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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with rising incidence and with 5-
years overall survival of less than 8%. PDAC creates an immune-suppressive tumor microenvironment to escape
immune-mediated eradication. Regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSC) are critical
components of the immune-suppressive tumor microenvironment. Shifting from tumor escape or tolerance to
elimination is the major challenge in the treatment of PDAC.

Results: In a mathematical model, we combine distinct treatment modalities for PDAC, including 5-FU
chemotherapy and anti- CD25 immunotherapy to improve clinical outcome and therapeutic efficacy. To address
and optimize 5-FU and anti- CD25 treatment (to suppress MDSCs and Tregs, respectively) schedule in-silico and
simultaneously unravel the processes driving therapeutic responses, we designed an in vivo calibrated
mathematical model of tumor-immune system (TIS) interactions. We designed a user-friendly graphical user
interface (GUI) unit which is configurable for treatment timings to implement an in-silico clinical trial to test
different timings of both 5-FU and anti- CD25 therapies. By optimizing combination regimens, we improved
treatment efficacy. In-silico assessment of 5-FU and anti- CD25 combination therapy for PDAC significantly showed
better treatment outcomes when compared to 5-FU and anti- CD25 therapies separately. Due to imprecise, missing,
or incomplete experimental data, the kinetic parameters of the TIS model are uncertain that this can be captured
by the fuzzy theorem. We have predicted the uncertainty band of cell/cytokines dynamics based on the parametric
uncertainty, and we have shown the effect of the treatments on the displacement of the uncertainty band of the
cells/cytokines. We performed global sensitivity analysis methods to identify the most influential kinetic parameters
and simulate the effect of the perturbation on kinetic parameters on the dynamics of cells/cytokines.

Conclusion: Our findings outline a rational approach to therapy optimization with meaningful consequences for
how we effectively design treatment schedules (timing) to maximize their success, and how we treat PDAC with
combined 5-FU and anti- CD25 therapies. Our data revealed that a synergistic combinatorial regimen targeting the
Tregs and MDSCs in both crisp and fuzzy settings of model parameters can lead to tumor eradication.
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Introduction
Pancreatic cancer is the seventh leading cause of
mortality related to cancer around the world [1] and
the fourth leading cause in the United States [2], and
it is predicted to be the second leading cause by 2030
[3]. Pancreatic ductal adenocarcinoma (PDAC) consti-
tutes 85% of histological diagnoses of pancreatic can-
cer, and this subtype mostly emerges from the
exocrine glands of the neck and head of the pancreas
[4]. PDAC has a very poor prognosis with the lowest
surveillance among all cancers, a five-year overall
relative survival rate of 8% [1]. This disappointing
surveillance is due to a delay in diagnosis of this dis-
ease because of having no specific symptom; thus, pa-
tients are usually diagnosed with metastasis or an
advanced unresectable mass [5]. Additionally, the only
current curative therapy for this disease is surgery,
but only 20% of patients have locally resectable mass
when diagnosed [6, 7]. So, various therapeutic modal-
ities like immunotherapy, neoadjuvant chemotherapy,
radiotherapy, and surgery are performed to improve
surveillance and alleviate the patient’s discomfort, but
there is no curative approach for an advanced PDAC
already [8]. Recent findings showed that modulating
the effector cells in the tumor microenvironment by
immunotherapy or chemotherapy would lead to im-
pressive clinical and experimental therapeutic effects
on PDAC [9–12]. Besides, some specific features of
PDAC, like the existence of many immunosuppressive
mediators in its microenvironment that are sur-
rounded by a dense stroma cause the tumor to phys-
ically block the penetration of the drug; thus, this
issue emphasizes the promising efficacy of immuno-
therapy specifically when combined with chemother-
apy [13]. Till now, the experimental studies showed
the beneficial therapeutic effect of Anti-CD25 im-
munotherapy targeting Treg cells [14–16] as well as
5-fluorouracil (5-FU) chemotherapy targeting MDSCs
[12, 17, 18] on PDAC, but to our knowledge, there is
no experimental study on the efficacy of Anti-CD25
and 5-FU combination therapy for PDAC. Also, several
mathematical models have been conducted on the anti-
tumor effect of Anti-CD25 and 5-FU. Shariatpanahi et al.
designed an ODE model to simulate the effect of MDSC
depletion by 5-FU on tumor-immune system dynamics
and to evaluate the effect of replication of this treatment
on tumor degradation. In their study, they designed a
simulation framework to capture the dynamics of tumor
cells, MDSC, CTL, and NK cells with and without 5-FU
treatment. Their study using in silico assessment of 5-FU
treatment proposed a testable hypothesis in vivo/in vitro
environments [19]. In another study, Loizides et al. con-
structed an ODE model to capture the tumorigenesis
process and tumor interactions with the immune system.

They also modeled 5-FU therapy using a two compart-
mental pharmacokinetic/pharmacodynamics model. Their
Gompertz model simulated overall characteristics of the
inherent variability of in vivo tumor growth rates and 5-
FU killing effects that was observed in the de novo animal
cancer model and predicted by mathematical modeling
[20]. Montiel et al. developed a mathematical model to in-
terrogate the effects of immunotherapy using dendritic
cells (DCs) on tumor-immune system interactions. Their
model consists of five delay differential equations that are
calibrated by experimental data and are used to test differ-
ent immunotherapy protocols. By in silico assessment of
DC therapy, they suggest that changing the infusion time
and using more doses of DCs causes more degradation of
tumor cells [21].
Although various mathematical model analyses were

conducted to determine the efficacy of immunotherapy
or chemotherapy for pancreatic cancer separately [22–
25], the effect of anti-CD25 immunotherapy in combin-
ation with 5-FU chemotherapy on pancreatic ductal
adenocarcinoma has not assessed so far. Therefore, in
the present study, we constructed a mathematical model
based on ordinary differential equations (ODEs) to de-
scribe the dynamic interactions among dominant cells
and their cytokines in the pancreatic tumor microenvir-
onment during different phases of treatments and pro-
vided a quantitative prediction of anti-CD25 and 5-FU
efficacy for pancreatic ductal adenocarcinoma.

Model development
Biological concept
Figure 1 demonstrates a simplified biological concept of
the immunosuppressive mechanisms and antitumor ac-
tivities mediated by various effector cells in the tumor
microenvironment as well as the influence of 5-FU
chemotherapy and anti-CD25 immunotherapy on these
interactions which are used for mathematical modeling.
Besides, we considered the following biological assump-
tions in our model with regards to the previous studies
[19, 26–34].

1. Tumor cells have the logistic growth in deprivation
of the immune system [28].

2. Tumor cells stimulate the activation of cytotoxic T
lymphocytes [19].

3. In the tumor microenvironment, NK cells also
stimulate the activation of cytotoxic T lymphocytes
[19].

4. NK cells and activated cytotoxic T lymphocytes
induce tumor cell regression [19, 29].

5. The activity of NK cells and cytotoxic T
lymphocytes declines over time after encountering
tumor cells [19, 30].
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6. Tumor cells also recruit MDSCs and stimulate their
proliferation in the tumor microenvironment [19,
31].

7. MDSCs suppress cytotoxic T lymphocyte activation
mediated by NK cells in the tumor
microenvironment [19, 26].

8. Treg cells that are increased in the tumor
microenvironment suppress the proliferation of NK
cells, cytotoxic T lymphocytes, and T helper cells
[32].

