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A cytokine/PTX3 prognostic
index as a predictor of mortality
in sepsis
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Milan, Italy, 2Department of Biomedical Science, Humanitas University, Milan, Italy, 3Department of
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Background: Early prognostic stratification of patients with sepsis is a difficult

clinical challenge. Aim of this study was to evaluate novel molecules in

association with clinical parameters as predictors of 90-days mortality in

patients admitted with sepsis at Humanitas Research Hospital.

Methods: Plasma samples were collected from 178 patients, diagnosed based

on Sepsis-3 criteria, at admission to the Emergency Department and after 5

days of hospitalization. Levels of pentraxin 3 (PTX3), soluble IL-1 type 2 receptor

(sIL-1R2), and of a panel of pro- and anti-inflammatory cytokines were

measured by ELISA. Cox proportional-hazard models were used to evaluate

predictors of 90-days mortality.

Results: Circulating levels of PTX3, sIL-1R2, IL-1b, IL-6, IL-8, IL-10, IL-18, IL-1ra,
TNF-a increased significantly in sepsis patients on admission, with the highest

levels measured in shock patients, and correlated with SOFA score (PTX3:

r=0.44, p<0.0001; sIL-1R2: r=0.35, p<0.0001), as well as with 90-days

mortality. After 5 days of hospitalization, PTX3 and cytokines, but not sIL-1R2

levels, decreased significantly, in parallel with a general improvement of clinical

parameters. The combination of age, blood urea nitrogen, PTX3, IL-6 and IL-18,

defined a prognostic index predicting 90-days mortality in Sepsis-3 patients

and showing better apparent discrimination capacity than the SOFA score

(AUC=0.863, 95% CI: 0.780−0.945 vs. AUC=0.727, 95% CI: 0.613-0.840;

p=0.021 respectively).

Conclusion: These data suggest that a prognostic index based on selected

cytokines, PTX3 and clinical parameters, and hence easily adoptable in clinical
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practice, performs in predicting 90-days mortality better than SOFA. An

independent validation is required.
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Introduction

Sepsis is a life-threatening condition due to a dysregulated

response to infection which can lead to shock, multiple organ

failure, and death. The estimated number of incident cases of

sepsis increased to almost 50 million worldwide (1–4) and,

despite massive efforts, the mortality rate has not improved

over time. Early diagnosis of sepsis and prognostic assessment

are crucial to prevent progression to severe disease and to make

use of timely and appropriate treatments to reduce mortality

(1–4).

Despite the recent revision of the definition of sepsis,

diagnosis is still challenging for clinicians, in particular in the

identification of patients at early stages (5). Alongside the

diagnostic question, also important is the need to have early

prognostic indications allowing clinicians to activate the most

appropriate therapies based on the mortality risk of each

individual patient (2, 6–10). A recent review collected 5367

studies identifying 258 different biomarkers of sepsis with

potential diagnostic and/or prognostic functions (11). Among

the different molecules, procalcitonin (PCT) and C-reactive

protein (CRP) resulted as the most studied candidate

biomarkers. However, the clinical implication and molecular

involvement of these proteins still needs to be clarified and

currently there is not a single molecule validated as the “gold

standard” biomarker for sepsis (11). In particular the

comprehensive analysis of the literature reported by Pierrakos

et al. underlined the limited value of studies evaluating a single

biomarker as a prognostic factor, given that mortality in septic

patients is related to multiple pathophysiological processes.

Therefore, investigation on multiple sepsis-related molecules is

strongly suggested as a strategy to develop a validated prognostic

model (12–18).

Here we focused on two proteins of the innate immune

system, the long pentraxin 3 (PTX3) and the soluble form of the

Interleukin-1 type 2 receptor (sIL-1R2). PTX3 is a distant

relative of CRP (19, 20) and a key component of the innate

immunity. The molecule is expressed by different cell types, at

highest levels by phagocytes (monocytes/macrophages and

myeloid dendritic cells), in response to primary pro-

inflammatory signals, TLR engagement, microbial recognition

and tissue damage (21–23). sIL-1R2 is generated by enzymatic
02
cleavage of membrane-bound IL-1R2 and is released from

neutrophils and macrophages in response to both pro- and

anti-inflammatory signals, acting as a “decoy receptor” which

negatively regulates the IL-1 signaling pathway (24–28).

Increased levels of PTX3 have been associated with

infectious disorders, including sepsis and septic shock,

tuberculosis, dengue and meningitis (29–33). In all these

conditions, PTX3 plasma levels correlated with severity and

had prognostic value. In sepsis, available data were mainly

obtained in ICU patients and indicated that PTX3 is

associated with disease severity, organ dysfunction and 28-

days or 90-days mortality (29, 31, 34–39). Only few reports

were obtained in patients enrolled in emergency rooms, such as

the work by Uusitalo-Seppälä et al., underlining the role of PTX3

as a prognostic biomarker of 28-days mortality (40) in

that setting.

Similarly, circulating levels of sIL-1R2 are documented to

increase in many inflammatory disorders, correlating with

disease severity (41–45). Early studies also reported increased

levels of sIL-1R2 in small cohorts of sepsis patients or in

experimental endotoxemia models (46–48). Elevated levels of

sIL-1R2 were measured in patients with clinically defined sepsis

(45, 49), and in a group of ICU patients with systemic infections

categorized according with Sepsis-1 criteria (44). Despite the

correlation with severity, contrasting results were reported in

terms of prediction of mortality: Van Der Poll et al. showed

higher levels of sIL-1R2 in non-survivors compared to survivors

(45), while Muller et al. reported no difference of sIL-1R2 levels

in relation to mortality (44).

Reflecting the co-occurrence of inflammation and

immunosuppressive mechanisms, both pro- and anti-

inflammatory cytokines increase concurrently in the plasma of

septic patients. Tumor necrosis factor (TNF-a) and Interleukin

1 beta (IL-1b), the most important primary pro-inflammatory

mediators, are the cytokines most extensively studied in sepsis

patients (50–52). Other pro-inflammatory cytokines in sepsis

response include IL-6, IL-8, IL-12, interferon (INF)-g,
granulocyte-colony stimulating factor (G-CSF), IL-12, IL-17

and IL-18 (50, 53, 54). Among the specific anti-inflammatory

mediators enriched in sepsis, IL-1ra, IL-4 and IL-10 are the most

studied (47, 53, 55, 56). So far, data showed a complex network

of interactions between different cytokines in sepsis. While some
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patients are characterized by rapid production of both pro and

anti-inflammatory cytokines (57, 58), other septic individuals

release predominantly anti-inflammatory mediators or show

reduction of both types of molecules (59–62). Therefore, the

available literature does not provide conclusive results. Of note,

the circulating levels of cytokines differ massively from subject to

subject and even within the same patient during the evolution of

the disease. Hence it might be relevant to screen a set of different

cytokines for monitoring sepsis patients (63, 64).

