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Abstract: Melatonin, the hormone of circadian rhythm regulation, is involved in the modulation
of mitochondrial activity through its antioxidant and anti-inflammatory properties. Alteration of
circadian rhythms such as sleep is related to obesity and metabolic pathogenesis in adulthood,
but studies during childhood are scarce. The present study investigated the association of mela-
tonin with metabolic and inflammatory markers in children with (n = 113) and without obesity
(n = 117). Melatonin was measured in saliva four and two hours before bedtime, and after one hour
of sleep. Cardiometabolic factors, high sensitivity C-reactive protein, immune markers (monocyte
chemoattractant protein-1, plasminogen activator inhibitor-1, tumor necrosis α and interferon-γ),
leptin and ghrelin were determined. Sleep duration was recorded by a questionnaire. The mela-
tonin level at 1 h after sleep was found to be increased more than twofold in children with obesity
(90.16 (57.16–129.16) pg/mL) compared to controls (29.82 (19.05–61.54) pg/mL, p < 0.001) and was
related to fat mass (rho = 0.294, p < 0.001); melatonin levels at 1 h after sleep were inversely correlated
with high-density lipoprotein cholesterol. Positive correlation was found with apolipoprotein B,
adipokines, high sensitivity C-reactive protein, plasminogen activator inhibitor-1 and tumor necrosis
factor-α. Shorter sleep duration and earlier waking times were recorded in children with obesity. In
conclusion, melatonin in children with obesity appears to be involved in the global metabolic and
inflammatory alteration of this condition.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine), the main hormone that regulates circa-
dian rhythms [1–3], is secreted by the pineal gland in the evening when blue light decreases,
in response to a circadian pacemaker situated in the suprachiasmatic nuclei of the hypotha-
lamus, “the master clock”. Melatonin reaches the peripheral circadian oscillators, acting as
a chemical mediator that synchronizes the cellular oscillators in the brain with peripheral
organs, and aligning them with external time [4].

The pleiotropy of melatonin to act as a regulator of cell metabolism is related to
the diversity in the distribution of its receptors, mainly Melatonin receptor 1 (MT1) and
Melatonin receptor 2 (MT2) [3,5,6]. Melatonin has been shown to regulate carbohydrate
metabolism through the expression of the glucose transporter (Glut-4) and to participate
in immune system regulation [7,8]. In addition to its central role in circadian rhythm
regulation, melatonin is also a powerful antioxidant that limits the damage caused by
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oxidative stress either directly, by scavenging free radicals, or indirectly, by upregulating
the expression of antioxidant enzymes or downregulating the expression of enzymes
favoring free radical generation [9]. In this context, melatonin can exert anti-inflammatory
effects [3,8].

The action of this chronobiotic and cytoprotective agent is dependent on the dynamics
of the circulating hormone. Usually, melatonin level increases reaching a peak at the
beginning of the night [10–12]. Any alteration of the shape or the timing of this peak is
considered the most direct way to measure circadian rhythm impairment, also referred
to as “chronodisruption” [13,14]. In this way, changes in melatonin levels have been
documented in metabolic dysregulation in different animal models [15]. In adult humans,
especially in night-shift workers, numerous studies have shown that chronodisruption may
contribute to the development of a wide range of disorders, including obesity, hypertension,
type 2 diabetes or even immune-mediated diseases and cancers [16–19]. However, the
importance of life habits such as sleep has been investigated in children on only a few
occasions [20].

Melatonin is a biomarker used to study the effects of circadian disruption on neuro-
physiological, and metabolic processes [21]. A variety of methods for sampling and testing
melatonin have been described, but there are no established guidelines on the methodology
to use. Recently, the analysis of melatonin in saliva samples has emerged as the most
practical method currently used in sleep laboratories, but also in studies performed at
home [18,21,22].

Therefore, the objective of the present study was to reinforce the knowledge about cir-
cadian rhythms in childhood obesity and its relationship with anthropometric parameters,
metabolic and inflammation markers. This study was conducted in children with obesity
and with normal weight, measuring salivary melatonin that was collected at home at three
time points around sleep onset in an easy and feasible way in the pediatric population.