9. Low doses of 5-FU chemotherapy inhibit tumor
progression through the deactivation of MDSCs
[19, 27].

10. Anti-CD25 immunotherapy inhibits tumor
progression through the depletion of Treg cells
[34].

Methodology and experiment setting
We confirm that no animals were involved in the
present study. In this study, we proposed a mathematical
model that is calibrated by in vivo data of two studies.
Wu et al. [35] and Pu et al. [23] presented in vivo data
for change in tumor size during 5-FU chemotherapy and
anti-CD25 immunotherapy, respectively. The experi-
ments of Wu et al. study in the control group (no treat-
ment) and 5-FU therapy group are as follows. Control
group: C57BL/6 mice were subcutaneously implanted
with Panc02 cells (6 × 105 per mouse) in the right flank

and tumor size is recorded every 5 days up to 25 days
beginning 5 days after tumor inoculation. 5-FU therapy
group: this group is similar to the control group, except
that on the first to fourth days, at each day a single dose
of 5-FU (30 mg/kg) was injected. We used the trend of
tumor size recorded over time (data records are ex-
tracted from figures by WebPlotDigitizer tool [36]) to es-
timate some parameters of the model which are
describing the effect of 5-FU therapy in pancreatic can-
cer. In the experiment of Pu et al., C57BL/6 mice were
subcutaneously inoculated with Panc02 cells (2 × 106 per
mouse) and receiving CD25 antibody (50 μg per mouse)
twice a week for 3 weeks beginning 3 days after tumor
induction. The trend of tumor size measured in the Pu
et al. study was used to estimate parameters reflecting
the effect of anti-CD25 therapy. Both studies of Wu
et al. and Pu et al. were performed on a specific cell line
(Panc02) and the same mice (C57BL/6 mice). We used
the data of these experiments to evaluate the effect of
the combinatorial manner of 5-FU and anti-CD25 ther-
apies on pancreatic cancer. The parameterized mathem-
atical model using control, 5-FU, and anti-CD25 data
sets, reproduced the published in vivo data of both stud-
ies to describe tumor-immune cell interactions through
5-FU and anti-CD25 therapy. This mathematical model
enables us to investigate the interaction effects of treat-
ments (synergistic, additive, or antagonistic effect),
optimize time schedules of treatments, and deepen our

Fig. 1 Conceptual model of tumor-immune system interactions. The arrows depict activation/induction and blocked arrows
indicate blocking/inhibiting
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understanding of complex dynamics and regulatory
mechanisms in the tumor microenvironment.

General characteristics of the mathematical model used
for anticipating the therapeutic effects of 5FU and anti-
CD25 on pancreatic cancer
The mathematical model of the tumor-immune system
of this study is constructed using ODEs to describe the
dynamics of interactions between pancreatic cancer cells
and major innate and adaptive immune system compo-
nents includes cytotoxic T lymphocytes (CTLs), natural
killer (NK) cells, myeloid-derived suppressor cells
(MDSCs), TCD4+ cells (T helper), T regulatory cells
(Tregs) and cytokines e.g. interleukin-2 (IL-2),
interferon-gamma (IFN-γ) and transforming growth factor-
beta (TGF-β). The model considered anti-CD25 monother-
apy as well as low-dose 5-fluorouracil (5-FU) chemotherapy
to predict their efficacy for pancreatic cancer. The anti-
CD25 and 5-FU treatments modeling techniques include
the techniques that were used in the studies of Dan-Hua
HE et al. [34] and SP Shariatpanahi et al. [19], respectively.
The mathematical model is constructed using nine ODEs
(eqs. 1–9) that each equation describes the change in popu-
lation/concentration of cells/cytokines. All model variables
including C, N, T, M, H, R, I, F, S, and antiCD25 are time-
dependent; hence, for example, for the sake of brevity, we
have written C instead of C(t).

dC
dt

¼ a1C log
Cmax

C

� �
−b1N

C

1þ 1
l1
C

1
3

−

c1TC

1þ 1
l1
C

1
3

1þ e1R

1þ d1 antiCD25ð Þ2R3

 !
1þ f 1Sð Þ

−g1C−h1 log 1þ k1 sign antiCD25ð Þ
Z t

0
antiCD25 τð ÞC τð Þdτ

� �

ð1Þ
Pancreatic cancer cell (C): In eq. (1), dC

dt describes the
time derivative of cancer cells, and this equation repre-
sents the dynamics of pancreatic cancer cells. The first
term on the right side of the equation describes the
Gompertzian growth of cancer cells, where a1 is the
growth rate of cancer cells in absence of treatment and
Cmax is the carrying capacity or the maximum size of
the tumor in this model [19]. The second and third
terms represent the NK-mediated and CTL-mediated
killing of accessible tumor cells ( C

1þ 1
l1
C

1
3
) to NKs and

CTLs, respectively, and by the depth of access l1 [19].
Term C

1þ 1
l1
C

1
3
represents the surface layers of tumor cells

in tumor mass [19]. The maximum rates of NK-

mediated and CTL-mediated tumor cell killing are pa-
rameters b1 and c1, respectively [19]. The terms ð

1þe1R
1þd1ðantiCD25Þ2R3Þ and (1 + f1S) in the denominator of the

third term describe the inhibitory effects of Tregs and
TGF-β on CTL-mediated cancer cell killing. The propor-
tional parameter d1 regulates the weight (intensity) of
anti-CD25 monotherapy and parameters e1 and f1 reflect
the measure of the inhibitory effect of Tregs and TGF-β
on CTL cytotoxicity, respectively [34]. The denominator
of term ð 1þe1R

1þd1ðantiCD25Þ2R3Þ represents the Treg depletion

by anti-CD25 antibody clone that it improves CTL cyto-
toxicity by inhibition of Tregs. The powers 2 and 3 for
antiCD25 treatment and Treg cells (R) were used to ad-
just model for better calibration and parametrization.
We assumed that chemotherapy using low dose 5-FU
and monotherapy using anti-CD25 directly impacts the
pancreatic tumor volume that is reflected in the fourth
and fifth terms of eq. (1), respectively. The parameter g1
represents the apoptotic rate of tumor cells by 5-FU and
the parameters h1 and k1 are the apoptotic rate of pan-
creatic cancer cells by anti-CD25 treatment. The func-
tion sign(antiCD25) is used to indicate whether or not
the anti-CD25 monotherapy is involved; therefore, this
function is one when anti-CD25 treatment is applied
and is zeros otherwise [37, 38]. Term antiCD25(τ) pre-
sents the administration pattern of anti-CD25 therapy

[34]. Term
R t
0 antiCD25ðτÞCðτÞdτ represents the total

dose of antiCD25(τ), 0 ≤ τ ≤ t injected until time t. This
integral term computes the total dose of anti-CD25 and
include this term in a logarithmic function as a non-
monotonic function to simulate the decay of affected
cancer cell by treatment. Actually, this term indicates
that the population of cancer cells at time t is depended
on total dose of injected antiCD25(τ) at time τ ≤ t. The
use of integral terms and non-monotonic functions for
simulation of kinetic-dynamics of biological phenomena
is convenient, for example, in a study, integral terms
were used to simulate the dynamics of cytokines [39].
Also, in other study, Islam et al. used sliding model ap-
proach to determine anticancer agent dosing and they
used non-monotonic functions to simulate anticancer
therapeutic effect on cancer cells [40].

dN
dt

¼ a2−b2N þ c●2IN
d2 þ I

þ e2FN
f 2 þ F

−
g2NC

1þ 1
l1
C

1
3

−h2RN ð2Þ

Natural killer cell (N): Eq. (2) describes the dynamic of
NKs (N). The first and second terms on the right side of
the equation represent the constant production rate of
NKs in bone marrow with parameter a2 and normal
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death rate of NKs with an exponential rate b2, respect-
ively [19]. The third and fourth terms describe the IL-2
mediated and IFN-γ mediated stimulation of NK cells,
respectively, that are modeled in the simplified version
of the model (eq. 14) by a Michaelis-Menten form with
parameters c2, d2

τ1
α1
, e2 and f2 [34]. The fifth term repre-

sents the inactivation of NK cells by interacting with ac-
cessible tumor cells with maximum inactivation rate g2
[19]. The last term describes Treg-mediated NK cell kill-
ing (inactivation) in a granzyme-B-dependent fashion
with a constant rate h2 [34].

dT
dt

¼ −a3T þ b3TC2

c3þC2

þ d3NC

1þ 1
l1
C

1
3

1−m3

1þ n3 M−p3ð Þ2 þm3

 !
−

e3TC

1þ 1
l1
C

1
3

þ f ●3IT
g3 þ I

þ h3FT
k3 þ F

−l3RT

ð3Þ
Cytotoxic T lymphocytes (T): Eq. (3) describes the dy-

namics of CTLs as the major component of the adaptive
immune system. The first term on the right side of the
equation stands for the death of CTLs with an exponen-
tial rate a3 [19]. The second term describes the tumor
recruitment of CTLs that has a Michaelis-Menten form
with parameters b3 and c3 [19]. The third term shows
the activation of CTLs as a result of interactions of NKs
and accessible tumor cells with a constant rate d3 [19].
Also, MDSCs negatively regulate this interaction to pre-
vent CTL activation. The parameter p3 is the normal
population of MDSCs when there is no tumor and pa-
rameters m3 and n3 are effectiveness factors and propor-
tional parameters related to MDSC-mediated inhibition
of CTL activation [19]. The fourth term represents the
inactivation rate of interacting CTLs with accessible
tumor cells with a constant rate e3 [19]. The fifth and
sixth terms show the stimulatory effects of cytokines IL-
2 and IFN-γ on CTL proliferation/activation that they
are modeled by Michaelis-Menten form with parameters
f●3, g3, h3, k3 and with parameters f3, g3