Due to the complexity of sepsis, the measurement of a set of

markers related to different pathways may be more beneficial

than relying on a single biomarker (11, 16–18). Thus, the aim of

this study was to evaluate the prognostic value of a selection of

promising innate immunity molecules, namely PTX3 and sIL-

1R2, in combination with a set of pro- and anti-inflammatory

cytokines. Circulating biomarkers will be integrated with clinical

parameters, in order to improve the early prognostic assessment

of sepsis patients in ED setting.
Materials and methods

Ethics approval

This study complied with the provisions of the Declaration of

Helsinki and was approved by the Institutional Review Board of

Humanitas Research Hospital (Approval n° 820/18). Patients were

enrolled only after the signature of a written informed consent. In

the case the patient was unable to provide consent, this was

obtained from their relatives. Confidentiality of patient data was

preserved and no patient identifiers were used in the dataset.
Study design

We conducted a single center prospective observational study

enrolling patients with suspected sepsis admitted to the

Emergency Department (ED) of Humanitas Research Hospital

(from now on referred as Humanitas Hospital) between October

2017 and February 2020. Patients presenting at the Emergency

Department were evaluated based on the Sepsis-3 criteria defined

by the Third International Consensus Definitions for Sepsis and

Septic Shock (65). Sepsis-3 criteria are based on the following

recommendations: i) presence of an infection; ii) presence of

organ dysfunction, represented by an increase in the Sequential

[Sepsis-related] Organ Failure Assessment (SOFA) score of 2

points or more; iii) presence of at least two of the following

clinical criteria, that together constitute a new bedside clinical

score termed quick SOFA (qSOFA): altered mentation, a

respiratory rate of 22/min or greater, and systolic blood pressure

of 100 mm Hg or less. Septic shock is defined as a subset of sepsis

patients clinically identified by a vasopressor requirement to
Frontiers in Immunology 03
maintain a mean arterial pressure of 65 mm Hg or greater,

serum lactate levels greater than 2 mmol/L (>18 mg/dL) in the

absence of hypovolemia or altered mentation (Glasgow coma scale

score < 15). All non-sepsis patients had a proof of

infectious disease.

A cohort of 178 patients aged 35-98 years old was enrolled in

this study (Figure 1), representing approximately 25% of the

individuals presenting at the ED of Humanitas Hospital with

suspected sepsis during the recruitment period. Six patients were

excluded due to missing data. The remaining population of 172

patients was stratified according to Sepsis-3 criteria as detailed

above (65). Based on these criteria, the population was divided as

follows: 37 patients with SOFA score < 2 were assigned to the

“non-sepsis” group diagnosed with infections; 135 patients with

SOFA≥2 were divided into two groups: sepsis, (n=99), and septic

shock (n=36). The SOFA score was also used to determine the

levels of organ dysfunction and mortality risk.

A group of healthy controls (HC) was enrolled among

volunteers with age higher than 50 years (n=70). Median age

and 25% and 75% quartiles (Q1–Q3) were 63 years (58–67); 56%

were males and 43% were females.
Sample collection and preparation

Blood samples were collected in EDTA tubes on the day of

arrival at ED or when, within 24-72 hours of observation in ED,

the patient was diagnosed as sepsis or septic shock. The day of

first blood withdrawal was considered as day1. For those patients

admitted to Humanitas Hospital, a second collection was done

on day 5 ± 1. Blood samples were centrifuged at 1800 rpm for 10

minutes, then plasma was aliquoted and stored at -20°C until

analysis. To ensure the reproducible quality of samples, blood

tubes were processed within 2 hours after collection.
Data collection

Demographic information (age, sex, prior medical history),

ED stay, hospital stay, ICU admission and blood pressure were

collected and documented. In addition, the progression of sepsis

and survival outcome at 90 days were recorded. Routine

laboratory tests were performed by methods applied in the

Clinical Laboratory of Humanitas Hospital.
Biomarker measurement

PTX3 and sIL-1R2 levels were measured using sandwich

enzyme-linked immunosorbent assay (ELISA). PTX3 was

measured by an in-house assay based on original reagents

developed at Humanitas Hospital (detection limit 100 pg/ml;

inter-assay and intra-assay variability ranges from 8 to 10%), as
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previously described (66). sIL-1R2 levels were measured using a

commercial ELISA (Human sIL-1R2 Quantikine ELISA Kit,

BioTechne; detection limit: less than 10 pg/ml) following the

recommended protocol of the supplier. PCT and CRP

concentrations were measured in the Clinical Laboratory of

Humanitas Hospital.

A set of pro and anti-inflammatory cytokines, including IL-

10, IL-6, IL-1b, TNF-a, IL-18, IL-8 and IL-1ra was measured

using a customized assay in the ELLA Automated Immunoassay

System (ProteinSimple, San Jose, CA, USA). The assay was

performed fol lowing instruct ions provided by the

manufacturer; concentrations of the different cytokines were

directly provided by the software of the ELLA instrument. The

lower limits of detection were: 0.46 pg/ml for IL-10; 0.41 pg/ml

for IL-6; 0.16 pg/ml for IL-1b; 0.30 pg/ml for TNF-a; 0.96 pg/ml

for IL-18; 0.19 pg/ml for IL-8; 3.39 pg/ml for IL-1ra.
Statistical analysis

All statistical tests were two-sided. Stata 16.1 (StataCorp

LLC, College Station, TX, USA), R software and GraphPad

Prism 7.0 (GraphPad Software Inc., CA) were used for

statistical analyses and graphics. All significant P values are

reported in figures and tables legends.

Quantitative data were presented as means ± standard

deviations (SD) or medians and interquartile ranges (Q1-Q3)
Frontiers in Immunology 04
according to normality (analyzed by the D’Agostino-Pearson

test). Qualitative data were summarized as frequency

(percentage). Parametric (Student’s t-test and one-way analysis

of variance [ANOVA]) and non-parametric methods (two-

sample Wilcoxon rank-sum [Mann-Whitney] test; Kruskal-

Wallis (two-sample Wilcoxon rank-sum [Mann-Whitney] test;

Kruskal-Wallis [equality-of-populations] rank test; Pearson’s

chi-squared; and Fisher’s exact test) were used to detect

differences between groups. Correlations were assessed by the

Spearman’s rank correlation coefficient and the respective p-

value. For hypothesis testing, a probability level lower than 0.05

was considered as statistically significant.
Multivariable model and prognostic index
development

The outcome considered for model development was 90-

days mortality. We used time-to-event (survival) methods for

censored observations. Time to event was defined as the time

from the baseline visit (admission to emergency department)

until the date of event or censoring. Kaplan–Meier estimates

were used to draw cumulative incidence curves, compared by

log-rank tests, as well as by univariable Cox proportional

hazards (PH) analysis.

Candidate predictors for the multivariable model included the

following variables at baseline: age, gender, SOFA and qSOFA

scores, white blood cells, lymphocytes, neutrophils, platelets, C-

reactive protein, capillary refill time, hemoglobin, hematocrit,
FIGURE 1

Flowchart of the study. A cohort of 178 patients was enrolled at the Emergency Department of Humanitas Research Hospital with suspected
sepsis. 172 patients were included in the study and stratified based on Sepsis-3 criteria. Patients with SOFA<2 were classified as “non-sepsis”
(n=37), while the 135 patients with SOFA‗2, were classified as “sepsis” (n=99) or “septic shock” (n=36) according to clinical evaluation. Septic
shock patients were characterized by vasopressor requirement to maintain a mean arterial blood pressure of 65 mmHg or greater and serum
lactate levels >2mm/L in the absence of hypovolemia or altered mentation (Glasgow coma scale score < 15).
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sodium, vitamin K, fasting blood sugars, prothrombin time, partial

thromboplastin time, body temperature, heart rate, systolic and

diastolic blood pressure, blood urea nitrogen, paO2, spO2, ratio of

paO2/fiO2, biomarkers of inflammation (pentraxin-3, soluble IL-

1R2, IL-1b, IL-1ra, IL-6, IL-8, IL-10, IL-18, TNFa), presence of

cardiovascular disease, hypertension, malignancy, neurological

disorders, diabetes type 2, chronic obstructive pulmonary disease,

chronic kidney disease and other comorbidities. As the distribution

of inflammatory biomarkers levels was severely positively skewed,

we applied a log10-transformation prior to any analysis.