2. Materials and Methods
2.1. Subjects

The study design is an unmatched grouped case-control–recruitment without sam-
pling. Participants were children 7–14 years old recruited from the outpatient nutrition
office of the Pediatrics Department (Dr. Peset University Hospital of Valencia). They were
eligible for the study if they met at least one of the following criteria: (1) they were referred
for the evaluation of their nutritional status because of excessive weight gain; (2) they were
having a familial study of metabolic conditions (hyperlipidemia) or (3) they were going
through screening for celiac disease. Children were excluded if they met any of the fol-
lowing criteria: (1) they had a malabsorptive, genetic or endocrinological disease; (2) they
had an infection or acute inflammatory response; (3) they were receiving pharmacological
treatment; (4) they were receiving melatonin supplementation and (5) were practicing a
sport at a high level.

The sample size was calculated according to the following formula: n = (2 (Zα + Zβ)2

× S2)/d2. The association level for Zα and Zβ is 99%. As S, we use 11.4, corresponding to
the standard deviation of melatonin levels in children, characterized previously [23]. The
desired d is 7, corresponding to the minimum difference of melatonin levels in pg/mL.
With these parameters there was a total of 64 patients needed per group. Estimating a loss
of 15%, 74 patients per group were needed, thus a minimum of 148 participants in total.
The initial sample was composed of 267 children, 37 of whom were excluded because they
did not perform the minimum saliva collection required for melatonin assessment (100 µL).
The definitive sample was comprised of 230 children divided into two groups: a group
of children with obesity (the study group) and a group of children with normal nutrition
(control group). The study group included 113 children with a body mass index (BMI)
percentile >99 for their age and sex, with a mean age of 11.77 years old (standard deviation
of 2.39), of which 57 were girls and 56 were boys. The control group included 117 children
who attended the consultation for suspected celiac disease or screening for hyperlipidemia
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with an average age of 11.14 years old (standard deviation of 2.4), of which 59 were girls
and 58 were boys.

The study was carried out after the approval of the Ethical Committee. Informed
signed consent forms were provided by parents and children older than twelve years old.

2.2. Clinical Data

Measurements of weight and height were performed following standardized protocols
of the International Society for the Advancement of Kinanthropometry. BMI was calculated
as weight in kilograms divided by height in meters squared. BMI z-score values were
determined using the World Health Organization tables as references. Body composition
was determined by bioelectrical impedance using a Tanita BC-418 MA with 8 contact
electrodes (Tanita Europe BV, Hoofddorp, The Netherlands), fat mass percentage was
measured, and fat mass index was calculated as fat mass in kilograms divided by height in
meters squared.

Systolic and diastolic blood pressure and heart rate were measured by M3 Omron
digital blood pressure monitor HEM-7200-E8/(V) (Omron Healthcare, Kyoto, Japan).

The participants were asked to report the time at which they go to bed and the
hour at which they wake up, the time at which they have dinner and the number of
technological devices present in their bedroom. In addition, they complete with the
support of their parents a 3-day recall of their nutritional intake. Analysis of energy and
nutrients intake was performed by DIAL software (Alce Ingeniería SA, Madrid, España,
http://www.alceingenieria.net/nutricion.htm, accessed on 16 August 2021).

2.3. Biochemical Data

Blood samples were collected after twelve hours of fasting. Determinations were
performed under standardized conditions at the hospital laboratory. Glucose, high-density
lipoprotein cholesterol, apolipoprotein B, aminotransferases and γ-glutamyl transpeptidase
were measured using automated direct methods (Aeroset System® Abbott Chemical Clinic,
Wiesbaden, Germany). Insulin was determined using automated electrochemiluminescence
immunoassay (c8000® Architect, Abbott Clinical Chemistry, Abbott Park, IL, USA). High-
sensitivity C-reactive protein was analyzed by immunonephelometry with a Behring
2 nephelometer (Dade Behring, Marbung, Germany).