τ1
α1
, h3, k3 (eq. 15)

[34]. The last term represents Treg-mediated CTL inhib-
ition with a constant rate l3 [34].

dM
dt

¼ a4−b4M þ c4C
d4 þ C

ð4Þ

Myeloid derives suppressor cell (M): Eq. (4) describes
the dynamics of tumor-induced MDSCs. The first term
on the right side of the equation shows the constant re-
cruitment rate a4 of bone marrow produced MDSCs to
the spleen [19]. The second term represents the death
rate of MDSCs with a constant rate (b4) in normal

conditions or during 5-FU treatment [19]. The third
term describes the tumor-induced expansion of MDSCs
with parameters c4 and d4 [19].

dH
dt

¼ a5−b5H þ c●5IH
d5 þ I

þ e5FH
f 5 þ F

−g5RH ð5Þ

T helper cells (H): Eq. (5) represents the dynamics of
T helper cells. The first term on the right side of eq. (5)
describes the production rate (a5) of T helper cells in
the thymus [34]. The second term describes the expo-
nential degradation rate (b5) of T helper cells [34]. The
third and fourth terms show the activation rate of T
helper cells by IL-2 and IFN-γ, respectively, that are
modeled by a Michaelis-Menten form with parameters
c●5, d5, e5, f5 and parameters c5, d5

τ1
α1
, e5 and f5 (the third

and fourth terms of eq. 17) [34]. The last term models
the inactivation/degradation of T helper cells by Tregs
with a constant rate g5 [34].

dR
dt

¼ a6−b6Rþ c6T þ d6H

þ e●6IR
f 6 þ I

−g6NR−h6 antiCD25ð ÞR ð6Þ

Regulatory T cell (R): eq. (6) describes the dynamic of
Tregs as an important component of the immune system
for the induction of peripheral tolerance. The first term
on the right side of the equation describes the constant
production rate of Tregs from their origin in the thymus
and peripheral (a6) [34]. The second term shows the ex-
ponential death rate of Tregs (b6) [34]. The third and
fourth terms show that Tregs originate from both
TCD8+ and T helper cells and the population of Tregs
increases with the sum of these two terms (c6T + d6H)
that is proportional to CTLs population with a constant
rate c6 and T helper population with a constant rate d6
[34]. The fifth term describes the IL-2-mediated growth
rate of Tregs that is modeled by a Michaelis-Menten
form with parameters e●6, f6, and parameters e6 and f 6

τ1
α1

(the fifth term in eq. 18) [34]. The sixth term describes
that NKs degrade Treg cells with a constant rate g6 and
the last term models anti-CD25-mediated Treg depletion
with a constant rate h6 [34].

dI
dt

¼ α1H−τ1I ð7Þ

Interleukin-2 (I): Eq. (7) represents the dynamic of IL-
2. The first term on the right side describes the IL-2 se-
cretion from T helper with a constant rate α1, and the
second term describes the degradation with a rate τ1
[34].
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dF
dt

¼ β1T þ β2N þ β3H−τ2F ð8Þ

Interferon-gamma (F): Eq. (8) shows the dynamic of
IFN-γ. According to terms 1–3 of eq. (8), IFN-γ is pro-
duced by CD8 + T cells, NK cells and T helper cells with
constant rates β1, β2 and β3, respectively [34]. The last
term of the equation describes the natural death rate of
IFN-γ based on its half-life [34].

dS
dt

¼ λ1C−τ3S ð9Þ

Transforming growth factor-beta (S): Eq. (9) describes
the dynamics of TGF-β which is produced by cancer
cells with a constant rate λ1 and is degraded with a rate
τ3 based on its half-life [34].
The changes in concentration of cytokines compared

to the population of cells occur on a very short time
scale; therefore, we can use quasi-steady-state approxi-
mations (eqs. 10–12) for cytokine concentrations to sim-
plify our model.

dI
dt

¼ 0; I ¼ α1
τ1

H ð10Þ

dF
dt

¼ 0; F ¼ β1
τ2

T þ β2
τ2

N þ β3
τ2

H ð11Þ

dS
dt

¼ 0; S ¼ λ1
τ3

C ð12Þ

By substituting eqs. 10–12 into eqs. 1–6, the simplified
model, as described using eqs. 13–18, is achieved. Fi-
nally, the simplified model of the tumor-immune system
includes 6 ODEs and 65 kinetic parameters. Some kin-
etic parameters are estimated based upon the experi-
mental data of 5-FU chemotherapy and anti-CD25
monotherapy in a murine model of PDAC in the C57/
BL6 mouse using Panc02 cell line.

dC
dt

¼ a1C log
Cmax

C

� �
−b1N

C

1þ 1
l1
C

1
3

−

c1TC

1þ 1
l1
C

1
3

1þ e1R

1þ d1 antiCD25ð Þ2R3

 !
1þ f 1

λ1
τ3

C

� �

−g1C−h1 log 1þ k1 sign antiCD25ð Þ
Z t

0
antiCD25 τð ÞC τð Þdτ

� �

ð13Þ

dN
dt

¼ a2−b2N þ c2HN

d2
τ1
α1

þ H
þ
e2

β1
τ2

T þ β2
τ2

N þ β3
τ2

H

� �
N

f 2 þ
β1
τ2

T þ β2
τ2

N þ β3
τ2

H
−g2N

C

1þ 1
l1
C

1
3

−h2RN

ð14Þ

dT
dt

¼ −a3T þ b3TC2

c3þC2 þ d3NC

1þ 1
l1
C

1
3

1−m3

1þ n3 M−p3ð Þ2 þm3

 !

−e3T
C

1þ 1
l1
C

1
3

þ f 3HT

g3
τ1
α1

þ H
þ

h3
β1
τ2

T þ β2
τ2

N þ β3
τ2

H

� �
T

k3 þ β1
τ2

T þ β2
τ2

N þ β3
τ2

H

� �−l3RT

ð15Þ
dM
dt

¼ a4−b4M þ c4C
d4 þ C

ð16Þ

dH
dt

¼ a5−b5H þ c5H2

d5
τ1
α1

þ H
þ
e5

β1
τ2

T þ β2
τ2

N þ β3
τ2

H

� �
H

f 5 þ
β1
τ2

T þ β2
τ2

N þ β3
τ2

H
−g5RH

ð17Þ
dR
dt

¼ a6−b6Rþ c6T þ d6H þ e6HR

f 6
τ1
α1

þ H
−g6NR−h6 antiCD25ð ÞR

ð18Þ

The goodness of fit assessment
For model fitting, we used a Genetic algorithm (GA)
method to estimate model parameters. The cost function
of GA is a normalized root-mean-square error (NRMS
E), defined as follow:
T1, T2, …, T5 were the tumor volumes measuring at

time points of t1, t2, …, t5. Also, T̂1; T̂2;…; T̂5 were the
predicted tumor volumes by the mathematical model at
the same time points. The formulation of NRMSE is de-

fined by NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5
i¼1

ðTi−T̂ iÞ2

T1
2

vuuut
. Actually our model

predicts the populaion of tumor cells that we convert it
into tumor volume by considering the volume of a single
cancerous cell is 10−6mm3 [41, 42].

Uncertainty analysis
There are two types of uncertainty in biological network
modeling including fuzzy uncertainty and random un-
certainty [43]. Due to imprecise, missing, or incomplete
experimental data, the kinetic parameters of computa-
tional models are uncertain, and assigning a fuzzy uncer-
tain number instead of crisp value to kinetic parameters
seems a better choice [36–45]. Also, the effect of ran-
dom uncertainty on dynamics of model constituents and
robustness of model against perturbations can be deter-
mined by sensitivity analysis. For this aim, we used two
different methods including partial rank correlation co-
efficient (PRCC) [46] and elementary effect (EE) test
[47]. In the results section, we assess the effect of the
fuzzy uncertainty of parameters on the dynamics of
tumor cells in the presence and absence of treatments.
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Also, the results of model robustness and the relation
between dynamics of cells/cytokines and kinetic parame-
ters are computed by sensitivity analyses that are pro-
vided in the results section.