To avoid extreme collinearity, we first inspected pair-wise

correlations among continuous predictors. In a few cases (e.g.

hemoglobin and hematocrit) variables showed substantial

collinearity (r-Spearman ≥0.80). In these cases, the variable most

associated with mortality (highest likelihood ratio chi-squared test)

was further considered for multivariable modelling. To assess

associations between each candidate predictor and 90-days

survival, we conducted explorative univariable Cox PH analysis.

Except for the biomarkers of inflammation, candidate predictors

showing a p-value <0.20 were considered for multivariable

modelling. Given that the focus of the study was an in-depth

screening of biomarkers of inflammation as potential predictors of

mortality in septic patients, we explored systematically every

potential interaction, also considering non-linearity through

fractional polynomial terms (67). Potential interactions were

screened across the other predictors at the final stage of model

selection. The best fitting model was initially selected according to

the lowest Akaike information criterion (68). Given the high

number of candidate predictors relative to the limited sample

size and number of events, we further simplified the resulting

model through a backward selection procedure and eliminated

variables not significant at a strict significance level of p<0.005.

This process was deemed necessary to ensure a parsimonious

multivariable model and avoid substantial overfitting of the data.

The proportionality of hazard assumption was tested based on

Shoenfeld residuals. Model fit was assessed through the

Groennesby and Borgan test (69).

We assessed model discrimination using the Harrell’s c-

statistic, which quantifies the ability to identify correctly those

patients who will die over the study period (68). Each variable

entering the final multivariable model was also assessed in term

of individual discrimination capacity (continuous), and

sensitivity and specificity (dichotomous) in predicting

mortality at 90 days of follow-up. The optimal cut-point for

each predictor was determined through the maximally selected

rank statistics, providing a threshold value corresponding to the

most significant association with mortality (70). To estimate

sensitivity and specificity at 90 days of follow-up, we used time-

dependent receiver operating characteristic (ROC) curve

analysis by means of inverse probability of censoring

weighting (71). In time-dependent ROC-curve analysis, the

status of an individual is observed and updated at each time

point taking into account censored observations.
Frontiers in Immunology 05
A preliminary prognostic index was built by multiplying the

multivariable model beta coefficients (including interactions) by

each patient’s characteristics (age, blood urea nitrogen, and the

log10-transformed PTX3, IL-6 and IL-18 levels) (68). Internal

calibration was evaluated by plotting the observed proportion vs.

predicted survival probability and reporting the calibration slope

(which should equal one for a perfectly calibrated model) (68).

We also performed a test for calibration intercept equals 0 and

slope equals 1, as appropriate (68). The area under the curve of

our preliminary prognostic index at 90-days were formally

compared with those of SOFA and qSOFA scores, which

represent the current gold standards for prediction of

mortality in septic patients in different clinical settings.

A nomogram plot was produced to transform all possible

total point scores into individual risks of death. We calculated

the optimal cut-point of the continuous index by maximally

selected rank statistics. This allowed estimating the sensitivity

and specificity of this classification rule (i.e. patients scoring less

points than the threshold are classified as “alive”, those scoring

more or equal to the threshold are classified as “dead”) in

predicting the 90-days risk of death.
Results

Patient demographics

Figure 1 reports the flowchart of the population analyzed in

this study: 178 patients with suspected sepsis were enrolled

during admission to the ED of Humanitas Hospital. Six

patients were excluded due to missing data. Following

evaluation by clinicians, the remaining population of 172

patients included 135 patients with SOFA≥ 2, 99 patients

with sepsis and 36 with septic shock, while 37 patients with

SOFA< 2 did not meet the Sepsis-3 criteria, despite the

presence of infections. These patients were categorized as

“non-sepsis”.

Table 1 summarizes the clinical characteristics of the overall

population. The mean age was significantly increased with the

severity, while no differences between males and females in the

three subgroups of patients were observed. Most frequent

infections were at the urinary tract (24% in non-sepsis and

41% in septic shock groups) and the respiratory tract (44% in

sepsis group). Almost all the patients with sepsis and septic

shock had at least one comorbidity. The most frequent

comorbidity in non-sepsis and sepsis groups is represented by

hypertension (40% and 34% respectively), while cardiovascular

disease was the most frequent comorbidity in septic shock

patients (50%). Among the laboratory and clinical results,

SOFA score and levels of lactate, PCT, creatinine, d-dimer,

potassium and urea were higher in septic shock patients than

in the other groups of patients. Also, vasopressor need and

hypotension increased significantly in septic shock patients.
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TABLE 1 Demographic, laboratory and clinical characteristics of the entire patients population on day 1.

Variables Non-sepsis (n=37) Sepsis (n=99) Septic shock (n=36) p value

Demographic Characteristics

Age, median [Q1-Q3] 70 [57-81] 78 [70-84] 78 [71-85] 0.02

Male sex, n (%) 21 (56.8) 68 (68.7) 21 (58.3) 0.32

Female sex, n (%) 16 (43.2) 31 (31.3) 15 (41.7) 0.27

Comorbidities n (%)

Cardiovascular disease 10 (27.0%) 33 (33.3%) 18 (50.0%) 0.06

Hypertension 15 (40.5%) 34 (34.3%) 12 (33.3%) 0.76

Malignancy 13 (35.1%) 31 (31.3%) 14 (38.8%) 0.69

Neurological disease 9 (24.3%) 22 (22.2%) 7 (19.4%) 0.88

Diabetes type 2 5 (13.5%) 19 (19.1%) 6 (16.6%) 0.73

COPD 6 (16.2%) 17 (17.1%) 10 (27.7%) 0.33

Chronic kidney disease 1 (2.7%) 19 (19.1%) 5 (13.8%) 0.01

Others 9 (24.3%) 27 (27.2%) 8 (22.2%) 0.97

Site of infection n (%)

Respiratory system 7 (18.9%) 44 (44.4%) 9 (25.0%) 0.008

Urinary tract 9 (24.3%) 29 (29.2%) 15 (41.6%) 0.24

Liver 5 (13.5%) 4 (4.0%) 4 (11.1%) 0.11

Abdomen 2 (5.4%) 4 (4.0%) 0 (0%) 0.40

Blood 1 (2.7%) 4 (4.0%) 2 (5.5%) 0.82

Skin and soft tissue 3 (8.1%) 4 (4.0%) 1 (2.7%) 0.50

Unknown 4 (10.8%) 6 (6.0%) 3 (8.3%) 0.63

Others 6 (16.2%) 4 (4.0%) 2 (5.5%) 0.04

Vital signs, median [Q1-Q3]