The adipokines leptin and ghrelin, hormones that trigger satiety and hunger, re-
spectively, and the immune markers monocyte chemoattractant protein-1, plasminogen
activator inhibitor-1 (PAI-1), tumor necrosis factor alpha (TNF-α) and interferon-γ were
determined via multiplex immunoassay (Labscan 100 Luminex©, Merck Millipore Merck
KGaA, Darmstadt, Germany) with Luminex technology using the specific software 3.1
(Luminex Corporation. Austin, TX, USA).

2.4. Melatonin Analysis

Three saliva samples were collected from each patient the evening before morning
blood extraction. Patients and parents were instructed about the procedure. Questionnaires
of sleep habits were distributed to participants that were returned after they filled them.
Children were asked not to use technological devices 15–30 min or to perform intense
exercise one hour before saliva collection. Each participant went to sleep and woke up at
their habitual hour. The collection of saliva according to the habitual bedtime took place
under dim light at three time points: 4 h before bedtime, 2 h before bedtime and after 1 h
of sleep. The parents were aware of the moment the child fell asleep by the change in
respiratory rhythm.

Saliva (at least 100 µL) was collected by the passive drool method into a single-use
collection tube. Once collected, the sample was kept at 4 ◦C and protected from light to
prevent melatonin degradation. The sample was retrieved by the investigator the next
morning and transferred to a cryotube for congelation at −80 ◦C until analysis. Before
analysis, saliva was centrifuged at 5000× g for 15 min at 4 ◦C. In the supernatant, the
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melatonin level was quantified via immunoassay using a salivary kit from Salimetrics
(Salimetrics, LLC, Carlsbad, CA, USA), and by following the instructions available online
at https://salimetrics.com/wp-content/uploads/2018/03/melatonin-saliva-elisa-kit.pdf,
accessed on 15 May 2021. The colorimetric reaction was quantified using a VICTOR TM X3
2030 multilabel plate reader (PerkinElmer, Waltham, MA, USA).

2.5. Statistics

The statistical analysis was performed with SPSS software (IBM SPSS Statistics for
Windows, version 24 (IBM Corp., Armonk, NY, USA)). A Kolmogorov–Smirnov test with
Lilliefors correction was used to assess normality of the variables. Since the collected data
followed a non-normal distribution, data are expressed as median (interquartile range). The
Wilcoxon test for paired data was used for intra-group comparisons, and Mann–Whitney
U tests for intergroup comparisons. The correlation assessments between melatonin at
1 h of sleep and the parameters analyzed in children with obesity were performed with
Spearman coefficient (rho). A p value of <0.05 was considered significant. For the figures,
R (R Core Team 2021, https://www.R-project.org/, accessed on 20 September 2021) was
used with the packages ppcor [24], dplyr [25] and ggplot2 [26].

3. Results

The first time point of melatonin measurement was late afternoon, four hours before
bedtime. At this moment, a similar concentration of melatonin was detected in the children
of both groups. Two hours later, the melatonin level started to increase in the study group
but not in the control group, although no significant difference was detected between
them. After going to bed and sleeping for one hour, the parents woke the participants up
and helped them to collect the last saliva sample. At this last time point, the melatonin
concentration increased in both groups, but the median melatonin concentration in the
study group was more than twice the concentration in the control group, and a significant
difference was noted with respect to the first point of saliva collection (Table 1 and Figure 1).

Table 1. Salivary melatonin levels (pg/mL) in children with obesity and control children during the
period of study.

Time Relative to
Sleep Onset Study Group Control Group p-Value

−4 h 3.55 (0.65–9.23) 3.72 (0.97–12.60) 0.659
−2 h 5.13 (1.22–17.75) 5.35 (1.84–12.23) 0.930
+1 h 90.16 (57.16–129.16) * 29.82 (19.05–61.54) * <0.001

Data are presented in median (interquartile range). Comparisons intergroup were made by Mann–Whitney
U tests. Comparison intragroup was made by paired Wilcoxon test for paired data. * p < 0.001 vs. −2 h and −4 h.

Correlation analysis was performed in the study group between melatonin at the last
time point (after 1 h of sleep) and the different parameters were analyzed.