Results
Model calibration for the prediction of the dynamics of
pancreatic tumor cells in control case, 5-FU and anti-CD25
therapies
We used GA to estimate model parameters in no treat-
ment case to predict the dynamics of tumor-immune
system constituents in the control group. We recruited
the experimental data of the control group of study [35]
(the recorded Panc02 tumor size on days 5, 10, 15, 20,
and 25 after tumor inoculation on day 0) for model fit-
ting and the resulted NRMSE was 0.1107. To estimate
model parameters (g1,b4) related to the inhibitory effect
of 5-FU therapy on pancreatic tumor cells, we used the
data of the 5-FU treatment group of study [35] (the re-
corded Panc02 tumor cell population on days 5, 10, 20,
and 25 after tumor inoculation on day 0, with regarding 5-
FU therapy is carried out on days 1, 2, 3 and 4 after tumor
inoculation). Similarly, the model was fitted to in vivo data
by NRMSE = 0.1085. Finally, we used the experimental
data of the anti-CD25 treatment group of study [23] (the
recorded Panc02 tumor cell population on days 7, 14, 21,
28, and 35 after tumor inoculation on day 0, with regard-
ing that anti-CD25 therapy is carried out on days 3, 6, 10,
13, 17 and 20 after tumor inoculation) to estimate model
parameters (d1, h1, k1, h6) related to the effect of anti-
CD25 therapy on pancreatic tumor cells. The model was
fitted to in vivo data by NRMSE of 0.0928.
The model parameters, their description, units, and

references are provided in Table 1. As shown in Fig. 2,
model fitting is carried out and predicted dynamics of
tumor population by the parameterized model is fitted
to tumor sizes measured in the control group, 5-FU
therapy group, and anti-CD25 therapy group.
We demonstrated the cytotoxic effects of anti-CD25

and 5-FU therapies in a separate or in a combinatorial
manner on the dynamics of pancreatic tumor cells. We
considered the initial population of the tumor cells to be
6 × 105, based on in vivo data of study [23], and the ini-
tial condition for NKs, CTLs, MDSCs, TCD4+ cells, and
Treg cells to be 105840, 21 × 104, 3 × 103, 564480, 42336,
respectively [34]. Also, the initial concentration of cyto-
kines IL-2, IFN-γ, and TGF-β are 2.5107 × 10−6,
3.9348 × 10−7, 5.363 × 10−7, respectively, that are com-
puted by eqs. 10–12. The dynamics of all cells/cytokines
in different strategies including control, 5-FU, anti-
CD25, and combination therapy are shown in different
panels of Fig. 3. As shown in Fig. 3, injection of 5-FU on
days 1, 2, 3, and 4 after tumor inoculation on day 0, and
applying anti-CD25 therapy on days 3, 6, 10, 13, 17, and

20, affected dynamics of tumor cells and other factors of
the model. To further investigate the effects of treat-
ments on the dynamics of tumor cells, we computed the
dynamics of inhibition percentage of instantaneous
tumor size and average tumor size. Also, analysis of
interaction among treatments was carried out to investi-
gate the synergistic, additive, or antagonistic effects of
treatments in a combinatorial manner. Finally, we opti-
mized the timings of 5-FU and anti-CD25 injections by
GA which results are provided in the next sections.

Analysis of interactions among treatments
In this section, we aim to analyze the interaction among
treatments. To determine synergistic, additive, or antag-
onistic effects of the combinatorial regimen of anti-
CD25 and 5-FU therapies, we used the Bliss combin-
ation index (CI) [37]. We considered the instantaneous
tumor size and the average tumor size as outcomes and
we computed the CI values by setting different adminis-
tration timings for anti-CD25 and 5-FU therapies. The
interpretation of this analysis was based on the curve
distance from the reference line and also the direction of
the curve based on the reference line. For example, CI <
1 represents two treatments have synergistic effect if
combined, CI = 1 indicates the additive effect of two
treatment combination, and CI > 1 infers the antagonis-
tic effect. The green dashed line indicates the threshold
below which the 5-FU treatment and anti-CD25 treat-
ment have a synergistic effect [37].
We defined the efficacy of anti-CD25 treatment (ϕa) at

time point t by E(ϕa = 1, ϕ5 = 0, t) and the efficacy of 5-
FU treatment (ϕ5) at time point t by E(ϕa = 0, ϕ5 = 1, t)
and their combination efficacy at time point t by E(ϕa =
1, ϕ5 = 1, t) that the formula of efficacy is as follows:

E ϕa ¼ i;ϕ5 ¼ j; tð Þ ¼ C ϕa ¼ 0; ϕ5 ¼ 0; tð Þ−C ϕa ¼ i; ϕ5 ¼ j; tð Þ
C ϕa ¼ 0; ϕ5 ¼ 0; tð Þ ; i; j ¼ 0; 1

where C(ϕa = i, ϕ5 = j, t) represents the tumor cell
population at day t in control case (i = 0, j = 0), in 5-FU
treatment case (i = 0, j = 1), in anti-CD25 treatment case
(i = 1, j = 0) and in combination therapy case (i = 1,
j = 1). If the tumor population at day t, C(ϕa = i, ϕ5 =
j, t), is smaller than the population in the control case,
C(ϕa = 0, ϕ5 = 0, t), then the efficacy is a positive
number and its value is between 0 and 100%.
As depicted in the first and second panels of Figs. 4

and 5. A, B, and C, we found although 5-FU therapy
could suppress the tumor progression, anti-CD25 ther-
apy has more regression impact than 5-FU therapy on
the pancreatic tumor cell dynamics. Also, in silico as-
sessments revealed the synergistic combinatorial manner
has the most killing effect on tumor cells. This finding is
consistent with in vivo data set that is used for model
calibration (Fig. 2). The third panel of Figs. 4 and 5. A,
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Table 1 Summary of parameter values

Parameter Value Definition Units References

a1 4.3992 ×
10−2

Panc02 tumor growth rate 1
day

Estimated

Cmax 1 × 1010 Maximum sustainable tumor cell population cell [19]

b1 3.23 ×
10−7

NK-mediated tumor cell kill rate 1
cell�day

[19]

c1 1.1 × 10−7 CTL-mediated tumor cell kill rate 1
cell�day

[19]

d1 2 × 10−34 Proportional parameter of anti-CD25 treatment for inhibition of anti-immune effects of
Treg on CTL-mediated tumor cell killing

1
cell3

Estimated

e1 0.345 Rate of the suppressive effect of Treg on CTL-mediated tumor cell killing 1
cell

[34]

f1 0.286 Rate of the suppressive effect of TGF-β on CTL-mediated tumor cell killing ml
ng

[34]

g1 3.5 × 10−2 The apoptosis rate of Panc02 tumor cells by low-dose 5-FU treatment 1
day

Estimated

h1 2.5 × 105 Proportional parameter of tumor inhibition rate by Treg depletion through anti-CD25
treatment

cell
day

Estimated

k1 1 × 10−15 Proportional parameter of tumor inhibition rate by Treg depletion through anti-CD25
treatment

