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Abstract

Objective: The number of COVID-19 cases in Indonesia

reflects the disease severity and rapid dissemination. In

response to the mounting threat, SARS-CoV-2 genomic

surveillance and the investigation of naso-oropharyngeal

bacterial communities in West Java were conducted, as

dysbiosis of the upper respiratory tract microbiota might

adversely affect the clinical condition of patients.

Methods: We utilized the Oxford Nanopore sequencing

platform to analyze genetic variation of 43 samples of

SARS-CoV-2 and 11 selected samples for 16S rRNA gene

sequencing, using samples collected from May to August

2021.

Results: The prevalence of AY.23 (>82%) predominated

among five virus lineages in the populations (AY.23,

AY.24, AY.26, AY.42, B.1.1.7). The region in the SARS-

CoV-2 genome found to have the highest number of

mutations was the spike (S) protein (>20%). There was

no association between SARS-CoV-2 lineages, mutation

frequency, patient profile, and COVID-19 rapid spread-

categorized cases. There was no association of bacterial

relative abundance, alpha-beta diversity, and linear

discriminant analysis effect size analysis with patient

profile and rapid spread cases. MetagenomeSeq analysis

showed eight differential abundance species in individual

patient profiles, including Pseudomonas aeruginosa and

Haemophilus parainfluenzae.

Conclusions: The data demonstrated relevant AY.23

dominance (the Delta variant) in West Java during that

period supporting the importance of surveillance pro-

gram in monitoring disease progression. The inconsistent

results of the bacterial communities suggest that a com-

plex multifactor process may contribute to the progres-

sion of bacterial-induced disease in each patient.

Keywords: 16S rRNA sequencing; Bacterial community;

COVID-19 rapid spread; Oxford Nanopore Technologies;

SARS-CoV-2 variants
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Introduction

The Coronaviridae family has caused several outbreaks in

recent years, including severe acute respiratory syndrome
(SARS) (2002), Middle East respiratory syndrome (MERS)
(2012), and recently, the COVID-19 pandemic that emerged

from Wuhan, China, in December 2019.1 The first reported
SARS-CoV-2 infection in Indonesia was recorded in
March 2020 and since then has rapidly spread in the com-

munity with more than six million total cases (10/09/2022),
massively threatening public health, economic and social
aspects.2,3 Middle-aged and elderly patients are considered

vulnerable COVID-19 groups in the community, so SARS-
CoV-2 surveillance and characterization of the patient’s
naso-oropharyngeal bacterial community are critical to

mitigate potential disease exacerbation in these vulnerable
groups. Furthermore, the region of West Java accounts for
16% of national cases, making it the province with the sec-
ond highest number of cumulative cases in the country.4e6

The pandemic impact was more threatening due to the
high rates of mutation in the virus, yielding more lineage
diversity. Mutations can induce selective pressure on the

SARS-CoV-2 genome that could affect its pathological
characteristics. A change in amino acid sequence can alter
the virus transmissibility, replication efficiency, and ability to

evade the immune system response. Reduced vaccine efficacy
is reportedly caused by mutations in B.1.617.2 variants
(Delta) compared to B.1.1.7 variants (Alpha) in patients who
only received their first dose.4,7,8 SARS-CoV-2 genomic

surveillance provides various data, including its characteris-
tics, mutation profile, and lineage diversity.9 It is essential to
monitor the currently circulating variants in the community

to ensure the efficiency of developed diagnostic kits and
vaccination programs.

