
The effect of call libraries and acoustic filters on the
identification of bat echolocation
Matthew J. Clement1, Kevin L. Murray2, Donald I. Solick3 & Jeffrey C. Gruver3

1United States Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland 20708
2Western EcoSystems Technology Inc., Bloomington, Indiana 47404
3Western EcoSystems Technology Inc., Cheyenne, Wyoming 82001

Keywords

Acoustic surveys, Anabat, Analook, bat

detectors, Chiroptera, classification, cross-

validation, discriminant function analysis,

Myotis sodalis, species identification.

Correspondence

Matthew J. Clement, United States

Geological Survey, Patuxent Wildlife Research

Center, Laurel, MD 20708, USA.

Tel: +301 497 5709; Fax: +301 497 5666;

E-mail: mclement@gmail.com

Funding Information

This research was supported with funds from

the U.S. Fish and Wildlife Service, U.S. Forest

Service, and Missouri Department of

Conservation.

Received: 30 May 2014; Revised: 16 July

2014; Accepted: 17 July 2014

Ecology and Evolution 2014; 4(17): 3482–

3493

doi: 10.1002/ece3.1201

Abstract

Quantitative methods for species identification are commonly used in acoustic

surveys for animals. While various identification models have been studied

extensively, there has been little study of methods for selecting calls prior to

modeling or methods for validating results after modeling. We obtained two

call libraries with a combined 1556 pulse sequences from 11 North American

bat species. We used four acoustic filters to automatically select and quantify

bat calls from the combined library. For each filter, we trained a species identi-

fication model (a quadratic discriminant function analysis) and compared the

classification ability of the models. In a separate analysis, we trained a classifica-

tion model using just one call library. We then compared a conventional model

assessment that used the training library against an alternative approach that

used the second library. We found that filters differed in the share of known

pulse sequences that were selected (68 to 96%), the share of non-bat noises that

were excluded (37 to 100%), their measurement of various pulse parameters,

and their overall correct classification rate (41% to 85%). Although the top two

filters did not differ significantly in overall correct classification rate (85% and

83%), rates differed significantly for some bat species. In our assessment of call

libraries, overall correct classification rates were significantly lower (15% to

23% lower) when tested on the second call library instead of the training

library. Well-designed filters obviated the need for subjective and time-consum-

ing manual selection of pulses. Accordingly, researchers should carefully design

and test filters and include adequate descriptions in publications. Our results

also indicate that it may not be possible to extend inferences about model accu-

racy beyond the training library. If so, the accuracy of acoustic-only surveys

may be lower than commonly reported, which could affect ecological under-

standing or management decisions based on acoustic surveys.

Introduction

Acoustic surveys are a common survey tool for a variety

of vocal taxa. Historically, these surveys have relied on

qualitative methods for species identification, but a vari-

ety of quantitative methods has been introduced in recent

decades. Fully quantitative species identification should

make surveys more objective, repeatable, and cost efficient

(Digby et al. 2013). Accordingly, various quantitative

models have been evaluated for surveys of birds (Acevedo

et al. 2009), anurans (Waddle et al. 2009), cetaceans

(Oswald et al. 2003), primates (Mielke and Zuberb€uhler

2013), bats (Armitage and Ober 2010), and other taxa.

Although the biology of these species varies, acoustic

identification methods are often quite similar. The identi-

fication process typically involves collecting a library of

calls of known species identity, extracting time and fre-

quency (and sometimes amplitude) data from call spec-

trograms, and using statistical techniques to predict the

species identity of vocalizations recorded during acoustic

surveys. However, research has focused primarily on the

final step, statistical discrimination of calls (e.g., Preatoni

et al. 2005; Acevedo et al. 2009). Methods include discri-

minant function analysis, neural networks, classification
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trees, and other techniques (Parsons and Jones 2000;

Oswald et al. 2003; Trifa et al. 2008). However, the first

two steps, collecting a library of known calls and extract-

ing parameters from calls, provide the foundation for sta-

tistical models and therefore demand methodological

rigor as well.