Body temperature (°C) 37.6 [36.7-38.4] 37.3 [36.3-38.4] 36.8 [36.0-38.5] 0.67

Body mass index (kg/m²) 26.8 [24.2-32.3] 26.3 [22.3-31.3] 24.5 [21.1-25.6] 0.25

Respiratory rate (per min) 16 [15-18] 18 [16-21] 18 [16-20] 0.03

Heart rate (bpm) 97.5 [85.5-109.5] 97 [78-110] 99 [82.5-119.5] 0.70

SBP (mmHg) 116 [103-130] 110 [95-134] 83 [76-92] 0.0001

DBP (mmHg) 65 [60-79] 65 [50-80] 51 [40-60] 0.0001

MAP (mmHg) 85 [77-93] 77 [67-90] 60 [53-65] 0.0001

GCS 15 [15-15] 15 [15-15] 15 [13-15] 0.06

Laboratory values, median [Q1-Q3]

WBC (10^3/mm^3) 11.9 [8.3-16.6] 11.6 [8.4-18.8] 16.1 [7.6-20.0] 0.46

Lymphocytes (10^3/mm^3) 0.8 [0.5-1.2] 0.7 [0.4-1.1] 0.7 [0.4-1.0] 0.30

Neutrophils (10^3/mm^3) 9.8 [6.7-13.9] 9.2 [6.8-16.4] 14.3 [6.6-17.5] 0.29

Platelets (10^3/mm^3) 204 [170-301] 172 [123-270] 166 [117-272] 0.10

Lactate (mmol/L) 1.6 [1.1-3.0] 2.6 [1.6-4.0] 4.8 [2.7-7.1] 0.0002

INR (sec) 1.2 [1.1-1.4] 1.3 [1.1-1.5] 1.3 [1.2-1.7] 0.09

Creatinine (mg/dL) 0.8 [0.6-1.0] 1.6 [1.0-2.5] 1.9 [1.2-3.2] 0.0001

D-dimer (ng/ml) 743 [416-2485] 685 [383-1896] 1728 [787-4735] 0.01

Fibrinogen (mg/dL) 633 [459-798] 512 [414-714] 504 [386-665] 0.39

Hemoglobin (g/dl) 12.0 [10.4-12.7] 11.6 [10.5-13.1] 10.5 [9.0-12.4] 0.12

Hematocrit (%) 36.6 [31.2-37.7] 35.6 [32.0-39.8] 34.3 [27.9-38.5] 0.30

Bilirubin (mg/dL) 0.7 [0.5-1.0] 0.8 [0.6-1.1] 0.9 [0.6-1.4] 0.15

Sodium (mmol/L) 137 [134-139] 137 [133-140] 138 [135-141] 0.56

Potassium (mmol/L) 3.8 [3.5-4.1] 4.0 [3.6-4.5] 4.3 [3.7-5.1] 0.009

Urea (mg/dL) 39.0 [31.0-59.7] 74.3 [49.9-115.3] 89.5 [52.8-148.4] 0.0001

Fasting blood sugar (mg/dL) 124 [106-165] 124 [105-169] 109 [85-184] 0.22

(Continued)
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PTX3 and sIL-1R2 levels in sepsis and
association with severity

The levels of PTX3 and sIL-1R2 in HC and in non-sepsis,

sepsis and septic shock patients on day 1 of ED admission are

reported in Figure 2 and Table 1. PTX3 levels were significantly

increased in all the three groups of patients compared to HC

(Figure 2A; PTX3 levels in HC: 2.52 [1.88-3.6], median ng/ml

[Q1-Q3]). In the same cohort, sIL-1R2 levels were also increased

in sepsis and septic shock patients compared to HC (median and

Q1-Q3] 16.29 ng/ml [13.52-20.25]), while normal levels of sIL-

1R2 were observed in non-sepsis patients (Figure 2B). The

increased severity among the three groups of patients is

supported by the upregulated levels of several clinical

parameters, which are indicative of sepsis severity (Table 1). In

parallel, both PTX3 and sIL-1R2 are increased with the

increasing of severity from non-sepsis to sepsis and septic

shock (Figure 2 and Table 1).

For the patients admitted to wards we collected a second

blood sample after 5 days of hospitalization (non-sepsis n=23,

sepsis n=62, septic shock n=17). In most of the patients with

matched samples at day 1 and 5 we observed a significant

decrease of PTX3 after 5 days of hospitalization, while sIL-1R2

levels did not change (Table 2). PCT and CRP, two molecules

widely used as biomarkers indicative of sepsis severity (72, 73),

were also elevated in our cohort of patients compared to levels in

healthy population [CRP<0.5 mg/dl; PCT 0.05-0.5 ng/ml (74–

76)], and were higher in Sepsis-3 patients compared to non-

sepsis individuals (CRP: p=0.04; PCT: p<0.0001, Mann-Whitney
Frontiers in Immunology 07
test). In addition, a decrease was observed from day 1 to day 5

(not shown).

Univariable Spearman’s rank correlation analysis of PTX3 and

sIL-1R2 with SOFA score showed a positive correlation (PTX3:

r=0.44, p<0.0001; sIL-1R2: r=0.35, p<0.0001, Table S1). In addition,

PTX3 and sIL-1R2 correlated with different clinical parameters

evaluated at enrollment in ED (e.g. creatinine and D-dimer, Table

S1) as well as with PCT and CRP. Finally, a correlation was

observed between PTX3 and sIL-1R2 evaluated on day 1.
Cytokine levels in Sepsis-3 population

In the same samples we measured a panel of pro-

inflammatory (IL-6, IL-1b, TNF-a, IL-18 and IL-8) and anti-

inflammatory cytokines (IL-10, IL-1ra). On day 1 all the

cytokines were highly increased in patients compared to HC,

with a gradual trend of progressively higher levels from non-

sepsis to sepsis and septic shock patients (Table 3). In particular,

there was approximately a 2-fold increase of all cytokines except

IL-18 in septic shock patients compared to sepsis patients on day

1. When we limited the analysis to those patients admitted to

wards, circulating levels of all cytokines decreased from day 1 to

day 5, with the only exception of IL-1b in septic shock patients

and IL-18 in sepsis patients (Table S2).

PTX3 and sIL-1R2 showed a positive correlation with all the pro-

and anti-inflammatory cytokines considered in the present analysis,

except IL-18 and IL-1b (Table 4). The strongest correlations were

observed between the C-X-C chemokine IL-8, a main chemotactic
TABLE 1 Continued

Variables Non-sepsis (n=37) Sepsis (n=99) Septic shock (n=36) p value

PT (second) 1.2 [1.2-1.4] 1.3 [1.1-1.5] 1.3 [1.2-1.6] 0.28

PTT (second) 1.0 [0.9-1.0] 0.9 [0.9-1.1] 1.0 [0.8-1.1] 0.46

Bicarbonate (mmol/L) 24.4 [24.0-26.3] 22.6 [20.0-27.1] 19.1 [16.7-23.4] 0.04

PH value 7.5 [7.4-7.5] 7.5 [7.4-7.5] 7.4 [7.4-7.5] 0.18

PCT (ng/ml) 0.4 [0.1-1.3] 3.6 [0.6-17.5] 14.6 [2.3-75.5] 0.0001

CRP (mg/dL) 9.7 [3.6-19.6] 15.4 [6.7-24.1] 16.6 [12.2-22.4] 0.10

PTX3 (ng/ml) 34.6 [11.6-68.2] 52.5 [22.4-177.0] 210.9 [103.8-613.8] 0.0001

sIL-1R2 (ng/ml) 17.1 [14.6-20.0] 23.5 [16.1-34.6] 31.0 [22.0-50.1] 0.0001

Clinical factors, median [Q1-Q3] or n (%)