Bacterial infection in COVID-19 patients is associated

with increased risk of morbidity and mortality.10 The
incidences of microbiota coinfection and/or secondary
infection in COVID-19 patients have been highly variable

throughout studies, but bacterial infection has consistently
been more frequently detected than fungus, archaebacteria,
and other viral infections.11,12 Moreover, studies have
reported different microbiomes present in COVID-19 pa-

tients, those who have recovered from COVID-19, and the
healthy control group.13e16 Potentially pathogenic bacteria
in the patients’ upper respiratory tract bacterial community

can be detected by fully sequencing the 16S ribosomal
RNA (rRNA) gene employing the Oxford Nanopore
Technologies (ONT) platform.17

The microbiota community study in COVID-19 patients
in Indonesia remains understudied.18 To the best of our
knowledge, there is no published study of bacterial

community analyses of middle-aged and elderly COVID-19
patients in West Java, Indonesia. SARS-COV-2 genetic
variants and bacterial community analyses might be corre-
lated with patients’ clinical records and COVID-19 rapid

spread cases, which will be elaborated upon if any associa-
tion is found between those parameters.

Materials and Methods

Sample preparation

Naso-oropharyngeal clinical swabs from three health in-

stitutions (Dinas Kesehatan Kabupaten Bogor, Labo-
ratorium Kesehatan Jawa Barat, Laboratorium Kesehatan
Daerah Karawang) from theWest Java region were collected

in viral transport media (VTM) tubes from May to August
2021. A total of 43 samples for SARS-CoV-2 genetic variant

http://creativecommons.org/licenses/by-nc-nd/4.0/
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analyses and 11 samples for bacterial community analyses
were selected based on the low cycle threshold (Ct) value

(<25) and middle-aged elderly (�40 years old) patient
criteria. Written informed consent was obtained before
using the samples. The Health Research Ethics Committee,

University of Indonesia, and Cipto Mangunkusumo
Hospital (HREC-FMUI/CMH; 20-10-1321_EXP) approved
the study protocol for the donated samples for research

purposes.

Nucleic acid isolation

Genomic SARS-CoV-2 RNA was isolated with the Viral

Nucleic Acid Extraction Kit II (Geneaid Biotech Ltd., New
Taipei City, Taiwan). Before PCR amplification, 43 VTM
samples were treated with the LunaScript RT SuperMix Kit

(New England Biolabs [NEB], Ipswich, MA, USA) to
construct cDNA from isolated RNA. Bacterial DNA was
isolated using the QIAamp DNA Mini Kit (Qiagen, Hilden,

Germany). All of the procedures followed the instructions
suggested by the manufacturers and were carried out in
Biosafety Level-2 and Biosafety Level-3 Laboratories, Cibi-

nong Science Center, National Research and Innovation
Agency (BRIN).

PCR amplification

For SARS-CoV-2 genetic variant analyses, modified
V3 and V4 primers from ARTIC network nCoV-2019
sequencing protocols19 were used to amplify the SARS-

CoV-2 genome. A modification in V3 protocol was applied
by adding 74F and 74R primers (0.3 mL at a final concen-
tration of 2.5 pmol in pool B).6 Multiplex PCR was

conducted with 30 s of heat activation at 98 �C; and 30
cycles of 15 s of denaturation at 98 �C and 5 min of
combined annealingeelongation at 65 �C. The PCR prod-

uct was run on a 1% agarose gel to qualitatively check the
overlapping 400 bp amplicons covering w30 Kbp SARS-
CoV-2 genomes.

For bacterial community analyses, the primers for

amplification of the V1eV9 bacterial 16S rRNA gene were
27F 5ʹ-AGAGTTTGATCCTGGCTCAG-3ʹ and 1492R 5ʹ-
GGTTACCTTGTTACGACTT-3ʹ. PCR was conducted

using the following protocols: 5 min pre-denaturation at
95 �C; 35 cycles of 1 min denaturation at 94 �C, 1 min
annealing at 55 �C, 1 min elongation at 72 �C; and 5 min

post-elongation at 72 �C. The 1500 bp-sized amplicons were
qualitatively checked on a 1% agarose gel.