Call libraries represent a collection of data points sam-

pled from a population of animal calls. As such, unbiased

sampling is critical to developing valid statistical models.

If the call library is not representative, the resulting statis-

tical models will yield biased parameter estimates. Given

that vocalizations are known to vary systematically in a

variety of contexts, there is a risk of assembling unrepre-

sentative call libraries. For example, anuran calls vary with

geographic location (Snyder and Jameson 1965), bird calls

can vary among flocks (Nowicki 1983), primate calls can

differ among individuals (Price et al. 2009), cetacean calls

may vary with environmental noise (Parks et al. 2007),

and bat calls vary with habitat (Broders et al. 2004). If

the sample of calls in a library represents a limited set of

behaviors, habitats, and other relevant factors, then the

library will not be representative and we expect that sta-

tistical models will be poorly suited to identifying animals

recorded under different circumstances.

After compiling a library, calls must be quantified prior

to statistical analysis. When not manually measured, call

quantification can be accomplished using a “filter,” which

is an algorithm that both selects sounds to analyze and

measures sound parameters. Filters may be built into

available sound analysis software packages, and they may

be more or less customizable. Differences among filters

may cause them to select different sounds, which is likely

to affect the mean and standard deviation of call parame-

ters. A poor filter may also select inappropriate call frag-

ments or environmental sounds (e.g., rain and wind;

Waddle et al. 2009). Such noise can be subjectively

edited, but at the cost of time, objectivity and repeatabil-

ity (Digby et al. 2013). In addition, filter settings can

affect the measurement of a selected call. Given that filters

affect the call parameters supplied to statistical identifica-

tion models, they are likely to affect the outcome of those

models.

Because bats are inaudible to humans, bat researchers

are especially reliant on ultrasonic bat detectors to record

bat calls, and various quantitative methods for species

identification. These tools are used by academics, ecologi-

cal consultants, and government agencies to assess bat

behavior, habitat preferences, and presence or absence. In

many cases, acoustic surveys for bats inform important

wildlife management decisions. For example, acoustic sur-

veys for bats are commonly used to assess the ecological

risks at proposed wind farms (Pennsylvania Game Com-

mission 2007; Ohio Department of Natural Resources

2009). In addition, the U.S. Fish and Wildlife Service

(USFWS) is currently amending survey guidelines for the

federally endangered Indiana bat Myotis sodalis to allow

acoustic surveys instead of mist-net surveys (USFWS

2014). These presence/probable-absence determinations

for Indiana bats have economic significance for propo-

nents of development projects, as well as ecological signif-

icance for bat populations, so accurate identifications are

important.

The important role of call libraries and call quantifica-

tion in acoustic surveys for bats is sometimes acknowl-

edged, but the actual effects have rarely been investigated.

For example, the many studies quantifying the effect of

geographic variation, local habitat, and bat behavior on

echolocation characters typically acknowledge the poten-

tial for these factors to affect species identification

(Thomas et al. 1987; Murray et al. 2001; Law et al. 2002;

Berger-Tal et al. 2008). However, this potential problem

has not been investigated empirically by, for example,

testing a model developed in one region on calls from

another region. Despite a recent suggestion that filter

settings may be important to bat species identification

(Britzke et al. 2013), little has been published other than

a comparison of call parameters generated by a filter and

manual measurement (Britzke and Murray 2000). There-

fore, our goals were to 1) select published and unpub-

lished filters and assess their impact on the selection of

sounds, the measurement of bat call parameters, and

results of quantitative species identification, and 2) exam-

ine how using an independent library of bat calls for

model validation affects estimates of model accuracy.

Materials and Methods

Call libraries

The issues of sampling bat echolocation calls and filtering

ultrasonic data apply to both full-spectrum and zero-

crossing bat detectors (see Parsons and Szewczak [2009];

for an introduction to bat detector types). In contrast to

full-spectrum detectors, zero-crossing detectors do not

record sound amplitude, resulting in less data being

recorded, but also reducing data storage and computing

costs. For this study, we used data from zero-crossing bat

detectors because they are widely used in North America,

we have access to a library of bat calls recorded with

zero-crossing detectors, and the available software allows

customization of filters. We refer to a single emission of

ultrasonic sound as a pulse, and a series of pulses with in-

terpulse intervals <1 s as a pulse sequence or sequence

(Jones and Siemers 2011). We also use “call” as a general

term for vocalizations, when the distinction between pulse

and pulse sequence is not essential.
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We obtained a library of echolocation calls of known

species identity that had been previously recorded for use

in other studies (e.g., Murray et al. 2001; Britzke et al.