SOFA score 1 [0-1] 4 [3-6] 8 [5-9] 0.0001

qSOFA score 0 [0-0] 1 [0-1] 1.5 [1-2] 0.0001

ICU admission 0 (0) 3 (3.0) 5 (17.2) 0.39

Vasopressor need 0 (0) 2 (2.0) 22 (61.1) 0.0001

Hypotension 1 (2.7) 26 (26.3) 32 (88.9) 0.0001

Hospital stays (days) 11 [7-17] 10 [7-18] 15 [4-24] 0.76
fronti
Data are reported as median [Q1-Q3] or n (%). Kruskal-Wallis equality-of-populations rank test was used for the comparisons of the different variables across the three groups of patients.
Statistically significant values are in bold character. Abbreviations: COPD, Chronic obstructive pulmonary disease; DBP, diastolic blood pressure; GCS, Glasgow coma scale; ICU, intensive
care unit; INR, international normalized ratio; MAP, mean arterial pressure; PCT, procalcitonin; PT, prothrombin time; PTT, partial thromboplastin time; SBP, systolic blood pressure;
SOFA, Sequential Organ Failure Assessment; qSOFA, quick Sequential Organ Failure Assessment; WBC, white blood cells.
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factor for neutrophils, and PTX3 (r=0.62, p<0.0001) or sIL-1R2

(r=0.50, p<0.0001) respectively. In addition, both pro and anti-

inflammatory cytokines were positively correlated with SOFA score

on day 1 of admission. Among them, TNF-a showed the strongest

correlation (r=0.60, p<0.0001, Table 4).
Distribution of PTX3, sIL-1R2 and
cytokines between survivors and non-
survivors in Sepsis-3 patients

The 90-days survival analysis in the total Sepsis-3 population

showed 99 survivors (73%) and 36 non-survivors (27%).

Mortality rate was 20% among sepsis patients and 44% among

septic shock patients. Of note, among the non-sepsis patients,

four subjects (11%) did not survive following the 90-days

follow up.

Clinical data, PTX3, sIL-1R2 and cytokines levels among

survivors and non-survivors are summarized in Table 5. SOFA

score, lactate, CRP, creatinine, d-dimer and urea on day 1 were

remarkably higher in non-survivors compared to survivors.

Similarly, PTX3 and sIL-1R2 levels at enrollment were
Frontiers in Immunology 08
significantly higher in patients who died within 90 days from

ED admission compared to those who survived. In addition,

both pro- and anti-inflammatory cytokines levels were

upregulated in non-survivors. Additional data are reported in

Table S3.
Multivariable model development

The association between candidate predictors measured at

the arrival at the ED, and 90-days mortality was first explored by

univariable Cox proportional analysis. Variables not associated

with mortality in this cohort of patients are reported in Table S4,

while predictors with a significant hazard ratio are listed in

Table 6. According to the analysis, PTX3 and sIL-1R2 emerged

as strong predictors of mortality, with a hazard ratio respectively

of 3.09 [1.80-5.30] and 5.31 [2.05-13.74] and p≤0.001 (Table 6).

Combinations including the different biomarkers and clinical

variables were then investigated. The most parsimonious

multivariable Cox proportional hazard model comprising

independent predictors of 90-days mortality included five

variables: age, blood urea nitrogen, PTX3, IL-6 and IL-18 as
BA

FIGURE 2

PTX3 and sIL-1R2 levels on day 1. PTX3 (A) and sIL-1R2 (B) plasma concentration were measured in non-sepsis, sepsis and septic shock patients
admitted to ED. A group of healthy controls (HC) was also included. Kruskal-Wallis equality-of-populations rank test was used for the
comparisons, * p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001.
TABLE 2 PTX3 and sIL-1R2 levels at day 1 and day 5 in non-sepsis, sepsis and septic shock patients.

PTX3 Day 1 PTX3 Day 5 p value sIL-1R2 Day 1 sIL-1R2 Day 5 p value

Non-sepsis
(n=23)

48.9
[28.1-82.5]

16.6
[10.0-30.7]

0.001 17.0
[12.0-20.0]

18.1
[13.1-21.1]

0.66

Sepsis
(n=62)

69.4
[34.1-220.6]

17.6
[10.2-28.9]

<0.0001 23.9
[17.9-35.1]

25.0
[17.28-35.6]

0.69

Septic shock
(n=17)

219.8
[69.9-832.0]

30.31
[10.0-48.7]

0.0001 34.37
[21.3-72.2]

41.6
[15.9-82.4]

0.54
fronti
Data are reported as median ng/ml and [Q1-Q3], and refer only to those patients with available samples for both the time points. Number of patients is indicated for each group. The
Wilcoxon signed-ranks test was used for the comparisons of PTX3 and sIL-1R2 levels on day 1 and day 5 in the different groups of patients. Statistically significant values are in bold
character.
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continuous predictors. The three biomarkers of inflammation

were log10-transformed. The model included a strong positive

interaction (synergistic effect) between IL-6 and IL-18 (i.e. due to

this strong interaction term, despite their negative coefficients,

IL-6 and IL-18 should be interpreted as positively associated

with 90-days mortality, though in a non-linear fashion). All

variables were significant at the conservative threshold of

p<0.005. For each predictor we calculated a threshold from the

maximally selected rank statistics. The biomarkers threshold

included: age (87 years), blood urea nitrogen (117 mg/dL), PTX3

(240 ng/ml), IL-6 (175 pg/ml), IL-18 (526 pg/ml). According to

these thresholds, patients were categorized in two groups (i.e.

high vs. low). In Figure 3 are reported the Kaplan-Meier curves

for each predictor included in the final multivariable model.

The c-statistics, sensitivity and specificity of each of these

predictors are reported in Table 7. PTX3 showed the highest

apparent c-statistic (0.716; 95% CI: 0.636−0.796) and sensitivity and

specificity (threshold: 240 ng/ml; sensitivity: 48.4%, 95% CI: 31.9

−64.9; specificity: 89.9%, 95%CI: 82.7−97.0) in our cohort of patients.
Frontiers in Immunology 09
Multivariable model specifications, including the baseline

hazard at 90 days, are reported in Table 8. There was no evidence

of violation of the proportionality of hazard assumption

(p=0.192) and the Groennesby and Borgan test showed a

reasonable model fit (p=0.783). The calibration plot showed

good internal calibration (Figure S1), as indicated by a

calibration slope equal to 1.146 (95% CI: 0.605−1.687) with an

intercept not significantly different than zero (p=0.876). The

Harrel c-statistic was 0.808 (95% CI: 0.734−0.882), indicating

good discrimination performance.
We built a preliminary prognostic index by multiplying the

multivariable model beta coefficients (including the interaction)

by each patient’s characteristics:

Prognostic Index

= 0:066� Age + 1:343� log10(PTX3) − 4:961

�  log10(IL� 6)   −3:437�  log10(IL� 18) + 0:008� Urea

+ 1:903� log10(IL� 18)� log10(IL� 6)
TABLE 3 Cytokine levels in healthy controls, non-sepsis, sepsis and septic shock patients on day 1 of admission to Emergency Department.