Library preparation and sequencing

SARS-CoV-2 variant analyses

PCR products were purified with AMPure XP beads
(Beckman Coulter, Brea, CA, USA) in a 1:1 ratio. The

cleaned amplicons were subsequently quantified using the
Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Wal-
tham, MA, USA). The end prep reaction was briefly sub-

jected to the NEBNext Ultra II End Prep Kit (NEB), and
the native barcoding was processed using the NB
Expansion Kit 1-24 (ONT, Oxford, UK). In a single run,
the samples that would be sequenced were 23 barcoded

samples and one negative control. The 24 barcoded mix-
tures were then pooled and purified using AMPure XP
beads and quantified with Qubit. The AMII Adapter Mix

(ONT) was ligated to the barcoded mixtures with T4 DNA
ligase (NEB) before another cleanup with AMPure XP
beads and Qubit quantification. The final library was

briefly put on an ice rack before use, with only 20 ng of the
final library loaded into the R9.4.1 flow cell on the
MinION Mk1b/Mk1c or PromethION sequencer machine
(ONT). The sequencing process stopped when the

sequenced coverage achieved >99% with the reference
genome (Wuhan-Hu-1 MN908947.3).

Bacterial community analyses

Library preparation of bacterial community samples was

carried out following the 16S Barcoding Kit 1-24 SQK-
16S024 (ONT) protocol. The concentration of PCR prod-
ucts was quantified using the Qubit Fluorometer. PCR

amplification was performed as the following protocol:
1 min of pre-denaturation at 95 �C; 25 cycles of 20 s of
denaturation at 95 �C, 30 s of annealing at 55 �C, 2 min of

elongation at 65 �C; and 5 min of final elongation at 65 �C.
The crude amplicons were cleaned with AMPure XP beads
and washed with 70% ethanol. Before being pooled, the
samples were quantified with Qubit. The final library was

kept cold before being loaded into the R9.4.1 flow cell on
the MinION Mk1b/Mk1c or PromethION sequencer
(ONT).

Data analyses

Sequencing was carried out using MinKNOW (v20.06.4;
ONT) with a fast base-calling option and was monitored
with RAMPART (v2.1.0). The sequence consensus was

generated by ARTIC (v.1.1.0), and the base-calling process
was performed using Guppy (v4.0.14; ONT). The fastq reads
were aligned to the reference sequence, and the primer se-

quences were trimmed with minimap2 (v2.10-r761) or
Geneious Prime (v2022.1.1). Medaka (v1.0.3) workflows and
bcftools (v.1.10.2) were used to classify the variant, polish the
sequence, and build a consensus sequence.

For SARS-CoV-2 genetic variant analyses, the SARS-
CoV-2 lineages were identified using PANGOLIN
(v3.1.16), and pangoLEARN (v1.2.105). MAFFT20 was

used to align the sequences. IQ-TREE with UFBoot and
SH-aLRT 1000 replications and ModelFinder21e24 were
employed to construct a phylogenetic tree (maximum

likelihood [ML]; TIMþF evolutionary model).
For bacterial community analyses, 16S sequence data

were analyzed using EPI2ME (v3.4.2; ONT). All data were
statistically tested and visualized using Micro-

biomeAnalyst web service.25e27 Alpha diversity analyses
measuring the diversity of the intragroup was performed
with the Shannon Index.28 The statistical significance of

alpha diversity was determined using the ManneWhitney
and KruskaleWallis H tests. Beta diversity analysis was
performed to estimate the degree of diversity in the inter-

group. The beta diversity matrix distance was calculated
with BrayeCurtis measurement and was visualized by
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performing principal coordinates analysis (PCoA). Its
significance and effect size were measured using permuta-

tional multivariate analysis of variance (PERMA-
NOVA).28,29 Linear discriminant analysis effect size
(LEFSe) and metagenomeSeq algorithms were employed

to identify differentially abundant bacteria between
middle-aged versus elderly patients, male versus female
patients, and COVID-19 rapid spread versus nonrapid

spread cases.