2011). The 1556 pulse sequences were recorded by multi-

ple researchers from 1997 to 2011 in 14 states in the east-

ern United States (Allen et al. 2010; Britzke et al. 2011).

Calls were recorded with Anabat II, SD1, and SD2 ultra-

sonic frequency division bat detectors (Titley Electronics,

Ballina, NSW, Australia). Calls were recorded by several

methods, including from bats marked with chemilumines-

cent tags and bats exiting known roost sites (Britzke

2003). Recording was completed using active recording

techniques (manually orienting the bat detector toward

active bats) in open areas to maximize the length and

quality of recordings (O’Farrell et al. 1999). Most wide-

spread bat species in eastern North America were

recorded, including big brown Eptesicus fuscus, silver-

haired Lasionycteris noctivagans, eastern red Lasiurus bore-

alis, hoary L. cinereus, gray Myotis grisescens, eastern

small-footed M. leibii, little brown M. lucifugus, northern

long-eared M. septentrionalis, Indiana M. sodalis, evening

Nycticeius humeralis, and tri-colored bats Perimyotis sub-

flavus. We used this set of pulse sequences, which we refer

to as the main library, to assess how different filters select

and measure bat pulses.

We compiled a second set of 13,801 sound files that

consisted entirely of non-bat sounds recorded during

passive acoustic surveys. We refer to this set of sounds as

the non-bat library, and we used it to assess how well the

filters exclude non-bat sounds.

The main library was collected in two phases, with

53% of calls collected prior to 2001 and 47% collected

after 2001, with different personnel, equipment, and sites

involved in each collection phase. Therefore, we treated

the two collection phases as independently collected sub-

libraries, although we included all eastern small-footed

bat calls in both sub-libraries, due to a small sample size.

We used these sets of calls, which we name the early

library and the late library, to assess how different

libraries affect estimates of call identification rates and to

determine whether results can be generalized among

libraries.

Call filters

We filtered bat calls using program AnalookW (Titley

Electronics, Ballina, NSW, Australia). A filter is a set of

rules that instructs AnalookW to select sounds that meet

filter criteria and then measure parameters from selected

sounds. Our plan was to compare the performance of sev-

eral filters from the literature, but we found a paucity of

published filters. Most papers either cited the Britzke and

Murray (2000) filter (e.g., Loeb and O’Keefe 2006;

Duchamp and Swihart 2008; Hein et al. 2009), or they

used an unspecified custom filter (e.g., O’Farrell et al.

2000; Rodhouse et al. 2011). In addition, the USFWS is

currently evaluating the call analysis software, BCID (Bat

Call Identification, Inc., Kansas City, MO) for possible

inclusion in the revised summer survey guidelines for Indi-

ana bats (U.S. Fish and Wildlife Service 2014). Therefore,

we compared the Britzke and Murray (hereafter, BM) filter

to the BCID filter (v. 10.0) and two filters we developed

(WEST 1 and WEST 2) as part of our work surveying bat

communities (Table 1). The BM filter was developed in

the DOS-based version of Analook (v. 4.7; Analook pre-

dates AnalookW) to select identifiable frequency-modu-

lated pulse sequences (Britzke and Murray 2000). The

Table 1. Pulse selection rules used by four Analook filters

Parameters BM BCID WEST 1 WEST 2

Smoothness (%) 15 12 15 10

High Start (T/F) F F T T

Max Change (kHz) +2, �4 +2, �4

Ignore Fragments (µs) 2200

Join Fragments (µs) 2000

Reject both calls

with gap (ms)

