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ABSTRACT
New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents
a distinct form of nervous system plasticity. During embryonic development, precise temporal and
spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar
between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell
(NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following
developmental assembly, it remains relatively unclear what may be the key driving forces that
sustain continued production of neurons in the postnatal/adult brain. Recent experimental
evidence suggests that patterned activity from specific neural circuits can also directly govern
postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic
modulation, and how patterns of neuronal activity and acetylcholine release may differentially or
synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs
regulating cholinergic neuron firing, and their implications in neurogenesis control are also
considered.
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Introduction

Resident neural stem cells (NSCs) in the brain present
exciting possibilities for tissue regeneration and remodel-
ing.1,2 During embryonic development, neurogenesis
proceeds like clockwork, generating a full range of neu-
rons in correct spatial and temporal sequences, enabling
proper assembly of functional neural circuits. In the
postnatal and adult mammalian brain, it is now well-
accepted that NSCs are retained in discrete anatomical
regions including the hippocampus and the walls of the
lateral ventricles. Their continuous production of new-
born neurons in the rodent lateral ventricular (LV) sub-
ventricular/subependymal zone (SVZ/SEZ) niche and in
the hippocampal dentate gyrus subgranular zone (SGZ)
(as well as potentially in the human striatum) offers
endogenous sources for tissue regeneration and neural
circuit plasticity.3-6 Maintaining a tissue stem cell popu-
lation requires extra energy and resources, and when
they acquire oncogenic mutations these proliferative cells

can become a source for tumor formation,7,8 contribut-
ing harmful sequelae to the host tissue.9 While the need
for neurogenesis during development to build the ner-
vous system is rather clear, it remains relatively unclear
what biological processes may be driving and sustaining
new neuron production in specific regions in the post-
natal/adult mammalian brain.

Postnatal neurogenesis in rodents provides a tractable
experimental model to tackle molecular/cellular-level
mechanisms regulating addition of new interneurons
into established neural circuits.10-14 In the SGZ, astro-
cyte-like type 1 NSCs give rise to transient type 2 prolif-
erative progenitors, which then produce DCXC cells that
mature into local dentate granule neurons.15,16 Ongoing
SGZ neurogenesis in rodents contributes importantly to
memory processing17 and neurological disease model-
ing,18 as well as having significant parallels in the human
brain.19 LV neurogenesis is mediated by CSF-contacting
GFAPC glia functioning as NSCs, producing Mash1C
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transiently amplifying progenitors which in turn differ-
entiate into DCXC neuroblasts that migrate to and
become interneurons in the olfactory bulb.20,21 Genera-
tion of new neurons and glia from the LV niche contrib-
utes to experience-dependent plasticity in the postnatal
brain,22,23 tissue remodeling after injury,24,25 and plays a
critical role in olfactory-based rodent social behaviors.26-
28 In the postnatal human brain, while some groups
have reported potential olfactory bulb neurogenesis into
adulthood,29,30 there is strong evidence that LV neuro-
genesis generates migrating interneurons for up to 2 y
after birth.31 It has become increasingly clear that neuro-
developmental defects can be significant contributors to
various brain pathologies later in life. Thus the analo-
gous process in rodents can help us understand experi-
mentally how NSC production of new neurons may be
influenced by sensory/neural-circuit inputs during early
postnatal human brain development.

It has been well-demonstrated that self-renewal of
postnatal NSCs and their differentiation into neurons
are controlled by conserved, cell-intrinsic molecular
pathways.32-34 Extracellular factors and cell-cell interac-
tions within the neurogenic microenvironmental niche
also play critical roles regulating neurogenesis.35-38 Like-
wise, neurotransmitters such as GABA, glutamate,
dopamine, and serotonin also contribute important
modulatory roles during postnatal neurogenesis39-44: it
has been generally assumed that neurotransmitters
function through bulk release/non-synaptic mecha-
nisms in the postnatal/adult neurogenic niches. In this
fashion they are cytokine or growth factor-like, control-
ling NSC properties as neurotransmitters are leaked
from nearby neuronal synaptic contacts following activ-
ity-dependent release. GABA spill-over from local
parvalbuminC interneuron regulating SGZ NSC prolif-
eration/differentiation is an excellent example.45-47