Results

SARS-CoV-2 genetic variation

The AY.23 lineage dominated COVID-19 cases in all
patient groups (Figure 1). A total of 86% and 83% of
middle-aged and elderly patients, respectively, were
Figure 1: Visualization of SARS-CoV-2 lineage composition in the mi

patient group (B). The AY.23 lineage dominated all patient groups w

including AY.26, AY.24, and AY.42. A higher proportion of lineage

middle-aged and female patients.

Figure 2: Visualization of detected amino acid substitution frequency in

highest frequency are shown. The highest mutation occurrence was sp
infected with the AY.23 lineage, and so were 86% of female
and male patients. Other lineages were also observed,

including AY.24, AY.26, and AY.42 with a total of<18% of
middle-aged, elderly, female, and male patients.

The region having the highest number of mutations in the

virus genome was the spike (S) protein with 20% cumulated
amino acid substitution frequency (Figure 2). Other regions
with relatively high mutation frequency were the

nonstructural protein (NSP) 3 (NSP3) (18%), NSP12 (9%),
N protein (7%), and NSP15 (5%).

Phylogenetic reconstruction of 43 SARS-CoV-2
sequenced was performed by ML based on the TIM þ F

parameter model (Figure 3). A SARS-CoV-2 genome
(NC_045512.2) reference sequence labeled as EPI_-
ISL_402124 was used as an outgroup to define the phylo-

genetic tree root. AY.24 and AY.23 have an equal distance
from the referenced Wuhan sequence. AY.26 and AY.42
ddle-aged versus elderly patient group (A) and female versus male

ith a greater than 83% prevalence compared with other lineages,

AY.24 was observed in elderly and male patients compared to

the SARS-CoV-2 genomes. Only the top 19 substitutions with the

otted in the S protein region with 20% frequency.



Figure 3: Phylogenetic tree of SARS-CoV-2 identified lineages from 43 sample pools representing four lineages (PANGO lineage). The

grouping of certain lineages was based on the extent of variations in the genomes. The detected SARS-CoV-2 lineage was AY.23 (written

in black), which was found to be more closely related to AY.26 (red) and AY.42 (orange) than to AY.24 (blue) lineage. The used outgroup

was the Wuhan referenced sequence (NC_045512.2). This tree was built using MAFFT and IQ-TREE with 1000 UFBoot and SH-aLRT

replications.
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lineages were more closely related to the AY.23 lineage than
AY.24 and the reference sequence (Figure 3).
Bacterial community profile

Bacterial relative abundances were explored in 11

selected samples belonging to middle-aged and elderly
Figure 4: The taxonomic profile of the naso-oropharyngeal bacterial co

(A) The taxonomic profile overview of various OTU hierarchies show

classes, 26 orders, 38 families, 72 genera, and 233 species. (B) The

dominated by Firmicutes (48%), Bacteroidetes (28%), and Actinobac

than 10%.
patient groups, female and male patient groups, and
COVID-19 rapid spread cases and nonrapid spread cases.
We found a total of 1459 operational taxonomic units

(OTUs) assigned to five phyla, 12 classes, 26 orders, 38
families, 72 genera, and 233 species (Figure 4). Collectively,
Firmicutes (48%) were the most abundant phyla found,

followed by Bacteroidetes (28%), Actinobacteria (18%),
mmunity from middle-aged and elderly COVID-19 patient groups.

ed a total of 1459 OTUs that were classified into five phyla, 12

abundance of the identified phyla in the sample population was

teria (18%). The abundance of other phyla was only detected less



Figure 5: The relative abundance percentage comparison of bacterial community classes based on the patients’ age status and sex. Only

the top 10 classes are shown. WGS 129, WGS 157, and WGS 099 are marked with red squares to represent the COVID-19 nonrapid

spread cases.
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and Proteobacteria (5%) (Figure 4). The Bacilli class

dominated all patient groups including middle-aged,
elderly, female, and male patients (Figure 5). There was
no associated pattern between bacterial abundance and

the rapid spread-labeled cases as shown in Figure 5.
Alpha diversity results were not statistically significant

for all age-based patient groups (middle-aged and elderly)

and all sex-based groups (female and male), with p-values
of 0.93 and 0.54, respectively. Shannon indices for middle-
aged patients (2.88) were slightly higher than elderly pa-
tients (2.76), and female patients had lower indices