2 2

Body Over (µs) 240 2400 1000 2000

Fc (kHz) 15–60 15–60

Fmax (kHz) 17–120

Fmin (kHz) 16–60

Sc (octaves/s) �100–1000 �100–1000

Sweep (kHz) 6–300 3–70 0.1–60 0.1–60

S1(octaves/s) �30–9999 30–9999

Duration (ms) 1–30 1–20 1–30 2–30

Min Number of

Calls (number)

5 5 5 5

Time for Calls (s) 5 15 5 5

Min Time

Between Calls (ms)

50 50

PMC (%) 8–9999

Synthetic Line 1

Min 0 0

Max 60 60

X Variable Dur Dur

X1 6 6

X2 0 0

Y Variable Sweep Sweep

Y1 0 0

Y2 3.5 3.5

Synthetic Line 2

Min 0 0

Max 1000 1000

X Variable Dur Dur

X1 3.25 3.25

X2 1.75 1.75

Y Variable Sweep Sweep

Y1 0 0

Y2 8 8
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BCID filter was designed to select identifiable pulse

sequences for use in proprietary automated identification

software (BCID, C.R. Allen, personal communication).

The WEST 1 filter was designed to select pulse sequences

for qualitative identification from data sets with little noise,

while WEST 2 was designed for noisy data sets. Because

BCID uses options available in AnalookW v. 3.7, while

WEST 1 and WEST 2 use features available in AnalookW

v. 3.8, it was necessary to use both versions of AnalookW

in our analysis. Although we used the BCID filter, we did

not use the BCID classification algorithm, and therefore,

our results are presumably different from results that

would be obtained with BCID software.

A similar analysis performed with full-spectrum detec-

tors would differ primarily in the details. For example,

different software would be required to select and mea-

sure pulses (e.g., Sonobat; Corcoran 2007). Also, because

full-spectrum detectors record amplitude data, additional

filter rules could be created based on sound amplitude

(Corcoran 2007). However, the basic goal of establishing

rules for selecting and measuring pulses would not

change.

Analysis

While filters can help automate acoustic analysis, they

select any recorded sounds that meet their criteria,

including pulse fragments or noise produced by non-bat

sources. Therefore, it is common to manually edit sound

files after filtering to remove additional noise or low-qual-

ity pulses (e.g., Britzke 2003; Loeb and O’Keefe 2006;

Duchamp and Swihart 2008; Gorresen et al. 2008; Armit-

age and Ober 2010). One motivation for manual review

is to remove noise that would otherwise incorrectly be

included in either a training or validation data set. A

second issue is human observers may be better able to

detect faint or low-quality calls (Digby et al. 2013).

However, manually selecting individual pulses for

inclusion in a data set is a subjective process that intro-

duces variability into both the selection of pulses (Britzke

and Murray 2000; Fritsch and Bruckner 2014) and the

measurement of pulse parameters (Britzke and Murray

2000). Such inconsistency reduces the repeatability of the

work (Barclay 1999; Fritsch and Bruckner 2014) and

makes it difficult to compare results from different stud-

ies. Furthermore, it increases the time required to com-

plete the analysis (Armitage and Ober 2010; Digby et al.

2013). Of particular concern is the potential for selection

bias when manually selecting pulses for analysis (Berk

1983). If distinctive pulses are more likely to be manually

selected, the sample will not be representative and model

error rates will likely be underestimated. The same issues

apply to full-spectrum recordings because such data are

also typically manually reviewed after filtering (Walters

et al. 2012; Fritsch and Bruckner 2014). To minimize

these problems, we did not manually edit sounds and

accepted the output of each filter in toto.

We assessed the effect of filters on call selection by

comparing the number of pulses and pulse sequences

selected by each filter when applied to the main library.

We also identified a consensus set of pulses and pulse

sequences that were selected by all four filters. We

assessed the ability of filters to exclude non-bat sounds by

comparing the number of pulses and pulse sequences

selected from the non-bat library by each filter.