Postnatal/adult NSCs often proliferate and differenti-
ate in close proximity to neurons firing action potentials:
the LV niche is anatomically adjacent to the striatum;
and the SGZ niche is an integral part of the hippocam-
pus. Thus neuronal activity patterns are attractive modu-
lators for NSC proliferation and differentiation.
Conceptually, if NSC fate choices can be directly linked
to specific instructions from neuronal activity patterns,
this will have important impact on circuit-level plasticity
through new neuron production, as well as in nervous
system diseases. This review will focus on cholinergic
circuit control of postnatal neurogenesis: due to the
complexity of cholinergic receptor physiology/function,

the exact roles for acetylcholine (ACh) in this context
have been difficult to define. Classical approaches
including lesioning of cholinergic fibers, as well as phar-
macological modulation of nicotinic and muscarinic
receptors, first revealed the importance of cholinergic
signaling in postnatal neurogenesis control. Recent find-
ings incorporating optogenetic manipulation of choliner-
gic circuit have uncovered a direct link between
neuronal activity patterns and neurogenic proliferation.
In this mini-review, we will summarize these anatomical,
pharmacological, and functional experimental results,
and speculate on local cholinergic circuit wiring diagram
and its possibilities for higher-level brain inputs that
connect to behavioral paradigms/disease states.

Anatomical lesions and their effects on postnatal
neurogenesis

Cholinergic neurons in the mammalian brain can be
generally categorized into local interneurons such as
those in the central cortex, hippocampus, and striatum;
or long-range projection neurons such as those in the
magnocellular basal nucleus, pontomesencephalic teg-
mentum, cranial nerve motor nuclei, and motor neurons
in the spinal cord.48-52 For the projection neuron sub-
type, motor neurons in the spinal cord and cranial
nerves, parasympathethic cholinergic neurons in the spi-
nal cord, and cholinergic neurons within the sympa-
thethic nervous system have been well-described.53

Within the brain, projecting cholinergic neurons have
been organized into subgroups depending on their ana-
tomical locations and projections (Fig. 1A).54 The
nucleus basalis group includes: the nucleus basalis of
Meynert and magnocellularis (B), substantia innominate
(SI), and horizontal diagonal band of Broca (HDB). The
medial septal group includes the medial septal nucleus
(MS) and vertical diagonal band (VDB). And the pon-
tine cholinergic group in the upper brain stem includes
cholinergic neurons in the pedunculopontine tegmental
nuclei (PPT) and laterodorsal tegmental nuclei (LDT).
Cholinergic neurons within the local interneuron sub-
type are rather diverse, and include ACh-synthesising
neurons in the caudate-putamen; nucleus accumbens;
striatum; main and accessory olfactory bulbs; anterior
olfactory nucleus; olfactory tubercule; hippocampus;
cerebral cortex; basolateral hypothalamus; and spinal
cord.53 Despite this anatomical diversity among cholin-
ergic neurons, there are relatively few genetic strategies
to specifically target distinct subpopulations of
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cholinergic neurons. In the context of postnatal neuro-
genic niches, cholinergic neurons from the medial sep-
tum and the diagonal band of Broca are believed to
provide most of the cholinergic innervation to the SGZ
niche (Fig. 1B).55,56 A newly identified cholinergic neu-
ron population residing subependymally has recently
been shown to modulate LV niche neurogenesis
(Fig. 1C).57

A robust and efficient method to label all choliner-
gic neurons is to drive fluorescence reporter via Cre
recombinase expression from choline acetyltransferase
(ChAT, required for acetylcholine synthesis) gene
regulatory elements,58 although this approach does
not distinguish cholinergic neuron subtypes. Primary
anatomic lesion studies, while less elegant due to non-

specific side effects, do allow for regional targeting of
cholinergic neurons to access their potential functions
during postnatal neurogenesis. Transection of the fim-
bria-fornix, which disrupts basal forebrain cholinergic
projections to the hippocampus,59 has been reported
to result in a concurrent decrease in dentate gyrus
BrDU incorporation,60 suggesting decreased SGZ neu-
rogenesis. Similarly, direct injection of N-methyl-d-
aspartate (NMDA) to the cholinergic nuclei in the
medial septal region to create excitotoxic lesions also
reduced SGZ neurogenesis.61 Cholinergic neurons in
the basal forebrain, medial septum, nucleus basalis of
Meynert, and diagonal band of Broca all express high
levels of p75 neurotrophin receptor (p75NTR). This
exposes them to specific cellular elimination by precise