Regarding anthropometry, significant correlation was found between melatonin after
1 h of sleep and the BMI z-score (rho = 0.233, p = 0.005), fat mass percentage (rho = 0.294,
p < 0.001) and fat mass index (rho = 0.333, p < 0.001). Melatonin concentration at this time
point was also significantly correlated with heart rate (rho = 0.288, p < 0.001) (Figure 2).

With respect to the metabolic parameters tested, the melatonin concentration after
+1 h of sleep only showed an inverse correlation with high-density lipoprotein cholesterol
(rho = −0.276, p < 0.001). Other parameters related to metabolic risk, such as apolipopro-
tein B (rho = 0.202, p = 0.015), leptin (rho = 0.181, p = 0.030) and ghrelin (rho = 0.209,
p = 0.012) were positively related (Figure 3). Glucose, insulin, aminotransferases and γ-
glutamyl transpeptidase were not found to be significantly associated with the nocturnal
melatonin level.

https://salimetrics.com/wp-content/uploads/2018/03/melatonin-saliva-elisa-kit.pdf
https://www.R-project.org/
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Figure 3. Correlation between night melatonin level (after 1 h of sleep) and biochemical parameters in children with obesity.
High-density lipoprotein-cholesterol (HDL-C). Apolipoprotein B (Apo B).

When we focused on the relationship between melatonin and inflammatory markers,
significant correlation was shown between melatonin after 1 h of sleep and with C-reactive
protein (rho = 0.199, p = 0.017). Significant association was also observed with the cytokines
PAI-1 (rho = 0.204, p = 0.014) and TNF-α (rho = 0.229, p = 0.006) (Figure 4), but not with
monocyte chemoattractant protein-1 nor interferon-γ.
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Figure 4. Correlation between night melatonin level (after 1 h of sleep) and inflammatory parameters in children with
obesity. High-sensitive c-reactive protein (hs-CRP). Plasminogen activator inhibitor-1 (PAI-1). Tumor necrosis factor-α
(TNF-α.).

No difference was found between the control and study groups regarding the esti-
mated time to fall asleep (p = 0.056), dinner hour (p = 0.529), number of technological
device (p = 0.305) or the caloric intake (p = 0.106) and no significant correlation was found
between these parameters and the melatonin level 1 h after sleep.

Furthermore, we asked the participants to report the time at which they went to bed
and the time at which they woke up. No difference was observed between the two groups
at bedtime, but the children with obesity reported an earlier waking hour than the control
group, and consequently, the time spent in bed was also shorter (Table 2).

Table 2. Self-reported timing of sleep, in children with obesity and control children.

Study Group Control Group p-Value

Bedtime (h) 22:30 (22:00–23:00) 22:30 (22:00–23:00) 0.166
Wake time (h) 7:15 (7:00–7:57) 7:30 (7:00–8:00) <0.001

Nighttime sleep (h) 8.45 (8.00–9.30) 9.00 (8.25–10.00) 0.002
Data are presented in median (interquartile range). Comparisons intergroup were made by Mann–Whitney
U tests.

4. Discussion

In the present study, we developed a method to determine melatonin levels in salivary
samples in an easy manner which may be feasible in children in their usual environment
of sleep. Salivary sample collection was performed at three time points around bedtime:
two time points in the evening before going to bed and one time point at night after 1 h
of sleep. We found a difference in the salivary melatonin concentration between children
with obesity and children with a normal weight in the measurement made after one hour
of sleep.

These higher melatonin levels may correspond to modifications within the shape,
amplitude, or timing of the melatonin peak in children with obesity. The time at which the
children were going to sleep and the time to fall asleep was homogeneous between the
two groups, whereas the waking up time was earlier in the children with obesity. Thus,
the early increase in melatonin level at night could be related to shorter sleep duration.
In this sense, it has been reported that insufficient sleep may trigger a metabolic stress
response [27].

Although evidence suggests that a late timing of food intake relative to sleep time
could have a negative impact on obesity [28], in the current study no difference in the time
of dinner and time of sleep was found between children with obesity and children with
normal BMI.