We assessed the effect of filters on pulse parameter

measurement by calculating the mean and standard devia-

tion of pulse parameters selected by each filter. Examina-

tion of Q-Q plots indicated parameter values were not

normally distributed, so we used a Kruskal–Wallis test

(a = 0.05) and pairwise Wilcoxon rank sum tests

(a = 0.05) with a Holm multiple-comparison adjustment

(Holm 1979) to determine significant differences among

means. Differences in mean parameter values could be

due to the different pulses selected or different measure-

ment of the same pulses. Therefore, we also examined the

consensus set of pulses, which were selected by all filters.

We applied the four filters to the consensus pulses to

obtain new pulse parameter measurements and repeated

the Kruskal–Wallis and pairwise Wilcoxon rank sum tests.

Next, we evaluated the effect of filters on quantitative

identification of pulse sequences. Our general approach

was to apply the four filters to the main library to gener-

ate four pulse parameter data sets, develop a classification

model from each data set, and then use cross-validation

to measure the performance of the four models. We used

the same covariates in all four models so that the only

difference among analyses was the filter used.

We used discriminant function analysis (DFA) for our

classification model because it is most commonly used to

quantitatively identify bat calls (Biscardi et al. 2004),

although other statistical methods may be appropriate as

well (Preatoni et al. 2005). A DFA generates a set of un-

correlated combinations of continuous predictor variables,

called canonical discriminant functions, that maximally

separate the observations into groups (Venables and

Ripley 2002). In this case, the predictor variables are pulse

parameters extracted by AnalookW and the groups are

individual bat species.

To facilitate comparison of the filters, we included the

same covariates in all four DFAs. We included all uncor-

related (Pearson R2 < 0.5) pulse parameters in the models

as covariates. When two parameters were correlated, we

selected the one that was correlated with fewer parame-

ters, or has been reported as more reliable or diagnostic

(Corben 2004; Britzke et al. 2011). We considered 15
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pulse parameters provided by AnalookW and two derived

parameters. The five selected parameters included pulse

duration (Dur), frequency at the end of the body (Fc),

slope of the body (Sc), total pulse bandwidth (Sweep),

and duration of the pulse after the body (Tail) where the

body is defined as the flattest portion of the pulse

(Fig. 1). Note that although each DFA used the same co-

variates, each DFA analyzed different data because the

data sets were generated by different filters.

Given that the four pulse parameter data sets failed a

Shapiro–Wilk test for multivariate normality (P < 0.001)

and a Box’s M test for homogeneity of the variance–
covariance matrix (P < 0.001), we used a quadratic DFA

(qDFA; Venables and Ripley 2002). We completed qDFAs

in Program R (version 2.15.1, R Development Core Team

2013) using the “qda” function in package MASS (Ven-

ables and Ripley 2002). The models included the five un-

correlated variables, and the prior probabilities of group

membership were equalized. The qDFA classified individ-

ual pulses to species based on the highest posterior proba-

bility. We then assigned a pulse sequence to a species if

the majority of pulses (all sequences included at least five

pulses; Table 1) could be assigned to one species. If no

species was associated with a majority of pulses, we classi-

fied the pulse sequence as “unknown.”

We quantified qDFA performance on the main library

using leave-one-out cross-validation (Fielding and Bell

1997). In this procedure, one pulse sequence is removed

from the data set, a qDFA is fit to the remaining

sequences, and then, the resulting model is used to pre-

dict the identity of the withheld sequence. The leave-one-

out procedure is repeated for every pulse sequence in the

data set and the percentage of sequences that were cor-

rectly classified, incorrectly classified, or classified as

unknown is recorded. Specifically, if there were Ni known

pulse sequences of species i in the library, and ni were

correctly identified as species i, nj were incorrectly identi-

fied as other species, and Ni � ni � nj were classified as

unknown, then ni/Ni was the correct classification rate,

nj/Ni was the incorrect classification rate, and (Ni � ni �
nj)/Ni was the unknown rate. To obtain overall classifica-

tion rates, we used an un-weighted average of the rates

for the 11 species, ð1=11Þ �P11
i¼1 ni=Ni. We then used a

bootstrap procedure to estimate 90% confidence intervals

around cross-validation estimates (Fielding and Bell

1997). In this procedure, a new data set of pulse

sequences, equal in size to the original data set, is gener-

ated by sampling with replacement from the original data

set. The qDFA and cross-validation are repeated on the

new data set. We repeated this bootstrap 1000 times and

used the 5th and 95th quantiles of the estimated classifi-

cation rates as a 90% confidence interval. If confidence

intervals did not overlap, we considered the differences to

be statistically significant.

