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ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen with
strong virulence and an invasive nature. Here, we report the complete genome of
strain XN-1, which was isolated from the sputum of a severe pneumonia patient.
The complete genome consists of one chromosome with 6,340,573 bp. Genome an-
notation predicts 5,974 coding sequences, 64 tRNAs, and 12 rRNAs.

Pseudomonas aeruginosa, a versatile Gram-negative pathogen, is a major health
challenge that causes recalcitrant multidrug-resistant infections, especially in im-

munocompromised and hospitalized patients (1). Furthermore, it is an opportunistic
pathogen responsible for ventilator-acquired pneumonia (VAP). VAP due to P. aerugi-
nosa is usually multidrug resistant and associated with severe infections and increased
mortality rates (2). P. aeruginosa is one of the six superbugs that are threats all over the
world because of their capacity to become increasingly resistant to all available
antibiotics (3, 4). Moreover, the high rate of mutation allows it to evolve rapidly and to
adapt to a multitude of conditions (5).

Here, we report the complete genome sequence of strain XN-1, which was isolated
from the sputum of a severe pneumonia patient at Southwest Hospital in Chongqing,
China. P. aeruginosa XN-1 (CCTCC M2015730) was isolated from a severe pneumonia
patient and deposited in the China Center for Type Culture Collection (CCTCC). Ac-
cording to our previous studies (6–8), strain XN-1 has strong virulence. In a mouse
model of acute pneumonia, no mouse survived 36 h after challenge with a lethal dose
of bacteria (1.0 � 107 CFU) (6, 7). Moreover, XN-1 is resistant to different antibiotics,
including carbapenems, imipenem, and ciprofloxacin (6–8). To better understand the
virulent nature and resistance mechanisms of XN-1, the genome was sequenced.

P. aeruginosa XN-1, which had been stored at �80°C, was grown on an LB agar plate
at 37°C overnight. A single colony was then picked and grown in LB medium at 37°C
for 6 h. The cells were collected by centrifugation, and genomic DNA of P. aeruginosa
XN-1 was isolated using the DNeasy blood and tissue kit (Qiagen) according to the
manufacturer’s protocol. A standard library of 20-kb fragments was established with
SMRTbell methods. The genome of the strain was sequenced by single-molecule
real-time (SMRT) sequencing using the Pacific Biosciences (PacBio) RS II platform to
obtain high-quality data on the original DNA sequence (9). The total number of reads
sequenced is 107,702, and the N50 value is 13,257 bp.

The continuous long reads were assembled using the HGAP v3.0 protocol (10).
Polishing and error correction were performed with Quiver v0.9.2 (10). The software
GLIMMER (Gene Locator and Interpolated Markov ModelER) v3.02 (11), tRNAscan-SE
v1.23 (12), and RNAmmer v1.2 (13) were used to predict gene structure, tRNAs, and
rRNAs, respectively. The final assemblies generated by the approach consist of a single
circular chromosome of 6,340,573 bp with a mean G�C content of 66.53%. The total
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genes predicted for XN-1 were 5,974 coding sequences, 64 tRNAs, and 12 rRNAs,
including 4 copies each of 5S, 16S, and 23S rRNAs.

A total of 190 tandem repeats and 16 simple sequence repeats were predicted using
Tandem Repeats Finder (TRF) v4.09 (14) and MISA v1.0 (15), respectively. The CRISPR
structure of the bacterial genome was predicted using MinCED v0.2.0 software (16), and a
total of 10 possible CRISPR components were identified. In addition, functional annotation
of the genome was curated and enriched using various databases, including the Clusters of
Orthologous Groups of proteins (COG) (17), Gene Ontology (GO) (18), Kyoto Encyclopedia
of Genes and Genomes (KEGG) (19, 20), Swiss-Prot (21), and NCBI nonredundant protein
databases. A summary of the functional annotation of the genome is presented in Table 1.
Default parameters were used for all software unless otherwise specified.

The genome sequence presented here will be a valuable resource for better
understanding the pathogenomic evolution of P. aeruginosa XN-1 by comparing this
pathogenic isolate to the extant genotypes. The complete genome sequence of P.
aeruginosa XN-1 should provide further insights into the pathogenic mechanism and
could have implications for defense against this pathogen.

Data availability. The whole-genome project for P. aeruginosa strain XN-1 was
deposited in the SRA. The BioProject accession number is PRJNA636895, and the
BioSample number is SAMN15088354 (SRX8457197).
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