Figure 1. Cholinergic projections and neurogenic niches in the postnatal mouse brain. (A) Sagital section view showing major
cholinergic nuclei and their known projections. Nuclei of the nucleus basalis group include: nucleus basalis of Meynert and
magnocellularis (B); horizontal diagonal band of Broca (HDB); substantia innominate (SI). Nuclei of the medial septal group
include: medial septal nucleus (MS) and vertical diagonal band (VDB). Nuclei of the pontine cholinergic group include: latero-
dorsal tegmental nuclei (LDT) and pedunculopontine tegmental nuclei (PPT). Other notable cholinergic neuron groups are
found in: medial habenular nucleus (mHAB); striatum (St); and subependymal zone (SEZ). Major cholinergic neuron/nuclei
projection targets include: basal ganglia (BG); cerebellum (CB); cortex (Ctx); dorsal raphae nucleus (DR); hippocampus (Hip);
interpeduncular nucleus (IPN); lateral hypothalamus (LH); olfactory bulb (OB); pons (P); pontine reticular nucleus (PRN); sub-
stancia nigra (SN); thalamus (Th); and tectum (T). Neurogenic niches (LV and SGZ) are expanded in panels below. (B) Coronal
section view of the SGZ neurogenic niche in the dentate gyrus (DG). Blue fibers indicate innervating projections from medial
septal cholinergic neurons. Neurogenic cell types: astrocyte-like precursor (Type 1), transiently proliferating progenitor (Type
2), neuroblast, immature granule cell (GC), and mature GC. GLC D granule cell layer; ML D molecular layer of the DG. (C)
Coronal view of the LV neurogenic niche, showing subep-ChAT neurons as well as neighboring striatal cholinergic neurons
(St-ChAT). Neurogenic cell types include: (NSC) neural stem cell, Mash1C transiently proliferating progenitor (TPP), and
neuroblasts.
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stereotaxic injection of 192-IgG-SAP (192-Saporin), a
chemical conjugate of p75NTR mouse clonal antibody
to the ribosome-inactivating protein saporin. 192-Sap-
orin-mediated removal of medial septal cholinergic
neurons resulted in decreased SGZ neurogenesis,56,62

as well as decreased cellular proliferation in the LV
niche.63 Together, these anatomical studies suggested
that cholinergic neurons in the brain can play impor-
tant roles to control postnatal neurogenesis.

Muscarinic and nicotinic cholinergic receptor
activation and signaling

In addition to anatomical lesion studies, pharmaco-
logical approaches have also implicated cholinergic
signaling as an important pathway controlling
postnatal neurogenesis. ACh signals through both
nicotinic and muscarinic acetylcholine receptors
(nAChR and mAChR, respectively), which can be
specifically targeted by pharmacological agents.
Muscarinic agonists such as bethanechol, pilocar-
pine, and oxotremorine enhanced cellular prolifera-
tion when added to NSC cultures,64 hippocampal
slices,62 or in vivo,65,66, while muscarinic antagonist
had the opposite effect.67 Proliferation was also
enhanced in cortical precursors following mAChR
activation.68 While the effects are not as clear cut,
nicotinic stimulation also appears to increase neu-
rogenesis, as direct nicotine application in vivo
increased LV NestinC cellular proliferation, result-
ing in subsequent BrdU-labeled NeuNC granule
neurons in the olfactory bulb.69 In the SGZ, phar-
macological activation of the a7-subunit containing
nAChRs have been shown to increase cellular pro-
liferation.70 However, high doses of nicotine deliv-
ered chronically in vivo have an opposite effect in
decreasing SGZ neurogenesis.71 Even though char-
acterization of ACh receptor expression in neuro-
genic niches has not been extensive, LV NSCs have
been reported to express a3- and a4- subunit con-
taining nAChRs,57 similar to those residing in the
rostral migratory stream which displayed a3b4
nAChR activity.72 In contrast to NSCs and DCXC

neuroblasts, Mash1C transiently amplifying progen-
itors in the LV niche did not appear to express
functional ACh receptors.57 In the SGZ, IHC and
functional analyses have revealed the presence of
M1 and M4 subunit mAChR expressions, as well
as a7 and b2 nAChR subunit expressions in

immature hippocampal neurons.73,74 M1 and M4
mAChRs also co-label with proliferating SGZ cells
shortly following BrdU administration.75