Cytokine Healthy control (n=20) Non-sepsis (n=37) Sepsis (n=99) Septic shock (n=36) p value

IL-10 1.0
[0.7-1.4]

11.4
[5.8-29.0]

16.3
[8.3-41.0]

46.5
[15.2-333.5]

0.0001

IL-1b 0.1
[0.0-0.3]

0.8
[0.5-1.4]

0.8
[0.5-1.3]

1.3
[0.7-2.9]

0.0001

IL-6 1.6
[1.0-2.9]

82.0
[30.6-128.2]

112.9
[35.2-230.3]

342.7
[125.7-8450.4]

0.0001

TNF-a 4.9
[4.2-6.0]

14.9
[11.1-20.8]

23.1
[14.0-37.1]

45.5
[21.4-164.7]

0.0001

IL-18 138.9
[87.9-203.5]

262.6
[201.7-387.8]

328.8
[226.9-525.7]

376.3
[256.6-625.2]

0.0001

IL-1ra 183.5
[141.4-259.9]

2218.8
[1206.0-3258.2]

4005.4
[1418.5-9393.3]

15527.6
[4123.4-46700.6]

0.0001

IL-8 5.2
[4.1-8.5]

16.1
[10.9-27.5]

29.6
[15.1-73.0]

74.7
[42.2-352.3]

0.0001
fronti
Data are reported as median pg/ml and [Q1-Q3]; Kruskal-Wallis equality-of-population test was used for the comparison of cytokines levels among the non-sepsis, sepsis and septic shock
groups of patients. Number of subjects with available data is indicated for each group. Statistically significant values are in bold character.
TABLE 4 Univariable correlations of PTX3, sIL-1R2 and SOFA score with cytokines in the Sepsis-3 population (n=135).

PTX3 sIL-1R2 SOFA score

Cytokine Spearman r p Spearman r p Spearman r p

IL-10 0.50 <0.0001 0.43 <0.0001 0.43 <0.0001

IL-1b 0.20 0.01 0.09 0.27 0.31 0.0002

IL-6 0.51 <0.0001 0.41 <0.0001 0.44 <0.0001

TNF-a 0.49 <0.0001 0.35 <0.0001 0.60 <0.0001

IL-18 0.12 0.13 0.31 0.0002 0.25 0.0036

IL-1ra 0.56 <0.0001 0.42 <0.0001 0.53 <0.0001

IL-8 0.62 <0.0001 0.50 <0.0001 0.58 <0.0001
e

Spearman’s rank correlation test was used. Statistically significant values are in bold character.
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A nomogram plot associating each possible score with the

individual 90-days risk of death is provided in Figure S2. The

index was then dichotomized by applying the optimal threshold
Frontiers in Immunology 10
derived by maximally selected rank-statistics (threshold value =

0.112, corresponding to a predicted 90-days risk of death of

35.3%). This allowed patient stratification into high vs. low 90-
frontiersin.org
,

TABLE 5 Distribution of selected clinical parameters and biomarkers among survivors and non survivors in the Sepsis-3 population.

Variables Survivors (n=99) n Non-Survivors (n=36) n p value

SOFA score 4 [3-6] 99 6.5 [4-8.5] 36 0.0005

qSOFA score 1 [0-1] 99 1 [1-2] 36 0.001

Neutrophils (10^3/mm^3) 9.5 [6.1-15.8] 98 14.1 [7.9-18.8] 36 0.05

Lactate (mmol/L) 2.7 [1.6-4.4] 57 4.5 [3.1-6.9] 21 0.007

Creatinine (mg/dL) 1.5 [1.1-2.3] 99 2.3 [1.4-4.5] 36 0.01

D-dimer (ng/ml) 685 [398-1821] 51 2843 [1256-4057] 21 0.003

Urea (mg/dL) 69.4 [49.9-105.7] 98 122.8 [63.4-177.6] 36 0.002

Body temperature (°C) 37.7 [36.4-38.5] 97 36.5 [36.0-38.0] 35 0.01

MAP (mmHg) 73 [62-88] 99 66 [55-77] 35 0.02

DBP (mmHg) 60 [50-75] 99 52 [44-70] 36 0.03

GCS 15 [15-15] 99 15 [13-15] 36 0.003

FiO2 (%) 21 [21-28] 99 21 [21-36] 36 0.01

Haemoglobin (g/dl) 11.7 [10.5-13.1] 99 10.6 [9.4-12.4] 36 0.03

CRP (mg/dL) 15.4 [6.6-21.9] 98 17.4 [13.1-26.9] 36 0.01

PTX3 (ng/ml) 59.9 [19.9-177.0] 99 237.0 [61.1-557.0] 36 0.0001

sIL-1R2 (ng/ml) 22.8 [15.8-33.8] 99 34.6 [24.9-50.9] 36 0.0002

IL-10 (pg/ml) 15.5 [8.6-32.8] 99 48.0 [16.8-137.2] 36 0.0004

IL-1b (pg/ml) 0.8 [0.5-1.4] 99 1.2 [0.7-2.0] 36 0.01

IL-6 (pg/ml) 113.8 [41.1-297.7] 99 239.3 [92.8-730.5] 36 0.03

TNF-a (pg/ml) 25.2 [15.6-42.2] 99 36.1 [19.0-82.7] 36 0.05

IL-18 (pg/ml) 307 [222.4-472.8] 99 418.3 [284.6-684.4] 36 0.05

IL-1ra (pg/ml) 4099.7 [1595.1-10281.7] 99 9569.6 [3668.2-34912.4] 36 0.01

IL-8 (pg/ml) 29.6 [16.0-73.4] 99 73.8 [34.7-204.4] 36 0.0003
Data are reported as median and [Q1-Q3]; Mann-Whitney test was used for the comparisons. Only variables statistically significant are reported in the table. Abbreviations: DBP, diastolic
blood pressure; FiO2, fraction of inspired oxygen; GCS, Glasgow coma scale; MAP, mean arterial pressure; SOFA, Sequential Organ Failure Assessment; qSOFA, quick Sequential Organ
Failure Assessment. Statistically significant values are in bold character.
TABLE 6 Univariable Cox proportional hazard analysis of candidate predictors of 90-days mortality.

Variable (n) Hazard ratio 95% CI p value

SOFA score (n=135) 1.24 1.11−1.38 <0.001

qSOFA score (n=135) 2.03 1.37−3.02 <0.001

Sodium (n=135) 1.04 1.01−1.08 0.011

Blood urea nitrogen (n=134) 1.00 1.00−1.01 0.001

PaO2/FiO2 (n=135) 0.65 0.45−0.95 0.026

Biomarkers (n=135)

PTX3 (n=135) 3.09 1.80−5.30 <0.001

sIL-1R2 (n=135) 5.30 2.05−13.74 0.001

CRP (n=134) 1.03 1.01−1.06 0.003

IL-10 (n=135) 1.63 1.17−2.26 0.003

IL-1ra (n=135) 1.72 1.12−2.63 0.012

IL-1b (n=135) 2.49 1.32−4.70 0.005

IL-6 (n=135) 1.33 0.99−1.80 0.055

IL-8 (n=135) 1.75 1.24−2.47 0.001
Levels of biomarkers were log10 transformed before statistical analysis. Number of patients with available data are indicated in parenthesis. Abbreviations: CI, confidence interval; FiO2
fraction of inspired oxygen; PaO2, partial pressure of oxygen in arterial blood; SOFA, Sequential Organ Failure Assessment; qSOFA, quick Sequential Organ Failure Assessment. Statistically
significant values are in bold character.
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days risk of death. The Kaplan Meier curves of patients

belonging to the two groups are reported in Figure 4. Patients

categorized by the index in the high mortality group had an

observed cumulative 90-days risk of death of 73.3% (95% CI:
Frontiers in Immunology 11
57.5−87.0), whereas patients in the low mortality group had a

cumulative risk of 10.0% (95% CI: 5.12−19.1). The hazard ratio

corresponding to the high mortality group was 12.0 (95% CI:

5.41−26.5). The sensitivity (76.9%; 95% CI: 62.8−91.0) and
FIGURE 3

Kaplan-Meier survival curves of predictors included in the multivariable Cox model of 90-days mortality. Patients were categorized in two
groups in accordance to continuous predictors dichotomized based on the maximally selected rank statistic. PTX3, IL-6 and IL-18 were log10-
transformed before analysis. For each predictor, survival was analyzed by Log-rank test and correspondent p values are reported on the graphs.
TABLE 7 Harrel C-statistics, sensitivity and specificity of each predictor included in the multivariable Cox model of 90-days mortality.