(2.61) compared to the male patient (3.05), although this
difference was not significant (Figure 6). The COVID-19
rapid spread cases were not different to nonrapid spread

cases.
Beta diversity results showed an identical degree of

dissimilarity (51.9%) in the comparison of middle-aged
versus elderly patients and female versus male patients
(Figure 7). However, none of these age- and sex-based pa-

tient groups had real meaning as the statistical tests were
insignificant with [PERMANOVA] F ¼ 0.64 and 0.92,
R2 ¼ 0.07 and 0.09, p < 0.77 and < 0.46, respectively, for

each group. The bacterial diversity in elderly patients was
found to be higher than that found in middle-aged patients.
Similarly, the bacterial diversity in male patients was also
higher than that in female patients, as indicated by the wider

covered areas of the ellipsoid pattern (Figure 7). The
nonrapid spread cases were found to have no specific
plotted features associated with certain patient groups as

shown in Figure 7.



Figure 6: Alpha diversity utilizing Shannon indices results were statistically nonsignificant in all groups. (A) Elderly patients had average

Shannon indices of 2.88, which was not significantly different from middle-aged patients at 2.76 (p ¼ 0.93). (B) Female patients had lower

Shannon indices of 2.61 compared to male patients at 3.05, which was also not significantly different (p ¼ 0.54).

Figure 7: Beta diversity was visualized by PCoA utilizing PERMANOVA with BrayeCurtis distance results being statistically insignif-

icant in all sample groups. (A) The comparison of middle-aged versus elderly patients showed a degree of dissimilarity of 51.9%

([PERMANOVA] F ¼ 0.64, R2 ¼ 0.07, p < 0.77). (B) The comparison of female versus male patients showed an identical result of 51.9%

([PERMANOVA] F ¼ 0.92, R2 ¼ 0.07, p < 0.77). The nonrapid spread cases of WGS 129, WGS 157, and WGS 099 are marked by red

squares.

Table 1: MetagenomeSeq analysis results of eight bacteria species based on FDR score (<0.05).

Bacteria Species p-values FDR Associated Patient Group

Limosilactobacillus fermentum 1.47E-06 0.000364 Elderly

Ligilactobacillus salivarius 3.79E-05 0.004695 Elderly

Pseudomonas aeruginosa 0.00025611 0.018879 Elderly

Cutibacterium acnes 0.00030449 0.018879 Middle aged

Corynebacterium propinquum 0.000209 0.035799 Female

Staphylococcus caprae 0.000289 0.035799 Male

Haemophilus parainfluenzae ATCC 33392 0.00057 0.035919 Female

Prevotella loescheii 0.000579 0.035919 Male

Note: p-value ¼ probability value, FDR ¼ false discovery rate.

SARS-CoV-2 variants and bacterial communities in COVID-19 patients76
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The differentially abundant species were not found to be
significant when LEFSe analysis was employed. Interestingly

however, eight bacteria species were associated with certain
groups based onmetagenomeSeq analysis (Table 1). The eight
differentially abundant species were Cutibacterium acnes in

middle-aged patients; Limosilactobacillus fermentum, Pseu-
domonas aeruginosa, andLigilactobacillus salivarius in elderly
patients; Corynebacterium propinquum and Haemophilus

parainfluenzae ATCC 33392 in female patients; and Staphy-
lococcus caprae and Prevotella loescheii in male patients.