In the context of obesity, sleep deprivation may be an aggravating factor of cardio-
vascular risk because it can affect cardiac physiology, lipid metabolism and inflammation.
High heart rate is known to be correlated to fat mass and BMI [29]. Studies in adolescents
and young males suggests that an increased percentage of body fat is associated with
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reduced cardiac parasympathetic and increased sympathetic activity [30,31]. We have
observed that melatonin level at 1 h after sleep was related to the heart rate in children
with obesity. This is in line with animal studies that found that increased sympathetic tone
might underly a potentially compensatory increase in melatonin concentration [32].

Higher nocturnal melatonin levels were also found in children with lower values
of high-density lipoprotein cholesterol, a known protective factor for metabolic diseases.
Other parameters also correlated with melatonin levels were markers of subtle metabolic
disturbance, as apolipoprotein B, a classical marker of cardiovascular risk and considered
a proatherogenic factor [33]. The associations found between the night melatonin and
these different factors could support the hypothesis of a potential atheroprotective role
of melatonin which is increased to counteract the atherogenic effects of obesity. Whereas
animal models provide evidence of the beneficial regulation of cholesterol by exogenous
melatonin [34], clinical observations mainly failed to find a protective effect [35–38]. Al-
though this difference may be explained by the high interindividual variability in the
bioavailability of melatonin in humans [39], such inconsistencies make it difficult to give a
reliable opinion on the action of melatonin on the metabolism of lipoproteins.

Likewise, the orexigenic and anorexigenic hormones ghrelin and leptin, character-
istically affected by obesity, were also found to be correlated with melatonin at night.
Melatonin levels may affect the secretion and activity of leptin and ghrelin [40]. Indeed, a
shorter sleep duration implicates a greater period of wakefulness, which results in increase
in energy consumption. To compensate for this effect and restore the energetic balance,
melatonin may modulate the nutritional intake through regulation of the hormones of
hunger and satiety.

Finally, melatonin levels after 1 h of sleep were found to be positively associated
with inflammatory markers, high-sensitivity C-reactive protein, PAI-1 and TNF-α. Obesity
is considered a chronic inflammatory state of moderate intensity, frequently referred to
as “low grade and chronic inflammation” [41–43], of which the mentioned markers are
characteristic [44–47].

According to the results presented, we suggest that melatonin increase may represent
a counterregulatory mechanism against the consequences of obesity and the stimulation of
its endogenous production might attenuate the associated alterations.

The results of the present work may seem paradoxical because melatonin is habitually
presented as a protecting agent against metabolic disorders and obesity in intervention
studies. Indeed, animal studies performing pinealectomy and melatonin supplementation
showed a BMI reduction. Similarly, melatonin supplementation in human studies showed
beneficial effects on blood pressure and inflammation. Additionally, several studies suggest
that low melatonin production is associated with a higher risk of cardiac illnesses such as
left ventricular hypertrophy, coronary heart disease and congestive heart failure [13,48].

However, some studies also report, similar to the current study, an increase in mela-
tonin levels in patients with obesity [49]. In a study carried out in patients with cranial
tumors, melatonin levels at night were found to be proportional to BMI [50]. It is possible
that evolution of obesity over time may reveal the true meaning of the increased melatonin
in situations of cardiovascular risk and inflammation.

Limitations of the present study should be mentioned. No sleep monitoring device
was used. Therefore, no objective measurement proves the timing of collection respective
to sleep times. The parents were rigorously committed to determine when the child fell
asleep. This aspect could likely to limit the bias in a certain proportion. It also should
be noted the main strength of this study that lies in the melatonin measurement in the
habitual environment of the children facilitating the inclusion of a relatively high number
of participants.

5. Conclusions

We have found an increase in melatonin levels at 1 h of sleep in children with obesity,
related to fat mass and cardiometabolic risk factors. Melatonin, involved in antioxidant
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and anti-inflammatory defense, might be upregulated in the context of obesity as a com-
pensatory mechanism. The organism would trigger its production to increase sleepiness
and favor behaviors towards gaining sleep time or counteract the pro-inflammatory and
oxidative stress effects of obesity and sleep deficiency.
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