Threshold C-statistic [95% CI] Sensitivity (%) [95% CI] Specificity (%) [95% CI]

Age 87 years 0.60 [0.50−0.70] 29.0 [14.3−43.7] 91.3 [84.6−98.0]

Blood urea nitrogen 117 mg/dL 0.66 [0.56−0.76] 50.9 [34.4−67.4] 86.8 [78.7−94.8]

PTX3 240 ng/ml 0.72 [0.64−0.80] 48.4 [31.9−64.9] 89.9 [82.7−97.]

IL-6 175 pg/ml 0.62 [0.53−0.71] 63.3 [47.4−79.2] 65.2 [53.9−76.5]

IL-18 526 pg/ml 0.58 [0.48−0.67] 42.2 [25.9−58.5] 84.1 [75.4−92.7]
Reported thresholds were calculated for each predictor once dichotomized based on the maximally selected rank statistic. Abbreviations: CI, confidence interval.
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specificity (91.2%; 95% CI: 84.4−97.9) associated with this

threshold showed a good performance of this classification

rule in our sample of patients.
Comparison of the prognostic index with
SOFA and qSOFA

SOFA and qSOFA scores were used to identify patients with

sepsis according with the Sepsis-3 criteria, however it is well

known that this scoring system is also useful in predicting the

clinical outcomes of critically ill patients (77, 78). We thus

compared formally the AUC of our preliminary prognostic

index with that of SOFA and qSOFA scores. The 90-days

AUC of our preliminary index was 0.863 (95% CI: 0.780

−0.945). The 90-days AUC of SOFA score was 0.727 (95% CI:

0.613−0.840), while the AUC for qSOFA at the same time-point

was 0.660 (95% CI: 0.558−0.762). The AUC of our preliminary

index was significantly greater than both SOFA (p=0.021) and

qSOFA scores (p<0.001) in our cohort of patients, meaning that

it was able to discriminate between patients dying from those

surviving more accurately than the current gold standards.
Discussion

Aim of this study was to evaluate the prognostic value of

molecules of the innate immune response, namely PTX3 and

sIL-1R2, in association with a set of pro- and anti-inflammatory

cytokines (IL-1b, IL-6, IL-8, IL-10, IL-18, TNF-a and IL-1ra)

and clinical parameters, in patients presenting at the Emergency

Department with a suspicious or diagnosis of sepsis defined

according to the Sepsis-3 criteria (65). At ED arrival, a

progressive increase in the circulating levels of PTX3, sIL-1R2

and both pro- and anti-inflammatory cytokines was observed

from non-sepsis to sepsis and septic shock patients. In

univariable Cox analysis, PTX3, sIL-1R2 and all the cytokines

analyzed in this study, except IL-18, were significant predictors

of 90-days mortality. The combination of circulating levels of

PTX3, IL-6 and IL-18, with age and blood urea nitrogen,

constituted a preliminary prognostic index of 90-days
Frontiers in Immunology 12
mortality with high sensitivity and specificity, and more

efficient than the gold standards SOFA and qSOFA scores,

providing a useful tool to stratify sepsis patients on arrival at

the ED.

The emergency department plays a pivotal role in the

prompt recognition of septic status and activation of optimal

therapeutic approaches (79–81). Biomarkers predicting

mortality risk would represent invaluable tools to quickly

provide patients with the most appropriate hospital care (82,

83). The biomarkers described here are in principle amenable to

evolution to rapid point-of-care tests better addressing

emergency department needs. Different platforms are available

or under development, potentially useful in this context,

including the ELLA microfluidic immunoassay system used in

our work or multiplexed label-free biosensors (84–86)

Several reports addressed the role of PTX3 as a biomarker of

sepsis (29, 31, 33–40), while scanty and contrasting data are

available on sIL-1R2 (44–49), and a general consensus on its role

in sepsis has not yet been reached. The present work has the

merit to analyze patients arriving at the ED and diagnosed

according to the latest Sepsis-3 definition, without excluding

any pre-existing comorbidity, including cancer. The model

developed can be used for the early prediction of 90-days

mortality risk, a timing no longer affected by the different

therapies. PTX3 and sIL-1R2 circulating levels were increased,

reflecting the augmented tissue damage and inflammation

associated with the increased severity. In addition, both

molecules strongly correlated with SOFA score in sepsis and

septic shock patients (PTX3: r=0.44, p<0.0001; sIL-1R2: r=0.35,

p<0.0001), confirming data obtained in earlier studies (31, 44), as

well as with PCT, CRP and clinical parameters of severity. These

data demonstrated that PTX3 and sIL-1R2 could be useful in

monitoring the severity of disease in early hours of admission

to ED.

The role of the immune system in sepsis is generally recognized

and involves multiple processes, ranging from activation of pro-

inflammatory mechanisms to immunosuppression, often occurring

simultaneously (87–89). Early activation of the inflammatory

response is involved in the pathogenesis of sepsis, and the altered

levels of several cytokines observed in septic patients compared to

healthy controls are likely involved in the organ injury observed in
TABLE 8 Multivariable Cox model of 90-days mortality: full model specification1.

b coefficient 95% CI p-value

Age +0.066 +0.029 to +0.103 0.001

Blood urea nitrogen +0.008 +0.003 to +0.012 <0.001

PTX3 +1.343 +0.630 to +2.056 <0.001

IL-6 -4.961 -7.583 to -2.339 <0.001

IL-18 -3.437 -5.355 to -1.518 <0.001

IL-6*IL-18 (interaction term) +1.903 +0.926 to +2.880 <0.001
fronti
1 H0 = 0.3894 (90-days baseline hazard). Values of PTX3, IL-6 and IL-18 were log10 transformed before analysis. Abbreviations: CI, confidence interval. Statistically significant values are in
bold character.
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sepsis (9, 90). In our cohort of patients, we observed significant

changes in the levels of the panel of pro-inflammatory (IL-1b, IL-6,
IL-8, IL-18, TNF-a) and anti-inflammatory (IL-10, IL-1ra)

cytokines. All the molecules were augmented in patients

compared to HC and correlated with SOFA score, evidencing, as

for PTX3 and sIL-1R2, the progressive increase of their circulating

levels with the severity of disease. The concomitant upregulation of

PTX3, CRP and pro-inflammatory cytokines (IL-6, IL-8, TNF-a)
on one side, and of the anti-inflammatory molecules sIL-1R2, IL-10

and IL-1ra on the other side, further supports the coexistence of

pro-inflammatory and immunosuppressive mechanisms

throughout the host response to sepsis.