Discussion

Genomic surveillance of SARS-CoV-2 clinical samples
has been essential to monitor virus evolution, enabling

analysis of the association between SARS-CoV-2 genetic
variation and the patients’ bacterial metagenomic data.4,6

This study, which characterized the SARS-CoV-2 genetic

variation and bacterial community from COVID-19 patients
with Nanopore sequencing, has three main findings. First, we
observed the similarity between the detected lineages of
circulating viruses in West Java and the national and global

infection waves. Delta variant (AY.23 lineage) was found to
dominate Indonesia’s second wave. Second, the parameters
being interrogated, including bacterial prevalence, relative

abundance, alpha diversity, and beta diversity, were not
associated with certain patient profiles. Third, L. fermentum,
L. salivarius, and P. aeruginosa were found to be associated

with elderly patients; C. acnes with middle-aged patients;
C. propinquum and H. parainfluenzae ATCC 33392 with fe-
male patients; and S. caprae and P. loescheii with male
patients.

A shift in SARS-CoV-2 variant domination during
Indonesia’s first and second waves of COVID-19 was
previously reported.6 Our study also confirmed that

Indonesian lineages were the most prevalent during the
first pandemic wave, whereas the Delta variants were
dominant during the second wave. High prevalence of

the AY.23 lineage, as one of the defined Delta variants,
was observed in all patient groups (Figure 1), indicating
that the transmission rate of this virus lineage was high

and did not discriminate against any patient’s age and
sex. All Delta variant lineages, including AY.23, AY.24,
AY.26, and AY.42, have increased transmissibility and
induced poorer outcomes.7 The mortality risk of

Indonesian COVID-19 patients was associated with
higher age, male sex, and pre-existing comorbidities.29 A
meta-analysis study30 found that elderly patients (�75

years old) have a higher morbidity and mortality risk
than middle-aged patients (60e74 years old) in China,
but these risks are not associated with the sex of the pa-

tient. Other studies also concluded that SARS-CoV-2
infection did not correlate with the patient’s sex.6,9,18

Although it should be noted that all of the
aforementioned studies looked at SARS-CoV-2 infections

in general, without considering any particular lineages .
In this study, lineage AY.23 was found to be the dominant

circulating lineage in West Java (Figure 3) and is therefore

relevant to the global infection cases.3,9,10 First
documented in India in September 2020 before being
detected in Indonesia in January 2021, the Delta variants
have since been dominating COVID cases globally.3 Other
than its high transmissibility, the high prevalence of the

Delta variant in the second wave of COVID-19 in
Indonesia was contributed by sociodemographic factors (i.e.,
the homecoming tradition before celebrating Eid Al-Fitr).

Additionally, many recreational sites were still operating
with health and safety measures despite the enforced re-
strictions on community activities (PPKM) in Indonesia,9

which may have contributed to the increased rate of
COVID-19 infections during May to August 2021.

Different lineages are defined based on the mutation set
detected on the SARS-CoV-2 genomes. The highest frequency

of amino acid substitutions was found in the S protein region
(Figure 2).3,31,32 Other regions with relatively high mutation
frequency were NSP3, NSP12, N protein, and NSP15

(Figure 2). These findings are in accordance with the top
globally detected mutation-containing regions in the
GISAID database and other studies.3,6,32 Mutations on the

RNA-dependent RNA polymerase (RdRp) region, including
NSP3 and NSP12, might affect the virus replication and
immunogenic evasive response.18

Among all substitutions detected, the D614G substitution

was found in 100% samples. This particular substitution was
frequently reported in the surge of Delta variants domination
and correlated with the increase in SARS-CoV-2 trans-

missibility and viral titer load in the respiratory tract.18,33

Another two mutations of interest were detected in nearly
all samples, namely L452R (100%) and P681R (98%).