These results suggest that adult neural stem/progeni-
tor cell populations are sensitive to levels and timing of
acetylcholine released, and that cholinergic receptor
subtypes may mediate differential effects on cellular
proliferation. mAChRs are metabotropic transmem-
brane proteins, coupled to G proteins, and activate var-
ious intracellular signaling pathways to provide
sustained cellular responses.76,77 Meanwhile, nAChRs
are pentameric, ionotropic channels consisting of sev-
eral subunits: one alpha C 4 other subunits named
beta, gamma, delta, and epsilon. nAChRs mediate fast
cholinergic transmission in the peripheral and central
nervous system.78 The subunit compositions of the var-
ious nAChRs determine their ionic permeability (e.g.
NaC, KC, Ca2C), affinity for ACh, channel current
kinetics, and channel desensitization.79-82 In the brain,
mAChR and nAChR types are present on neurons at
both synaptic and extra-synaptic sites,83-85, as well as
on glial cells.86,87

Low-level, sustained neuronal activity patterns that
result in consistently low concentrations of neurotransmit-
ter released are termed tonic firing patterns. On the other
hand,more robust, synaptic, and temporally salient neuro-
nal activities are referred to as phasic activity, occurring on
much finer time-scales.88 Neuronal activity patterns of
specific cholinergic populations can range from spontane-
ous low frequency spiking (tonic)89 to those that fire very
irregularly or respond strongly to specific salient stimula-
tion (phasic).90-92 The types of release will influence both
the concentration and temporal profiles of ACh signaling,
as well as the speed of ACh breakdown by acetylcholines-
terases, which are particularly effective in synaptic clefts.92

One notable feature regarding nAChRs is their rapid
desensitization following ACh-induced activation.80,81

This results in short bursts of ACh release having a qualita-
tively different effect on the receiving cell than ACh con-
tinuously present or absent (Fig. 2). Anatomically
speaking, activity-dependent ACh released from synaptic
sites facilitate fast, high concentration neurotransmitter
access to receptors (Fig. 2A), while bulk/volume ACh
release that occurs at non-synaptic sites or from nearby
synaptic spillover provide low level neurotransmitter via
diffusion over larger areas (Fig. 2B, C).93 These principles
of ACh differentially signaling through 2 receptors, with
temporal dynamics on nAChR activation/desensitization,
underlie key features of ACh’s important functions during
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neural circuit modulation (Fig. 2D). In neurons, nicotinic
andmuscarinic signaling can often be antagonistic, induc-
ing differential currents or polarizations, divergent calcium
signaling profiles,94 or distinct regulations of LTP.95 How-
ever, there are also examples where mAChR and nAChR
signaling can be cooperative, producing complimentary
depolarizing currents and convergence onto common bio-
logical intracellular cascades.96-98 This context-dependent
complexity in signaling capacity may provide a palette

richness for NSCs to functionally read-out subtle changes
in local ACh availability.

Identification of resident cholinergic neurons
in subependymal niche

While cholinergic pharmacology has an effect on adult
NSC proliferation in vivo,69 it remained unclear if
these putative actions attributed to ACh are due to