After 5 days of hospitalization, a general decrease of PTX3

circulating levels was observed, in parallel with an improvement

of patients’ conditions and a reduction of the inflammation and/

or infection burden. In parallel, a reduction of CRP, PCT and

cytokines levels was observed in the cohort of patients, together

with the general improvement of clinical parameters. On the

contrary, no significant changes were recorded in circulating

levels of sIL-1R2 in this time frame. Considering that sIL-1R2 is

a key negative regulator of the IL-1 system, the maintenance of

high levels of the molecule could tightly regulate the responses to

IL-1 family members, contributing to protect from an

exaggerated inflammatory response (26).

PTX3, sIL-1R2 and all cytokines investigated in our study

were significantly higher in non-survivors compared to 90-days

survivors, and were strong predictors of mortality. These results

are in agreement with several studies reporting the association of

cytokines such as IL-6 or IL-18 with poor outcome in septic

patients (91, 92). In another study of a small cohort of sepsis,
Frontiers in Immunology 13
severe sepsis and shock patient admitted to ICU, the levels of IL-

6, IL-8 and IL-18 resulted higher in non-survivors compared to

survivors, although following multivariable logistic regression

analysis only IL-18 remained related to mortality (93). In

addition, a positive synergistic effect has been observed

between IL-18 and IL-6 that likely contributes to the

association of these molecules with mortality, despite IL-18

not being a significant predictor of mortality by Cox

proportional analysis. Our study was limited to a selected

number of soluble mediators, and we are aware that other

molecules could also play relevant roles. Growing interest has

been observed for circulating antagonists of the IL-1 pathway,

such as IL-18 binding protein (IL-18BP) and IL-1R4, also known

as ST2 (94, 95), even for possible therapeutic implications (96).

In a sub-group of patients, we measured both IL-18BP and IL-

1R4: the two molecules were mildly increased in patients

compared to healthy controls (data not shown). Although an

increasing trend was seen from non-sepsis to sepsis and shock

patients, IL-18BP and IL-1R4 were not significantly associated

with mortality, in contrast to what reported by others (93, 96–

98). A future comprehensive analysis of all the different

molecules belonging to the IL-1 pathway would be helpful to

fully define the strength of this essential family of inflammatory

mediators in assessing sepsis patients.

Overall, the literature shows that none of the cytokines is a

robust biomarker of mortality by itself (6, 11, 99). For this

reason, the most recent investigations have mainly focused on

the analysis of a combination of multiple biomarkers to predict

outcome in sepsis patients (12–18). In a recent prospective

observational analysis on septic patients arriving at the ED,
FIGURE 4

Kaplan-Meier survival curve of the prognostic index once dichotomized by maximally selected rank statistics. Patients were categorized in high
and low mortality risk groups based on the threshold value of the prognostic index. Survival in the two groups was analyzed by Log-rank test
(p<0.0001).
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Song et al. showed that the combination of PTX3, IL-6, PCT and

lactate was effective in predicting 28-days mortality with a good

performance and better than SOFA score (100, 101). IL-6 alone,

in combination with other molecules (102–104) or with

neutrophil-to-lymphocyte ratio can be a marker of mortality

in sepsis patients (74). Similarly, Matsumoto et al. suggested the

involvement of a cytokine network including IL-6, IL-8, MCP-1

and IL-10 in the acute phase of sepsis and proposed the

development of a combined score including IL-6 which is

significantly correlated with prognosis (90). On the same line,

our data argue in favor of the usefulness of testing a combination

of multiple biomarkers to improve the prognostic capacity.

In multivariable Cox regression analysis, the combination of

PTX3, urea, IL-6 and IL-18 levels with age showed the best

prognostic value. Since this study includes a relatively low

number of patients and death events, we ensured to select a

parsimonious model with a very conservative threshold for

significance (p<0.005). This model showed good internal

calibration properties and could predict 90-days death

significantly better than the SOFA score in our sample of

patients, though these findings should be externally validated

in an independent cohort in order to be generalizable.

Despite these limitations, these results could help to generate

new hypotheses on the prognostic, but also etiological, role of IL-

6 and IL-18 in sepsis. Similar to the study by Mierzchala-Pasierb

et al. (105), we did not observe significant differences of IL-18

levels in survivors vs. non-survivors. However, both IL-18 and

IL-6 were significant predictors of mortality in the full model.

Additionally, when PTX3, urea levels and age were left

unchanged, there was a highly significant interaction (positive

synergistic effect) between IL-6 and IL-18, meaning there was a

non-linear association between these two variables and 90-days

mortality. This suggests that, although at low levels, IL-6 and IL-

18 do not significantly affect the risk of mortality, thus, after a

certain threshold, each increase becomes very importantly

associated with the predicted mortality. This could perhaps be

explained by the fact that IL-18 can induce the production of

huge quantities of IL-6 from a variety of cell types through the

activation of the NLRP3 inflammasome and caspase 1, effectively

amplifying other pro-inflammatory signals (106). In our study,

the variance of IL-18 values in sepsis patients was much lower

(range from 6 pg/ml to about 2000 pg/ml) than what was

observed for IL-6 (from 6 pg/ml to almost 1 million pg/ml).

This may point toward a different magnitude of production of

IL-6 in certain high-risk septic patients, in presence of relatively

similar levels of IL-18. Further studies are necessary to

characterize the physio-pathological role of these cytokines in

sepsis patients.

Besides the aforementioned low number of participants, its

monocentric nature, and the need for external validation, this

study has other limitations. Patient demographics in our study
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cohort differed from other sepsis studies, including enrollment

of patients at ED admission instead of later in the ICU setting.

This adds novelty to our study, but also adds heterogeneity to

our results. Some clinical data are missing for a fraction of

patients, such as lactate and PCT levels, and we did not have

other clinical scores, such as Simplified Acute Physiology Score

(SAPS) II, SAPS III, and/or Acute Physiology and Chronic

Health Evaluation II (APACHE II) scores. In our cohort, 31%

of sepsis patients and 39% of septic shock patients had a

malignancy as comorbidity, whereas many studies exclude

malignancy-linked sepsis. However, we believe that

considering all sepsis cases regardless of comorbidities could

have added diagnostic value in the ED setting. Given the

different comorbidities in our cohort of patients, the

inflammatory markers such as CRP and PCT may be also

influenced, potentially affecting the results; however, the

reduction observed in patients after 5 days of hospitalization

suggested that comorbidities had a limited impact on the overall

inflammatory status of the patients. These preliminary results

need to be confirmed with multicentric studies involving larger

cohorts of patients. Overall, the increasing development of

point-of-care testing systems for the rapid and accurate

measurement of circulating molecules makes the evaluation of

multiple soluble mediators feasible even in the emergency room

(85, 86).

In conclusion, we concur with other reports that a

combination of inflammatory mediators and clinical

parameters can improve risk stratification of sepsis patients.

Our data indicate that high levels of PTX3 in plasma of patients

with suspected sepsis admitted to the emergency room can be

used as a prognostic marker for risk stratification. In addition,

measurement of PTX3 in combination with cytokine levels (IL-6

and IL-18), and other routine clinical parameters rapidly

available in ED (e.g., age, urea), can provide a promising

approach for 90-days mortality prediction for sepsis patients,

better than the use of a single biomarker.
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