1
cell

Estimated

l1 100 Depth of access of immune cells to the tumor mass cell
1
3 [19]

a2 1.4 × 104 Constant generation source of NK cells cell
day

[19]

b2 4.12 ×
10−2

The exponential death rate of NK cells 1
day

[19]

c2 0.125 Maximum of IL-2-mediated NK cell growth 1
day

[34]

d2 0.3 Steepness coefficient of the IL-2-mediated NK cell growth rate ng
ml

[34]

e2 0.125 Maximum of IFN-γ mediated NK cell growth rate 1
day

[34]

f2 0.3 The steepness coefficient of the IFN-γ-mediated NK cell growth rate ng
ml

[34]

g2 1 × 10−9 Inactivation rate of NK cells by tumor cells 1
day

Estimated close to the
value reported in [19]

h2 1 × 10−10 Suppression rate of NK cells by Tregs. 1
cell�day

[34]

a3 2 × 10−2 The exponential death rate of CTLs 1
day

[19]

b3 8 × 10−2 Maximum tumor-mediated CTL recruitment rate 1
day

Estimated close to the
value reported in [19]

c3 2.02 ×
1014

Steepness coefficient of the tumor-mediated CTL recruitment curve cell2 Estimated with regarding
the value reported in [19]

d3 1.1 × 10−7 CTL stimulation rate by tumor-NK cells interactions 1
cell�day

[19]

e3 1.5 ×
10−10

Inactivation rate of CTLs by tumor cells 1
cell�day

Estimated close to the
value reported in [19]

f3 125 ×
10−5

Maximum of IL-2-mediated CTL growth rate 1
day

Estimated with regarding
the value reported in [34]

g3 0.3 The steepness coefficient of the IL-2-mediated CTL growth rate ng
ml

[34]

h3 12.5 ×
10−2

Maximum of IFN-γ-mediated CTL growth rate 1
day

[34]

k3 0.3 The steepness coefficient of the IFN-γ-mediated CTL growth rate ng
ml [34]

l3 1 × 10−10 Suppression rate of CTLs by Tregs 1
cell�day

[34]

p3 2.5 × 106 The normal number of splenic MDSCs in C57/BL6 mice cell [19]

m3 18 × 10−2 Minimal CTL proliferation factor induced by inhibition of MDSCs --- [19]

n3 6 × 10−3 Parameter for MDSC-induced inhibition of CTL proliferation 1
cell2

[19]

a4 1.25 × 106 Normal MDSC production rate cell
day

[19]

b4 3.25 × MDSCs normal death rate 1
day

Estimated with regarding
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shows a strong synergistic effect of the combination of
5-FU and anti-CD25 (in specified efficient design), while
as depicted in the third panel of Figs. 5. B, C, and D, the
ineffective administration of treatments (time settings)
resulted in a poor synergy among treatments and conse-
quently low efficacy in tumor degradation. Therefore, as
shown in the third panel of Figs. 4 and 5. A, an appro-
priate schedule of 5-FU and anti-CD25 caused a strong
synergistic effect of combined therapy on pancreatic
tumor size and as time goes by, this effect becomes
stronger (more distance from 1), while as shown in Figs.
5. B, C, and D, the specified timings of combination
therapy led to an additive, an antagonistic, or poor syn-
ergy of treatments (lead to 1 or become > 1). Moreover,

we realized that the combined therapy has a more syner-
gistic effect on the instantaneous tumor size rather than
averaged tumor size.

Optimization of therapy
In this section, we aim to answer this question that what
is the optimal combination and frequency of drug ad-
ministration to present clinically significant conclusions?
Dosing and timing of drug exposure determine the tox-
icity sustained in the tumor. Since the present mathem-
atical model is configurable for 5-FU and anti-CD25
injection timing, we can optimize the timing of drug ad-
ministration with GA to minimize the tumor burden.
Since it has been shown that accumulation of pro-tumor

Table 1 Summary of parameter values (Continued)

Parameter Value Definition Units References

10−2 the value reported in [19]

b4 8 × 10−2 MDSCs death rate during 5-FU treatment 1
day

Estimated with regarding
the value reported in [19]

c4 0.7 × 107 MDSC expansion coefficient in Panc02 tumor-bearing mice cell
day

[19]

d4 1 × 1010 Steepness coefficient of the tumor-mediated MDSC production curve cell [19]

a5 3.6 × 105 The production rate of T helper cells in the thymus cell
day

[34]

b5 1.2 × 10−3 The exponential death rate of T helper cells based on the half-life 1
day

[34]

c5 0.125 Maximum IL-2-mediated T helper cell proliferation rate 1
day

[34]

d5 0.3 Steepness coefficient of the IL-2-mediated T helper cell proliferation curve ng
ml [34]

e5 0.125 Maximum IFN-γ-mediated T helper cell proliferation rate 1
day

[34]

f5 0.3 Steepness coefficient of the IFN-γ-mediated T helper cell proliferation curve ng
ml

[34]

g5 1 × 10−10 Suppression rate of T helper cells by Tregs 1
cell�day

[34]

a6 5.6 × 105 The constant production rate of Tregs cell
day

[34]

b6 2.3 × 10−2 The exponential death rate of Tregs based on the half-life 1
day

[34]

c6 2 × 10−4 Treg origination rate from CTLs 1
day

[34]

d6 4 × 10−4 Treg origination rate from T helper cells 1
day

[34]

e6 0.125 Maximum IL-2-mediated growth rate of Tregs 1
day

[34]

f6 0.3 Steepness coefficient of the IL-2-mediated Treg growth curve ng
ml [34]

g6 1 × 10−11 NK-mediated Treg degradation constant rate 1
cell�day

[34]

h6 1.5 ×
10−11

Constant inhibition rate of Tregs by anti-CD25 treatment 1
day

[34]

τ1
α1

2.2483 ×
1011

The natural death rate of IL-2 based on its half-life/ constant production rate of IL-2 by T
helper cells

cell�ml
ng

[34]

β1
τ2

4.4691 ×
10−13

constant production rate of IFN-γ by CTLs/ Natural death rate of IFN-γ based on its half-
life

ng
ml�cell

[34]

β2
τ2

4.4691 ×
10−13

The secretion rate of IFN-γ by NK cells/degradation rate of IFN-γ based on its half-life ng
ml�cell [34]

β3
τ2

4.4691 ×
10−13

The secretion rate of IFN-γ by T helper cells/degradation rate of IFN-γ based on its half-
life

ng
ml�cell

[34]

λ1
τ3

8.9382 ×
10−13

The constant production rate of TGF-β by tumor cells/death rate of TGF-β based on its
half-life

ng
ml�cell

[34]
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immune cells such as Tregs and MDSCs mediate tumor
cell regrowth, 18 to 20 days after tumor injection [48],
we apply 5-FU and anti-CD25 therapies before day 20 to
suppress the MDSCs and Tregs, respectively. To prevent
toxic side effects of drugs, we assume that a maximum
of two doses of each drug is allowed in each injection.
The infusion times of 5-FU and anti-CD25 are denoted
by t5F and tCD, respectively, that t5F¼½t5F1 ; t5F2 ;…; t5FN1

�, tCD¼½tCD1 ; tCD2 ;…; tCDN2 � and N1 (in the present study
we assume 4), N2 (we assume 6) represent the preas-
signed number of times that 5-FU and anti-CD25 will be
injected, respectively. GA estimate the optimal timings
of 5-FU (t5F

∗) and anti-CD25 (tCD
∗) by minimizing the

following cost function to minimize the population of
cancer cells in treatment groups:

cost ¼ 1
3N

XN
i¼1

C5F tið Þ
Cctrl tið Þ
� �2

þ CCD tið Þ
Cctrl tið Þ
� �2

þ Ccomb tið Þ
Cctrl tið Þ

� �2

C5F
� t5F

�ð Þ;CCD
� tCD

�ð Þ;Ccomb
� t5F

�; tCD�ð Þ½ �
¼ min

t5 F �;tCD� costð Þ

which Cctrl(ti), C5F(ti), CCD(ti), and Ccomb(ti) represent
the population of cancer cells at time point ti, i = 1, 2, …,
N in control group, 5-FU group, anti-CD25 group, and
combination therapy group, respectively. Also, tN is the
end time of simulation which is day 100. The quantities
C5F

∗(t5F
∗), CCD

∗(tCD
∗), Ccomb

∗(t5F
∗, tCD

∗) represent the
minimized tumor population by applying 5-FU, anti-
CD25, and combination therapy in optimal times,
respectively.
As shown in first and second panels of Figs. 6. A, 6.C

and 6.E, optimization of 5-FU anti-CD25 therapies
caused the tumor inhibition percentage in combination
therapy regimen to reach its maximum value (100%). As
shown in third panel of Figs. 6. A, B and C, optimization
of timing of 5-FU and anti-CD25 treatments caused
these treatments to have a strong synergistic effect.