Figure 2. ACh release and receptor activation dynamics to convey neuronal activity patterns. (A) Schematic representation of ACh
released directly onto a receptive zone, with a high density of nAChR and mAChR receptors. In such specialized contacts (neuronal syn-
apse as an example), ACh upon release is quickly degraded by extracellular acetylcholinesterase. Nicotinic currents are typically rapid
and fast-inactivating, while muscarinic currents are longer lasting. (B) Multiple neuronal activations can cause released ACh to spillover
and activate nAChRs/mAChRs away from the immediate receptive zone. This leads to prolonged nicotinic and muscarinic currents in
the responding cell. (C) Volume release of ACh stimulates larger fields of receptors at low concentrations. Cholinergic currents evoked
by volume release may be small and prolonged. (D) Diagram of nAChR resting, activation, and desensitization cycle (cycle time D t,
receptor subtype specific). Depending on the timing of cholinergic neuron inter-stimulus intervals (ISI), the resulting patterns of ACh
release will enhance nAChR desensitization when ISI< t, or promote nAChR recovery for reactivation when ISI > t, resulting in distinct
nicotinic activation dynamics in the receiving cell. AChE D acetylcholinesterase.
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neuronal activity or are in fact indirect. To deter-
mine whether activity patterns from cholinergic
neurons can directly control neurogenesis, one
approach is to examine outcomes upon altering intrin-
sic excitability of these neurons. We conditionally
deleted Ank3, a large adapter protein known to local-
ize to neuronal axon initial segment, specifically in
cholinergic neurons (ChATIRES-Cre/C; ank3flox/flox).
Similar to previous observations in cerebellar Purkinje
neurons,99 Ank3-mutant ChATC neurons showed an
inability to precisely initiate and scale action potentials
to electrical stimulation in ChATIRES-Cre/C; ank3flox/flox

mutant mice.57 There was a marked reduction in
DCXC neuroblast chains along the LV niche, becom-
ing progressively worse in adult mice. Ki67 and
Mash1 IHC staining revealed a corresponding
decrease in LV niche cellular proliferation, while cas-
pase 3 staining showed no obvious increase in apopto-
sis. These results revealed that cholinergic circuit
activity and precision are required to sustain the
robustness of adult LV neurogenesis.

As cholinergic innervation is widespread in the brain,
disrupting its activity will likely contribute to many effects,

including modulation of non-cholinergic circuits. The
observed neurogenesis defects in ChATIRES-Cre/C; ank3flox/
flox mutant mice can also be caused by decreased ACh
release in the SEZ niche via direct cholinergic innervation.
To examine this possibility closer, we looked for choliner-
gic processes along the LVwall, and detected large ChATC

neuronal cell bodies residing subependymally within the
LV niche.57 DiI-filling of these subependymal ChATC

(subep-ChAT) neurons revealed complex neuronal pro-
cesses that were largely aspiny, and projected their axonal
processes locally in the subependymal space (Fig. 3). A
morphological feature for these subep-ChAT neurons,
which can be located in both young and adultmice (exam-
ined up to 6 months of age), is their planar appearance
paralleling the ependymal surface above. More impor-
tantly, unlike neighboring striatal cholinergic neurons
which are spontaneously active, the subep-ChAT neurons
did not exhibit basal-level spontaneous activity in acute
brain slice preparation. In vivo optogenetic stimulation of
subep-ChAT neurons in P30 ChATIRES-Cre/C; Rosa26R-
ChR2EYFP mice significantly increased the numbers of
Ki67C proliferating cells and neurogenic progenitors in
the LV niche. Conversely, in vivo optogenetic suppression
of subep-ChAT neurons in P30 ChATIRES-Cre/C; Rosa26R-
ArchaerhodopsinGFP mice decreased the numbers of
Ki67C, Mash1C, andDCXC cells in the LV niche.

To determine whether LV NSCs can directly detect
ACh release via cholinergic neuron activity, we per-
formed whole-cell patch recording in NSCs, while
simultaneously activating ChR2-expressing choliner-
gic inputs locally via 473 nm laser. This resulted in
consistent frequency-dependent inward currents in
NSCs, sensitive to both nicotinic and muscarinic
blockade (Fig. 3).57 These neuronal activity-dependent
responses from postnatal LV NSCs appeared distinct
from synaptic “spill-over” mechanisms.46 Mechanisti-
cally, a3b4 nAChR as well as a7-subunit containing
nAChRs have been reported to function during post-
natal LV neurogenesis.70,72 Our IHC antibody staining
and electrophysiological experiments revealed a3- and
a4-subunit containing nAChR, as well as mAChR
expression in nestin-CreER lineage-traced LV NSCs.57

Consistent with these results: a4b2 nAChR and M1/
M4 mAChR agonists have been shown to control SGZ
neurogenic proliferation and differentiation;100-102

and b2-subunit nAChR mutant mice have reduced
SGZ proliferation over the life of the animal.103