Finally, we examined how using independent data for

model validation affects estimates of model accuracy. The

typical approach to model validation is to divide a call

library into training and validation data, using leave-one-

out cross-validation, k-fold partitioning, or a similar

approach (e.g., Biscardi et al. 2004; Berger-Tal et al. 2008;

Britzke et al. 2011). However, any artifacts of nonrandom

sampling in the training data set are likely to be in the

validation data set, which can inflate estimates of correct

classification rates (Chatfield 1995). A more robust

approach is to collect independent data to test the model

(Pearce and Ferrier 2000). Independent data may reveal

the poor predictive ability of a model and the unreliabil-

ity of correct classification rates obtained from internal

cross-validation (Morrison et al. 1987; Fielding and

Haworth 1995). Therefore, we used the early and late

libraries as independent call libraries. First, we filtered the

early library with the WEST 2 filter, performed a qDFA

with the five pulse parameters described previously and

assessed it using internal cross-validation. In this case, we

used the same leave-one-out cross-validation and boot-

strapping as before, so that the early library was used to

both fit and validate the model. We then assessed the

same model with external validation. In this case, we used

the entire early library to fit the model and the entire late

library to validate the model. We bootstrapped the data

Sweep

FB

TB Tail

FC

Dur

Time (msec)

Fr
eq

ue
nc

y 
(k

H
z)

SC = FB/TB

Fig. 1. Schematic of a bat echolocation pulse and relevant

parameters. Dur = pulse duration (ms), Sweep = total pulse

bandwidth (kHz), TB = duration (s) of the body (the flattest portion of

the call), FB = bandwidth (octaves) of the body, Sc = slope of the

body (FB/TB; octaves/s), Fc = frequency at the end of the body (kHz),

and Tail = duration (ms) of the pulse after the body.
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1000 times to estimate 90% confidence intervals. We

compared the correct classification rates of the internal

and external validation, with non-overlapping confidence

intervals considered to be significant. We then repeated

this process, reversing the early and late libraries.

Results

Of 1556 bat pulse sequences in the main library, the

BCID filter selected the most sequences and the BM filter

selected the most pulses, while WEST 2 selected the few-

est of each (Table 2). Although the BCID and BM filters

selected more total pulse sequences, the effect varied

across species, with WEST 1 selecting more sequences for

some low bandwidth species such as hoary bats, silver-

haired bats, and tri-colored bats. When we applied the fil-

ters to the 13,801 files in the non-bat library, all filters

erroneously selected non-bat sounds, with BM selecting

by far the most, and WEST 2 selecting the fewest

(Table 2).

Mean pulse parameters differed among the filters. Con-

sidering Indiana bat pulse sequences from the main

library, parameter measurements differed significantly

among BM, BCID, and WEST 1 for all five parameters,

while WEST 2 differed for three parameters (Table 3).

Mean Fc differed by 2.2 kHz and mean Sc differed by 32

octaves/s among filters. In comparison, Indiana bats

recorded in different regions differ by 1.4 kHz and 25

octaves/s (Murray et al. 2001). Results for the other ten

bat species under consideration showed a mix of larger

and smaller differences among filters (Tables S1–S10).
When we limited parameter measurement to the con-

sensus pulses, the effect varied by parameter. For three

parameters associated with the Body (Fc, Sc, and Tail),

most pulse parameters were still significantly different,

indicating the differences were primarily due to how fil-

ters measure parameters (Table 3). For two parameters

unrelated to the Body (Dur, Sweep), differences among

filters were no longer significant, indicating that the dif-

ferences were primarily due to pulse selection and not

parameter measurement. Results were similar for the

other bat species analyzed (Tables S1–S10).
The accuracy of qDFA predictions varied, depending