L452R was reported to be a key mutation that increases
the stability of the S protein, promotes viral replication,
and indicates decreased binding to monoclonal antibodies

and subsequently may impact their neutralization
potential.32,34,35 Similarly, P681R substitution along with
L452R, N501Y, and P681H were found to correlate with
an increase in virus transmissibility and virus fusogenicity

to S protein, pathogenicity, and antibody
neutralization.32,35e37

The phylogenetic tree (Figure 3) revealed that the AY.23

lineage genomes were more closely related to the AY.26 and
AY.42 lineages than to the AY.24 lineage. It is important to
note that the lineage assignment by PANGOLEARN

(v1.10.2) in the PANGOLIN system (v3.1.30) is dynamic
with an average recall value for designated lineages of
95.8%, so the detailed lineage classification remains subject

to change. A sequence may be assigned to a different
lineage later in the future if there is a redefinition of one
lineage and/or when the lineage is declared inactive/
nonrelevant in the current spatiotemporal host

population.38e40

In this study, the relative abundances of bacteria at the
species level were considered low (Figure 4A), particularly

when compared to another study that found 919 species in
COVID-19 patients, 675 species in recovered patients, and
1476 species in the healthy control group.16 Differences in

bacterial abundance in those three groups suggests a
dysbiosis progression in COVID-19 patients. Another
study found that the diversity of microbiome in COVID-19
patients, recovered patients, and healthy control groups did

not differ at the phyla level, which were dominated by Fir-
micutes, Bacteroidetes, and Proteobacteria (Figure 4B).41 On
the other hand, some studies have found varying dominance
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of certain phyla. Either Actinobacteria being the most
dominant and followed by Firmicutes, and

Proteobacteria,18 or Proteobacteria was found to be the
major phyla followed by Firmicutes, and Actinobacteria.42

Nevertheless, all of those studies are in agreement with this

study, which revealed no association between certain phyla
or classes with patient profiles (Figures 4B and 5).

This study found that the alpha diversities of the samples

were insignificant (Figure 6) with any patient profile, which is
similar to the findings of a previous study.15 Rapid and
nonrapid spread-labeled cases were also not associated
with certain patterns or data. A more prevalent bacterial

infection in elderly patients (�60 years old) was previously
shown, eventhough it was not elaborated if the case was also
associated with a higher diversity of infecting bacteria.43

Alpha diversity of microbiota in COVID-19 patients was
lowest compared to the recovered patients and healthy
people.16

The beta diversity measured in this study was found
insignificant to patient profiles as found in similar study,16

albeit that same study reported significantly diverse
microbiota among COVID-19 patients, recovered patients,

and healthy groups. Rapid spread cases were shown to not
differ from nonrapid spread cases, as indicated by the
randomly distributed sample plot of those mentioned cases

(Figure 7). The microbiome of COVID-19 patients was
found to be more diverse than that of patients with upper
respiratory tract infection and chronic obstructive pulmo-

nary disease.41

LEFSe analysis is widely used to determine the differen-
tial abundance of bacteria species in select observed

groups.15,28 However, a few studies have noted the weakness
of this method, which is relatively insensitive, has low
discriminative power, and tends to detect false-positive re-
sults.44,45 The use of multiapproach in differential abundance

analysis is essential as there is no gold-standard method
agreed upon on this topic, and each published method has its
weakness and superiority.45 We managed this problem by

applying a false discovery rate-corrected p-value cutoff of
0.05 in LEFSe analysis and using a comparative alternate
method with metagenomeSeq. MetagenomeSeq is supposed

to detect false-positive results in high replication data
(>10),46 which is opposed to the mentioned consistency of
this method in other studies.44,45

Interestingly, there were differences in outcomes between
the two employed approaches. While LEFSe did not find any
single differential abundant species, metagenomeSeq found
eight different abundant species associated with certain pa-

tient groups. This outcome could be impacted by the
different characteristics of statistical tests used in the
respective approach (LEFSe vs. metagenomeSeq).45

L. fermentum, P. aeruginosa, and L. salivarius were asso-
ciated with elderly patients, while C. acnes was associated
with middle-aged patients. The findings of L. fermentum and