These findings revealed subep-ChAT neurons as inte-
gral components of the cholinergic circuit controlling

Figure 3. Subependymal cholinergic neuron bridging SEZ niche/
neurogenesis to neural circuit-level control. Schematic represen-
tation of subep-ChAT neuron (green) providing ACh to modulate
adult SEZ neural stem cells (NSC) production of new neuroblasts,
which then migrate and assemble into neuroblast chains. Dashed
lines represent putative excitatory (C, blue) or inhibitory (¡, red)
inputs onto subep-ChAT neuron dendrites. LV D lateral ventricle.

e1127310-6 B. ASRICAN ET AL.



postnatal LV neurogenesis. Beyond these subep-ChAT
neurons, it remains possible that there are other cholin-
ergic neurons whose activity contributes to LV neuro-
genesis control. Anatomically, the nearest such
population is located in the striatum: the well-studied
tonically-active striatal cholinergic neurons. While
genetic deletion of ChAT (removing ACh producing
ability) in the striatal cholinergic population via Nkx2.1-
Cre; ChATflox/flox mutant mice revealed no obvious LV
neurogenesis defects,57 striatal cholinergic neurons may
still play a role under physiological conditions that can
be compensated for as needed by subep-ChAT neurons.

Circuit level control of cholinergic neuron
activity

It is of great interest to understand, at the circuit level,
how cholinergic neuron activity is regulated, resulting
in postnatal neurogenesis control. Ank3 deletion from
ChATC neurons showed that precise cholinergic cir-
cuit activity is required to sustain the robustness of
adult LV neurogenesis. While IHC staining for p-
rpS6, an activity-dependent marker for cholinergic
neurons,104 revealed that subep-ChAT neurons are
normally active in vivo, they lacked spontaneous activ-
ity in acute brain slice preparation, indicating their
activity is contextually controlled by higher-level
inputs. The sources for excitatory/inhibitory inputs
onto subep-ChAT neurons are currently unclear,
although CNS cholinergic neurons such as those
found in the striatum, basal forebrain nuclei, hypo-
thalamus, medial habenula, pontomesencephalic teg-
mentum, and medullary tegmentum, tend to have
highly stereotyped patterns of afferent connectivity,105

serving as potential blueprints for subep-ChAT neu-
ron connectivity. First, there is rich inter-connectivity
between cholinergic cell groups, which form a contig-
uous plexus of overlapping dendritic arbors, collec-
tively allowing each subsystem (e.g., striatum, basal
forebrain, and pontomesencephalon) to receive and
integrate information from various sensory modali-
ties.106 Second, forebrain cholinergic neurons gener-
ally receive excitatory cortical inputs (Fig. 4).105 This
pattern of innervation has been hypothesized to pro-
vide a means for global integration of ongoing neural
activity, as cholinergic cell groups are frequently
implicated in the modulation of attention and arousal
associated with the reticular activating system.107 Fur-
thermore, striatal cholinergic neurons adjacent to the

LV niche, as well as those in the nucleus basilis, receive
inputs from the intralaminar thalamus, as part of the
reticular activating system (Fig. 4).105 All cholinergic
neuron groups also receive noradrenergic input from
the locus ceruleus and subceruleus.108 The basal fore-
brain, striatal, diencephalic, and pontomesencephalic
cholinergic groups also receive sparse nigral or ventral
tegmental dopaminergic inputs (Fig. 3).105

Within the striatum as a specific example, choliner-
gic neuron activity patterns are dynamically controlled
via distal excitation modulating intrinsic neuronal
membrane properties.109,110 The large, aspiny cholin-
ergic interneurons of the striatum, referred to as toni-
cally active neurons (TANs), represent a particularly
well-studied population of spontaneously firing cho-
linergic neuron. In TANs, spontaneous activity is