Fig. 2 Data fitting. The blue line shows predicted Panc02 tumor volume dynamics in no treatment case and blue stars are records of Panc02
tumor volume on days 5, 10, 15, 20, and 25 in the control group (Panc02 tumor inoculation is carried out on day 0 and normalized root mean
square error (NRMSE = 0.1107) is used as a measure of goodness of fit). The purple dashed line shows predicted dynamics of Panc02 tumor
volume and purple ‘>‘are data points gathered from experimental data in the 5-FU treatment group (5-FU therapy is carried out on days 1, 2, 3,
and 4 after Panc02 tumor injection on day 0, and data record is carried out on days 5, 10, 15, 20 and 25, and NRMSE of 0.1085 is computed to
assess model fitting). The black dotted line shows predicted dynamics of Panc02 tumor cells and black ‘circles’ are data points gathered from
in vivo experiments in the anti-CD25 treatment group (anti-CD25 therapy is carried out on days 3, 6, 10, 13, 17, and 20 after tumor inoculation on
day 0 and data record is carried out on days 7, 14, 21, 28 and 35, and NRMSE of 0.0928 is computed to assess model fitting)
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Results of fuzzy analysis
Due to the parametric uncertainty in the model, it seems
that the evaluation of treatments in the fuzzy setting is
more appropriate than the crisp setting. In this section,
we aim to predict uncertain dynamics of cells/cytokines
of the TIS model affected by the uncertainty of parame-
ters. We assign a triangular membership function to
some kinetic parameters and investigate the effect of
that parametric uncertainty on the dynamics of model
constituents. The simulation of parametric uncertainty
with a fuzzy theorem in an ODE model of this study is
similar to that used in other models including stochastic
Petri net and continuous Petri net [43, 45]. We simu-
lated the ODE model with fuzzy parameters and in the
presence and absence of 5-FU and anti-CD25 therapies.

In silico assessment of model in fuzzy setting revealed
that 5-FU therapy on days 1, 2, 3, and 4 and anti-CD25
therapy on days 3, 6, 10, 13, 17, and 20 and combinator-
ial manner caused the uncertainty band of cancer cells
(panel A of Fig. 7. A), MDSCs (panel D of Fig. 7. A), and
Tregs (panel F of Fig. 7. A), shift left, toward lower
population (volume) of these cells and the uncertainty
band of NK cells (panel B of Fig. 7. A), and T helper
cells (panel E of Fig. 7. A), shift right, toward an upper
population of these cells.
The results of increasing the frequency of 5-FU injec-

tions are depicted in Fig. 7. B. By increasing the fre-
quency of 5-FU injections, the uncertainty band of
cancer cells (panel A of Fig. 7. B), MDSCs (panel D of
Fig. 7. B), and Tregs (panel F of Fig. 7. B) shift left

Fig. 3 Dynamics of all species in strategies: control, 5-FU, Anti-CD25, and combination therapy. The blue dashed lines show predicted dynamics
of cells/cytokines in the control group, and the red lines show with 5-FU treatment (on days 1, 2, 3, and 4 after tumor inoculation), the yellow
lines show with anti-CD25 therapy (on days 3, 6, 10, 13, 17 and 20 after tumor inoculation) and purple lines depict the dynamics of cells/
cytokines under combination therapy. In each subplot (except for the second and third figures in the last panel), the y-axis represents the
number/concentration of cell population/cytokine, and the x-axis represents the time in days after tumor inoculation. The initial population/
concentration of tumor cells, NKs, CTLs, MDSCs, TCD4+, Treg, IL-2, IFN-γ, and TGF-β have all been set to 6 × 105, 105840, 21 × 104, 3 × 103, 564480,
42336, 2.5107 × 10−6, 3.9348 × 10−7, 5.363 × 10−7, respectively. The second and third figures in the fourth panel are parameters and terms related
to 5-FU and anti-CD25 therapies, respectively
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toward the lower population of these cells, respectively
while the uncertainty band of NK cells (panel B of Fig. 7.
B) and T helper cells (panel E of Fig. 7. B) shift right to-
ward the upper population of these cells. As shown in
Fig. 7. C, the anti-CD25 treatment caused the uncer-
tainty band of cancer cells (panel A of Fig. 7. C), the
MDSCs (panel D of Fig. 7. C), and Tregs (panel F of Fig.
7. C) for no treatment case to be shifted left toward the
lower population of these cells and the uncertainty band
of NK cells to be shifted right toward the upper popula-
tion of NK cells, but by increasing frequency of anti-
CD25 treatment, the uncertainty band of cancer cells,
NK cells, and MDSCs cells does not move effectively.
On the other hand, by increasing the frequency of anti-
CD25 treatments, the uncertainty band of T helper
(panel F of Fig. 7. C) and Tregs (panel E of Fig. 7. C)
shift right and left, respectively. Finally, as depicted in
Fig. 7. D, increasing the regimens of both 5-FU and anti-
CD25 in a combinatorial manner caused the uncertainty
band of cancer cells (panel A of Fig. 7. D), MDSCs
(panel D of Fig. 7. D), and Tregs (panel F of Fig. 7. D) to
be shifted left toward the lower population of these cells

while caused the uncertainty band of NK cells (panel B
of Fig. 7. D) and T helper cells (panel E of Fig. 7. D) to
be shifted right toward the higher population of these
cells.

Results of global sensitivity analysis
We carried out global sensitivity analysis (GSA) regard-
ing the population/concentration of cells/cytokines at
days 20, 50, and 100 in the no treatment case as well as
all kinetic parameters of the system described in Table 1.
By using the GSA method in study [46], we carried out
Latin hypercube sampling (LHS) and produced 10,000
samples to compute the partial rank correlation coeffi-
cient (PRCC) and the p-values regarding the population/
concentration of cells/cytokines at days 20, 50 and 100
after tumor inoculation. In LHS, we took the range of
parameters ½ to twice their values in Table 1. We per-
formed the PRCC analysis five times and calculated the
mean (Fig. 8a) and standard deviation (Fig. 8b) of the
statistically significant correlation values (p-value< 0.05).
The computed p-values (Fig. 8c) are the maximum
values between five times replications. In Fig. 8a, b and

Fig. 4 Comparison treatment efficacies and Analysis of interactions among treatments. The overall efficacy of 5-FU treatment, anti-CD25
treatment, and combination therapy was plotted as the percentage of tumor growth inhibition using instantaneous tumor size (first panel) and
average tumor size (second panel) as outcomes. The blue line represents the inhibition percentage of tumor growth under 5-FU treatment on
days 1, 2, 3, and 4 after tumor injection calculated based on the instantaneous tumor size during time and the red line under anti-CD25
treatment on days 3, 6, 10, 13, 17 and 20 after tumor inoculation and yellow line under combination therapy. (Third panel) The Bliss combination
index (CI) for 5-FU and Anti-CD25treatments combination using instantaneous tumor size (CI inst) and average tumor size (CI ave) as an outcome.
CI < 1 represents the synergistic effect of two treatments, CI = 1 additive, and CI > 1 antagonistic effect. The green dash-line indicates the
threshold below which the 5-FU treatment and anti-CD25 treatment have a synergistic effect
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c, only the significant correlation values (p-value< 0.05)
are reported. As shown in panel A of Fig. 8. A, we see
that the population of tumor cells at day 20 after tumor
injection is positively correlated to the pro-tumor pa-
rameters a1 (tumor growth rate), Cmax (maximum tumor
size), and anti-immune parameter b2 (death rate of NK
cells) while it is negatively correlated to the anti-tumor
parameters b1 (NK-mediated killing rate of tumor cells),
l1 (depth of access of immune cell to tumor cells) and a2
(the constant source of NK cells). In this instance, the
negative correlation between tumor population at day 20
and parameter l1 represents that if parameter l1 is in-
creased, the depth of immune cells access to tumor cells

will increase, resulting in the killing of more tumor cells
and consequently a decrease in the tumor cell popula-
tion. Also, we see that the pro-tumor parameters,
namely, a1, Cmax, and b2 are negatively correlated to the
NK cell population at day 20 while anti-tumor parame-
ters such as b1 and a2 are positively correlated to the
NK cell population at day 20. The NK cell population at
day 20 is negatively correlated to the l1 (depth of access
of immune cells to the tumor) and g2 (inactivation rate
of NKs by tumor cells). Since there is a strong correl-
ation between parameter b3 (Maximum tumor-mediated
CTL recruitment rate) and the CTL population at day
20, and according to the second term of eq. (15) that

