09 0.21 0.19 0.10 20.02 0.002 20.85
P 0.30 0.54 0.47 0.15 0.18 0.92 0.72

MGH2

b 0.05 0.35 0.58
P 0.96 0.11 0.90

Cluster 4
Gen3G
b 20.05 20.18 21.03 20.68 24.34 0.30 20.13 2.64
P 0.87 0.88 0.31 0.005 0.82 0.19 0.76 0.26

HAPO
b 0.31 20.74 20.63 20.009 20.01 20.04 0.64
P 4.12 3 1024 0.03 0.02 0.89 0.32 0.04 0.79

MGH2

b 0.27 0.24 0.06
P 0.79 0.26 0.90

Cluster 5
Gen3G
b 20.39 1.45 0.16 20.57 2129.14 0.74 20.44 25.83
P 0.18 0.23 0.88 0.02 1.10 3 10211 0.001 0.31 0.01

HAPO
b 0.011 0.73 0.57 20.03 20.03 0.02 22.11
P 0.91 0.03 0.03 0.63 0.06 0.28 0.40

MGH2

b 0.14 20.41 20.53
P 0.89 0.06 0.27

Associations between clusters and traits in Gen3G (n 5 574), HAPO (n 5 4,431), and MGH2 (n 5 621) are adjusted for PCs (and
genotyping/imputation batch in MGH2 only). Associations with P , 0.05 were considered suggestive and are highlighted in bold. *One-
hour postload glucose from the fasting 75-gOGTT in the Gen3G andHAPO cohorts; 50-g glucose loading test result for theMGH2 cohort.
1BMI from first trimester study visit for the Gen3G cohort, 24–32 weeks’ gestation at OGTT for the HAPO cohorts, and the first prenatal
visit for the MGH2 cohort. **Insulin secretory response is quantified by the Stumvoll first phase estimate from Gen3G cohort and 1-h
C-peptide fromHAPO cohorts (43,44). †ISI is defined by theMatsuda index in the Gen3G cohort and defined by amodifiedMatsuda index
using C-peptide concentrations in the HAPO cohorts (45,46).
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exclude associations that were too small for our study to
detect.

In addition to testing for associations with GDM, we
examined relationships between clusters and infant birth
weight because fetal overgrowth is a common consequence
of hyperglycemia in pregnancy (13). We found that despite
associations with GDM, and in contrast to the novel GDM-
associated pregnancy cluster 1, the Udler b-cell and liver-
lipid clusters showed no evidence of association with infant
birth weight, although wemay not have had power to detect
associations of limited magnitude. Relevant to our obser-
vations, there is a known relationship between reduced fetal
insulin secretion and lower birth weight (40,41). This could
explain why a group of variants associated with GDM
through diminished maternal insulin secretion (b-cell clus-
ter) did not increase birth weight to the degree expected
from the maternal hyperglycemia alone; indeed, there may
be a counterbalancing effect on birth weight in fetuses who
inherit these insulin secretion–reducing variants from their
mothers. With regard to the liver-lipid cluster, it is plausible
that lower triglyceride levels associated with this cluster
resulted in less fetal overgrowth, despite an association with
maternal hyperglycemia (42). Our findings imply that the
group of variants in pregnancy cluster 1, in aggregate, do
not diminish fetal insulin section and/or reduce maternal
circulating lipids in such a way as to limit fetal growth. We
note that the association between birth weight and preg-
nancy cluster 1 did not reach the prespecified level of
statistical significance in the all-cohort meta-analysis and
thus requires confirmation in future studies.

Investigations of associations between common genetic
variants and disease have been limited by the exclusion of

individuals without recent European ancestry (22,23). Our
investigation did include participants with diverse geo-
graphic ancestries, yet as expected, variants and clusters
discovered or derived in populations with recent European
ancestry generally displayed less robust associations with
glycemic traits and GDM in women without recent Euro-
pean ancestry. Our findings underscore the critical need
for diabetes genetic investigations in ethnically diverse
populations both in and outside of pregnancy.

A strength of our investigation is the study population,
which contained independent cohorts in which to replicate
our findings. Furthermore, our focus on pregnancy phys-
iology addresses a gap in the literature. Limitations include
our sample size, which while large for a genetic investi-
gation in pregnant women, was likely too small to detect
modest genetic effects. In addition, because of the limited
number of GWAS with data on glycemia in pregnancy (1,2),
the majority of variants included in this investigation were
selected on the basis of their effects outside of pregnancy
on T2D risk in populations with recent European ancestry.
Until we have ethnically diverse genetic cohorts of suffi-
cient size to identify loci across the genome associated with
glycemia and related traits during gestation, our ability to
study genetic determinants of glucose metabolism unique
to pregnancy will be limited. In addition, the inclusion
criteria and definitions of GDM differed among cohorts;
this may have led to heterogeneity of effects across
cohorts. For this reason, we have focused primarily on
effects with evidence of consistency across cohorts on the
basis of findings in meta-analyses.

In conclusion, we have identified physiologic pathways
and groups of genetic variants associated with GDM,

Figure 3—Associations between pregnancy cluster polygenic scores and GDM. Shown are the results from meta-analyses of associations
between pregnancy cluster polygenic scores and GDM. Gen3Gwas excluded given that glucose values in this cohort were used to generate
clusters. A: Meta-analyses of all remaining cohorts (HAPO-AC, HAPO-EU, HAPO-MA, HAPO-TH, and MGH2; n 5 766 cases, n 5 4,286
controls). B: Meta-analyses of remaining cohorts with presumed European-predominant ancestry (HAPO-EU andMGH2; n5 253 cases, n5
1,737 controls). Prior to meta-analysis, associations from logistic regression were adjusted for PCs and age. In the MGH2 cohort, we also
adjusted for genotyping/imputation batch. ORs, ●. Error bars show the 95% CIs for the ORs. P , 0.01 was considered statistically
significant.
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Figure 4—Comparison of cluster polygenetic score associations with GDM and T2D. We compared the association of each cluster—Udler
clusters (A) and pregnancy clusters (B)—with GDM (from results of meta-analyses depicted in Fig. 1A [n5 810 cases, n5 4,816 controls] and
Fig. 3A [n 5 766 cases, n 5 4,286 controls]) and T2D (from participants in the Partners Biobank [n 5 4,910 cases, n 5 28,206 controls]).
Associations from logistic regression were adjusted for PCs and age. In the MGH2 and Partners Biobank, we also adjusted for genotyping/
imputation batch. ORs, ●. Error bars show the 95% CIs for the ORs. P , 0.01 was considered statistically significant.
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including a newly described cluster of variants that is
associated with hyperglycemia and fetal growth in pregnant
women.While not the objective of the present investigation,
future studies should test whether polygenic scores from our
physiology-informed, genetically anchored clusters can be
used clinically. For example, it is possible that the pregnancy
cluster 1 polygenic score could identify women who would
benefit from early GDM screening or that the Udler b-cell
and liver-lipid cluster polygenic scores could identify women
for whom GDM heralds future T2D. Studies in large, diverse
cohorts with genetic and pregnancy phenotypic data will be
required to further advance understanding of the genetic
determinants of the unique pathophysiology underlying
gestational glucose metabolism revealed by our analysis.
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