L. salivarius are interesting because these two species are
generally classified as probiotic bacteria in the human body
and not normally discovered as commensal bacteria in the
upper respiratory tract.47,48 Meanwhile, P. aeruginosa is an

opportunistic pathogen that is classified as one of the
ESKAPE pathogens group because it has multidrug
resistance12 and was also reported to be discovered in low

prevalence (9%) in other studies11,49 C. acnes is a normal
microbiota on human skin, oral cavity, digestive tract, and
the urogenital tract. However, this bacterium is also an

opportunistic pathogen capable of invasively causing
pneumonia, infection in the respiratory tract, and
pleuropulmonary in rare cases.50,51 Despite this different

niche between the four bacteria, all of them share a
similarity in that some of their strains have a potential
antibiotic resistance,12,48,50,52 so their existence in the upper

respiratory tract should be given more attention.
C. propinquum and Haemophilus influenzae ATCC 33392

were associated with female patients, while S. caprae and
P. loescheii were associated with male patients.

C. propinquum is a commensal bacterium that is also re-
ported as differentially abundant bacteria in COVID-19
patients.41 H. parainfluenzae and S. caprae are classified as

commensal bacteria but have also been reported to be
opportunistic pathogens. Haemophilus spp. have multiple
drug-resistance genes and have been associated with an

increased prevalence of acute respiratory infection.53,54

Additionally, P. loescheii has been associated with
impacting the hematological indices of COVID-19
patients.15

All of these differently abundant bacteria might
contribute to the disease progression. The microbial com-
munity could affect the clinical manifestation, morbidity,

and mortality risks of COVID-19 patients with the increasing
probability of pathogen coinfection, secondary infection,
and or infection resulting in opportunistic pathogen in-

fections while being in a complex interaction with the human
immune system.11,13,55,56 In contrast with our study, a few
studies did not find real differences in bacterial

communities in COVID-19 patients versus non-COVID-19
patients with respect to the age and sex of the patient.18,57

The different bacterial communities observed in our study
versus a few other studies might be affected by complex

multifactors, including the patient’s age and sex,
geographical factor, medical treatment, pollutant exposure,
and genotype.12,13,18

Our study presented a domination of Delta variant and
naso-oropharyngeal bacterial communities in all patient
groups, albeit no association was found between the above-

mentioned factors. The relatively insufficient clinical data
and small sampling region were a few limitations of this
study. The collected data may not represent the entire West

Java region due to additional inclusion criteria for whole
genome sequencing. This study was focused on theWest Java
region because of its high prevalence of COVID-19 infection
cases at that time.6 Nevertheless, the relatively small clinical

data were accompanied by in-depth analyses of the existing
literature and metagenomic analyses. Our metagenomic an-
alyses of the naso-oropharyngeal bacterial community in

middle-aged and elderly COVID-19 patients in West Java is
the first published work in this time frame.

Future studies are needed by collecting comprehensive

clinical data, including asymptomatic cases; designing more
stringent surveillance in longitudinal studies to observe the
dynamics of the bacterial community in the patients; and
adding another analysis parameter by analyzing the gutelung
axis bacterial community in COVID-19 patients. These con-
siderations are important for better genomic and meta-
genomic surveillance in Indonesia, specifically in the West

Java region. Nevertheless, we successfully obtained data on
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SARS-CoV-2 genetic variations and the bacterial community
of the COVID-19 patients of certain groups. Thus, this study

adds to the body of literature on the much-needed informa-
tion on SARS-CoV-2 evolution, the bacterial community
profiles in those patients, and also the association among the

virus, the bacterial community, and patients’ profile in West
Java, Indonesia.
Conclusions

The AY.23 lineage (Delta variant) dominated the COVID-
19 cases in West Java in the second wave of the pandemic in
Indonesia (May to August 2021). The highly mutated genome
region in SARS-CoV-2 was the S protein region. We noticed a

wide variety of naso-oropharyngeal bacterial communities in
all of the patients, indicating a unique microenvironment in
the patients’ naso-oropharyngeal tract. However, there was

no association between SARS-CoV-2 genetic variation and
bacterial community in COVID-19 patients with the COVID-
19 rapid spread cases on clinical samples from middle-aged

and elderly COVID-19 patients in West Java.
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