Fig. 5 Comparison treatment efficacies and Analysis of interactions among treatments. The overall efficacy of 5-FU treatment, anti-CD25
treatment, and combination therapy was plotted as the percentage of tumor growth inhibition using instantaneous tumor size (first panel of Fig.
5. A, B, C, and D) and average tumor size (second panel of Figs. 5. A, B, C, and D) as outcomes. The blue lines represent the inhibition
percentage of tumor growth under 5-FU treatment on a specified time setting in each subplot that is calculated based on the instantaneous
tumor size during time and the red lines under anti-CD25 treatment and yellow lines under combination therapy. (Third panel of Fig. 5. A, B, C,
and D) The Bliss combination index (CI) for 5-FU and Anti-CD25 treatments combination using instantaneous tumor size (CI inst) and average
tumor size (CI ave) as outcome shows the synergistic interaction of treatments
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Fig. 6 (See legend on next page.)
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describe CTL recruitment, the CTL population is
strongly affected by the tumor cell population (as the
tumor cell population increases/decreases, the immune
cell population increases/decreases). Since both tumor
cells and CTLs have similar dynamics, their populations
at day 20 are positively correlated with parameters a1
and Cmax. According to panel A of Fig. 8. A, there exist
a negative correlation between b1 (maximum killing rate
of tumor cells by NKs), b2 (death rate of NKs), g2 (max-
imum inactivation rate of NKs by NK-tumor interac-
tions), and CTL population at day 20. The other
correlation values are depicted in panels A, B, and C of
Fig. 8. A, are similarly interpretable.
Morris GSA was used to identify which of 52 kinetic

parameters of the model have a significant effect on cell
dynamics. For 52 kinetic parameters (with 10% perturba-
tions), EE test using Morris sampling strategy were taken
into account by setting 10 levels in the sampling grid
and 1000 trajectories to compute the mean μ∗ and stand-
ard deviation σ. The identified most influential kinetic
parameters with respect to the mean μ∗ and interaction
effect σ are depicted in Fig. 8d. The parameters with
large μ∗ values indicate the linear or additive effects
while the parameters with large σ values indicate inter-
action effects. The dashed line μ� ¼ 2σ

sqrtðrÞ (r is the num-

ber of trajectories) which all parameters are below that,
translates into 95% confidence interval. Morris analysis
was performed by considering the population of tumor
cells, NK cells, CTLs, MDSCs, T helper, Tregs, and cyto-
kines IL-2, IFN-γ, and TGF-β (in no treatment case) at
day 100 of simulation as a read-out.
Our data revealed that the parameters a1, Cmax,

reflecting the tumor growth rate and carrying capacity of
tumor cells, respectively, are the most influential param-
eters for the tumor cell output (panel A of Fig. 8. D).
The parameter a1 has the most linear effect while the
parameter Cmax has the most interaction effect on the
dynamics of tumor cells. As depicted in panel B of Fig.
8. D, the parameters a1, Cmax, b1 (NK-mediated tumor

cell killing rate), c1 (CTL-mediated tumor cell killing
rate), e1 (Rate of the suppressive effect of Treg on CTL-
mediated tumor cell killing) were predicted to play an
important role in NK cells dynamics. The parameters a1,
Cmax, b1 have both linear and interaction effects while
the parameters c1, e1 have interaction effects on the dy-
namics of NK cells. Also parameter a1 has strong inter-
action and liner effects on CTL’s dynamics (panel C of
Fig. 8. D). the results of the EE test show that parameters
a1, Cmax have linear effects while parameter b1 has an
interaction effect on the dynamics of MDSCs (panel D
of Fig. 8. D). Also, parameters Cmax, b1 have an inter-
action effect, and parameter a1 has both linear and inter-
action effects on the dynamics of T helper cells (panel E
of Fig. 8. D). As depicted in panel F of Fig. 8. D, the pa-
rameters Cmax and a1 have interaction and both linear
and interaction effects, respectively. As shown in panels
F, G, and H of Fig. 8. D, the parameter a1 has most both
linear and interaction effects on dynamics of Tregs, IL-2,
and IFN-γ while the parameter Cmax has both inter-
action and linear effects on dynamics of Tregs and IL-2,
respectively. As shown in panel K of Fig. 8. D, the pa-
rameters a1, Cmax have linear effects and parameter b1
has an interaction effect on the dynamics of TGF-β.

Discussion
Mathematical modeling of complex networks of tumor-
immune system (TIS) interactions is constantly advan-
cing. Mathematical oncology helps us to better under-
stand cancer biology, to assess the efficacy and toxicity
of different treatment planning, and to predict dynamics
of cancer and immune system behaviors during treat-
ment. Systematic analysis of TIS by sophisticated model-
ing approaches can be used to refine and optimize drug
dosing and scheduling. Dedicated modeling of chemo-
therapy/immunotherapy drug regimens by pharmacoki-
netic/pharmacodynamics models in oncology should
result in the improved clinical efficacy of therapy and
decreased toxicity. Mathematical modeling provides a

(See figure on previous page.)
Fig. 6 Dynamics of all cells/cytokines in strategies: control, 5-FU, Anti-CD25, and combination therapy with an optimized treatment schedule and
comparison treatment efficacies and analysis of interactions among treatments. The blue lines in Fig. 6. B, D, and F show predicted dynamics of
cells/cytokines in the control group, and the red lines show with 5-FU treatment (on specified time points), the yellow lines show with anti-CD25
therapy (on specified time points) and purple lines depict the dynamics under combinatorial manner. In each subplot in Fig. 6. B, D, and F
(except for the second and third figures in the last panel), the y-axis represents the number/concentration of cell population/cytokine, and the x-
axis represents the time in days after tumor inoculation. The initial condition is the same as those given in Fig. 3. The second and third figures in
the fourth panels of fig. 6. B, D, and F show the terms related to 5-FU and anti-CD25 therapies, respectively. The overall efficacy of 5-FU
treatment, anti-CD25 treatment, and combination therapy was plotted as the percentage of tumor growth inhibition using instantaneous tumor
size (first panel of figs. 6. A, C, and E) and average tumor size (second panel of figs. 6. A, C and E) as outcomes. The blue line represents the
inhibition percentage of tumor growth under 5-FU treatment on specified time points after tumor injection calculated based on the
instantaneous tumor size during time and the red line under anti-CD25 treatment on specified time points after tumor inoculation and the
yellow line under combination therapy. (Third panel of fig. 6. A, C and E) The Bliss combination index (CI) for 5-FU and Anti- treatments
combination using instantaneous tumor size (CI inst) and average tumor size (CI ave) as an outcome

Shafiekhani et al. BMC Cancer         (2021) 21:1226 Page 15 of 21



personalized medicine approach to design a better effi-
cacy–toxicity balance of therapy.
PDAC creates a tumor microenvironment that en-

hances tumor progression and metastasis. Tumor-
induced dysfunction of immune cells is a critical issue in
this microenvironment. Tumor cells induce immune
suppression by many different mechanisms, including
accumulation of regulatory T cells (Treg) and myeloid-

derived suppressor cells (MDSCs). Interactions of im-
mune system constituents including pro/anti-tumor cells
and cytokines with tumor cells create a complex net-
work with unknown behaviors that can be predicted by
mathematical modeling. Mathematical modeling of the
mutual interactions of tumor cells with the immune sys-
tem in the tumor microenvironment helps us to under-
stand the various processes involved in tumor growth

Fig. 7 In silico assessment of treatments in the fuzzy setting. The membership function of the average of dynamics of cancer cells (panel A of
figs. 7. A, B, C, and D), NK cells (panel B of figs. 7. A, B, C, and D), CTLs (panel C of figs. 7. A, B, C, and D), MDSCs (panel D of figs. 7. A, B, C, and D),
T helper (panel E of figs. 7. A, B, C, and D), Treg (panel F of figs. 7. A, B, C, and D), cytokine IL-2 (panel G of figs. 7. A, B, C, and D), IFN-γ (panel H
of figs. 7. A, B, C, and D), and TGF-β (panel K of figs. 7. A, B, C, and D) in the time interval from the start of therapies to day 150 for injection of 5-
FU (on days 1, 2, 3, and 4) and anti-CD25 (on days 3, 6, 10, 13, 17 and 20) in fig. 7A, the different timing of 5-FU injection (fig. 7B), and for
different timing of anti-CD25 injection (fig. 7C), and different timings of the combination of 5-FU and anti-CD25 (fig. 7D), in the fuzzy setting of
kinetic parameter a1 = (0.9, 1, 1.1) × 4.3992 × 10−2
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and metastasis. The advent of mathematical modeling
can help us to address treatment scheduling while simul-
taneously helping to unravel the processes driving thera-
peutic responses. The understanding complex
interactions of tumor-immune system agents will

elucidate the mechanisms of action of chemotherapy
and immunotherapy drugs and lead to modify treatment
schedules. Theoretically, a combined anti-CD25 im-
munotherapy and 5-FU chemotherapy would elicit a
greater immune response. However, regimen scheduling