Figure 4. Example functional connectivity of a subgroup of CNS
cholinergic neurons. Striatal cholinergic neurons (TANs) receive
glutamatergic inputs from both cortex and intralaminar thala-
mus, as well as dopaminergic modulation from the substantia
nigra pars compacta (SNc). Medium spiny neurons (MSNs), pro-
jection neurons in the striatum, express either type 1 or type 2
dopamine receptors (D1 or D2, respectively). Following thalamic
stimulation, TANs generate a burst-pause pattern of activity that
transiently and presynaptically inhibits thalamic and cortical exci-
tation of D1 and D2 striatal MSNs through muscarinic receptor
subtype M2 signaling. It also initiates a sustained, muscarinic
receptor subtype M1-mediated facilitation of dendritic respon-
siveness in D2 MSNs: resulting in a bias of cortical and thalamic
excitation toward D2 expressing, striatopallidal MSNs for the
duration of the pause in TAN activity. The pause is dependent on
dopaminergic signaling onto TANs. Functionally, thalamic excita-
tion of TANs is thought to provide a window in which excitation
of D2-expressing MSNs is enhanced, allowing for preferential
recruitment of the striatopallidal pathway. Such wiring diagrams
may serve as useful models to study subep-ChAT neuron connec-
tivity. Distinct neuronal cell types and projection patterns are rep-
resented in different colors for clarity.
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mediated by intrinsic membrane properties, specifi-
cally a sodium current and hyperpolarization-acti-
vated cation current which together drive tonic
firing.89 Salient stimuli produce a characteristic pause
in TAN firing, and TANs have long been viewed as
important substrates for striatal associative and motor
learning.111,112 In contextual recognition of salient
stimuli driving action selection, the temporal, spatial,
and motivational context of salient stimuli have all
been shown to play a role in regulating spontaneous
striatal cholinergic neuron activity.113 Similar pauses
in cholinergic TAN activity are generated following
stimulation of nigrostriatal afferents,110 and a burst-
pause firing pattern is generated in response to stimu-
lation of the intralaminar thalamus (Fig. 4).109

Although subep-ChAT cells are silent under resting
conditions, this is relatively rare among other cholin-
ergic cell groups.90,114 It remains to be seen whether
the distinct activity profiles of subep-ChAT neurons
vs. neighboring striatal TANs in brain slice prepara-
tions are due to differences in intrinsic membrane
properties or their inhibitory tone. Within the local
microcircuitry, GABAergic inhibitory interneurons
can also provide dynamic control to alter cholinergic
neuron activity states.114 While it has been well dem-
onstrated that GABA is an important protein for sev-
eral cell types during postnatal LV neurogenesis,115,116

its sources in the niche remains largely unclear. Con-
ceptually, since cholinergic neurons groups are
broadly interconnected, it is an intriguing possibility
that subep-ChAT neurons participate in and sample
the cholinergic plexus to transform global cascades of
activity within the cholinergic system into functional
neurogenesis. Furthermore, if subep-ChAT neurons
are involved in associative learning tasks, believed to
be an important function for striatal cholinergic
TANs, a similar configuration of circuit-level connec-
tivity may allow subep-ChAT neurons to respond to
environmentally salient stimuli to direct neurogenesis.
The highly stereotyped connectivity patterns of other
cholinergic groups provide a template and substrate
for investigating the circuit wiring diagram of subep-
ChAT neurons.

Conclusion

Like a computer needing hardware upgrades to run
increasingly sophisticated software, it is tempting to
speculate that postnatal neurogenesis endow

particular neural circuits with this capacity. The fact
that neuronal firing patterns can direct NSC prolifera-
tion takes this concept one step further, and proposes
that perhaps certain critical neural circuits may func-
tionally instruct NSCs for their own neuronal addi-
tions over time. There are parallels in the glial biology
field: pioneering study by Barres and Raff in 1993
showed that oligodendrocyte precursor proliferation
can be dependent on neurons generating action poten-
tials.117 Neuronal activity-dependent increases in mye-
lination is now a well-accepted observation, and recent
studies extended this concept to show the lack of
inhibitory post-synaptic currents on oligodendrocyte
precursors contributing to white matter defects fol-
lowing hypoxic injury,118 as well as glioma cellular
proliferation profiting from neuronal activity.119 It is
likely that future studies will find additional examples,
perhaps in the process revealing that the control of
postnatal neurogenesis by neuronal activity may be
the norm, rather than an exception for cells proliferat-
ing in the brain in health and disease.
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