Fig. 8 GSA analysis. Statistically significant PRCC values (p-value< 0.05) for tumor cells, NK cells, CTLs, MDSCs, T helper cells, Tregs, IL-2, IFN-γ, and
TGF-β at days 20 (A. A), 50 (A. B) and 100 (A. C) after tumor injection. The mean of PRCC values for five replications of PRCC analysis was depicted
in each pixel. Black pixels (‘NaN’) show ‘not a number’ and represent no significant correlation between outcome measures (population/
concentration of cells/cytokines, elements in the vertical axis) and kinetic parameters of the model (elements in the horizontal axis). The standard
deviation of significant PRCC values (p-value< 0.05) for five replications of PRCC analysis for tumor cells, NK cells, CTLs, MDSCs, T helper cells,
Tregs, IL-2, IFN-γ and TGF-β at days 20 (B. A), 50 (B. B) and 100 (B. C) after tumor injection. The standard deviation of significant PRCC values for
five replications of PRCC analysis was depicted in each pixel. P-values of PRCC analysis for tumor cells, NK cells, CTLs, MDSCs, T helper cells, Tregs,
IL-2, IFN-γ, and TGF-β at days 20 (C. A), 50 (C. B), and 100 (C. C) after tumor injection. The maximum of p-values for five replications of PRCC
analysis was depicted in each pixel. (D) The absolute mean value and standard deviation of the elementary effects test. Figures 8. D presents the
relative importance of kinetic parameters of the TIS model, considering the population/concentration of cells/ cytokines at day 100 as the read-
out, including the population of tumor cells (D. A), NK cells (D. B), CTLs (D. C), MDSCs (D. D), T helper cells (D. E), Tregs (D. F), IL-2 (D. G), IFN-γ (D.
H) and TGF-β (D. K). Each kinetic parameter is specified by two Morris indices, μ *(horizontal axis) and σ (vertical axis), which describe the
significance of the effects and the interaction effects, respectively
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of combination 5-FU and anti-CD25 therapies has yet to
be established. Here, we calibrate a mathematical model
of the tumor-immune system (TIS) to in vivo data from
5-FU and anti-CD25 therapies to simulate the complex
interplay between the invading tumor cells and innate
and adaptive immune system constituents. The model
helps us to implement an in silico clinical trial to test
combination 5-FU and anti-CD25 therapies and
optimize combination regimens to improve treatment ef-
ficacy. For this aim, we designed a user-friendly graph-
ical user interface (GUI) unit (Fig. 9) that is configurable
for 5-FU and anti-CD25 treatment timing in both crisp/
fuzzy settings. The present GUI, as a rigorous simulation
framework, help us to predict dynamics of TIS constitu-
ents (cell/ cytokine) in different schedules of 5-FU and
anti-CD25 therapies or absence of treatment with (fuzzy
setting) and without (crisp setting) regarding parametric
uncertainty (MATLAB codes of GUI and the additional
file are in supplementary file).
In a study, Peng et al. designed a mathematical model

to evaluate the efficacy of different treatments for

prostate cancer and measured the interactions between
different treatments based on tumor size at a given time
point [37]. In the present study, we evaluated the effect
of 5–FU and anti-CD25 treatments for pancreatic cancer
by an in-vivo parameterized mathematical model and
calculated the dynamics of interactions between these
treatments based on instantaneous and average tumor
size over time. Using the present model, we can capture
the dynamics of TIS constituents and investigate the ef-
fect of different treatment schedules on the dynamics of
TIS agents. Also, Peng et al analyzed the effect of param-
eter perturbations on cell dynamics by local sensitivity
analysis methods while in the present study, we per-
formed PRCC and EE tests which are global sensitivity
analysis methods. Also, in the present study, we used
fuzzy theorem to assess the effect of fuzzy uncertainty of
kinetic parameters on dynamics of cells/ cytokines in the
presence and absence of treatment modalities. The
present model can be used as a rigorous simulation
framework to predict the dynamics of TIS interactions
and identify different behaviors of TIS in response to

Fig. 9 The Graphical user interface (GUI) of the model. The user-friendly GUI of TIS with regarding fuzzy/crisp kinetic parameters for in silico
assessment of 5-FU and anti-CD25 therapies
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treatments. The kinetic parameters of the present model
are estimated by GA and based on published data from
5-FU and anti-CD25 pancreatic cancer treatments. The
model of the present study is formulated by ordinary dif-
ferential equations that by deterministic rules simulate
the complex behaviors and interactions of TIS agents.
Although deterministic models cannot capture uncertain
cell-to-cell interactions and stochastic behaviors of TIS
agents and also intrinsic noise in signaling pathways that
control different behaviors of TIS agents, they have been
widely used to simulate complex interplay between the
invading tumor cells, innate and adaptive immune sys-
tem constituents to predict dynamics of TIS agents with
or without different treatment modalities. In the present
study, we simulated the effect of uncertainty of model
kinetic parameters through fuzzy theorem and we
assessed the effect of different 5-FU and anti-CD25
treatment schedules in both crisp and fuzzy settings of
kinetic parameters. Fuzzification of model parameters
can help us to capture fuzzy uncertainty of model pa-
rameters which is due to imprecise, missing, or incom-
plete data.
Although no experimental or clinical study was con-

ducted on the combination therapy of 5-FU and anti-
CD25 so far, we evaluate the crosstalk between the im-
mune system components on which these therapies medi-
ated their consequences in the tumor microenvironment.
Recently, Siret C et al. unraveled the underlying inter-
action between immune system cells within the PDAC
microenvironment with a focus on Treg cells and MDSCs.
They demonstrated that in the PDAC microenvironment,
MDSCs suppress CTL proliferation, induce CTL death
and produce arginase 1 and reactive oxygen species (ROS)
and simultaneously Treg cells inhibit the proliferation of
T helper cells that all these consequences provided strong
immunosuppression in the PDAC microenvironment.
Also, they showed in-vivo depletion of MDSCs inhibits in-
duction and recruitment of Treg cells in PDAC micro-
environment and also ex-vivo co-culture assays of Treg
cells and MDSCs revealed tumoral MDSCs induce the de-
velopment and proliferation of Treg cells mediated by
cell-to-cell crosstalk and conversely the presence of Treg
cells leads to survival and increase of tumoral MDSCs
[48]. Moreover, the positive direct interactions between
MDSCs and Treg cells in the tumor microenvironment
were shown in other cancers [49–53]. In melanoma, Treg
cells induce tumoral MDSCs differentiation through the
expression of B7H1 and also the expression of Indolea-
mine 2,3-dioxygenase (IDO) by tumor cells in a Treg cells
dependent manner recruits and activate MDSCs in the
tumor microenvironment [50–54]. Moreover, Re GL et al.
surveyed the combination therapy of Cyclophosphamide,
5-FU, and IL-2 for solid tumors, and as we know IL-2
against anti-CD-25 therapy induces Treg cell proliferation.

They reported the response duration of this combination
therapy for pancreatic cancer was over 18months and
during this period, intravenous IL-2 in compared to sub-
cutaneous administration leads to more platelet decrease,
less platelet/lymphocyte decrease, and less Treg cells in-
crease. However, the total number of lymphocytes and
Treg cells increased after therapy [55].

Conclusion
We integrate a mathematical model of 5-FU and anti-
CD25 into a simulation framework to optimize their ad-
ministration in combination therapy. Using this frame-
work, we inferred a combination schedule for the
treatment of PDAC that significantly improved treat-
ment outcomes when compared to 5-FU and anti-CD25
separately and provided a standard combination regi-
men. Our findings outline a rational approach to therapy
optimization with meaningful consequences for how we
effectively design treatment schedules to maximize their
success, and how we treat PDAC with combined 5-FU
and anti-CD25 therapy. In silico assessment of the model
reveals that the combination of 5-FU and anti-CD25 treat-
ments has potentially improved therapeutic effects
through preventing tumor-induced immune suppressive
mechanisms within the PDAC microenvironment.
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