on the filter used (Fig. 2). Overall, the qDFA based on

the WEST 2 filter had the highest percentage of correctly

identified pulse sequences, followed by the BCID filter,

WEST 1 filter, and BM filter, although confidence inter-

vals for BCID overlapped WEST 1 and WEST 2. The

qDFA based on the WEST 2 filter yielded the highest cor-

rect classification rate for six species, while BCID was

highest for three species and WEST 1 was highest for two

species. Results were similar for incorrect classifications,

with WEST 2 yielding a lower, but not significantly differ-

ent, rate than BCID and WEST 1, and the BM filter pro-

ducing a significantly higher error rate.

Overall correct classification rates in the early library

were significantly lower when estimated using external

validation (71%) instead of internal cross-validation

(94%; Fig. 3). The estimated correct classification rate

was significantly lower for seven of the 11 species consid-

ered. For example, the correct classification rate for

evening bats was estimated as 100% with internal

cross-validation, but 34% with external validation. We

found the same pattern when we examined the late

library, with significantly lower estimates of correct classi-

fication rates using external validation (68%) rather than

internal cross-validation (83%; Fig. 3).

Discussion

We found that filters affect all stages of echolocation

identification, from selection of pulses and pulse

Table 2. Echolocation pulse sequences and pulses, as well as non-bat noises, selected by AnalookW filters, by species1. The consensus filter is a

composite filter that selects only calls and pulses selected by all four filters

Filter Total Bat EPFU LABO LACI LANO MYGR MYLE MYLU MYSE MYSO NYHU PESU Noise

Sequences BM 1456 404 65 53 68 79 12 162 84 231 100 198 8677

BCID 1493 404 67 76 87 79 9 162 71 229 101 208 172

W1 1339 283 62 90 80 73 11 147 81 223 87 202 53

W2 1060 222 54 67 64 71 5 123 51 166 66 171 1

Consensus 992 221 53 37 48 71 5 122 49 165 62 159 1

Pulses BM 61,617 21,478 2080 1042 1530 3213 385 7246 3426 11,188 3871 6158 379,458

BCID 47,788 16,398 2118 1583 2109 2823 154 5640 1220 5524 3669 6550 3402

W1 25,850 4096 1382 1577 2234 1562 203 3146 1615 4586 1607 3842 574

W2 16,968 2886 1046 1071 1466 1320 75 2346 623 2466 971 2698 23

Consensus 13,459 2427 858 344 732 1212 62 2222 532 2102 812 2156 23

1EPFU, Eptesicus fuscus; LABO, Lasiurus borealis; LACI, L. cinereus; LANO, Lasionycteris noctivagans; MYGR, Myotis grisescens; MYLE, M. leibii;

MYLU, M. lucifugus; MYSE, M. septentrionalis; MYSO, M. sodalis; NYHU, Nycticeius humeralis; PESU, Perimyotis subflavus.
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sequences, to measurement of parameters, to results of a

classification model. That different filters select different

pulses and pulse sequences is not a surprising result, but

it has important implications. First, it means that the

choice of a filter can affect the content of a data set and

the outcome of analysis. Second, if filters select many

pulse fragments or non-bat sounds, a classification model

will be trained on noise, rather than true bat calls.

Accordingly, we would not recommend using the BM fil-

ter without manual review because it admitted high levels

of noise. However, the WEST2 filter was nearly perfect at

eliminating noise (Table 2), demonstrating that filters

without manual review are feasible.

We found that filters affect the measurement of pulses

through both pulse selection and pulse measurement. It

may be self-evident that different filters will select differ-

ent pulses. However, the effect of filter settings on pulse

measurement may not be fully appreciated. In particular,

AnalookW defines the “body” as the flattest portion of an

echolocation pulse and measures several characteristics of

the body (Corben 2004). Two of these, frequency at the

end of the body (Fc) and slope of the body (Sc), are typi-

cally among the most important predictors of bat species

identity (Parsons and Jones 2000; Corben 2004; Armitage

and Ober 2010; Britzke et al. 2011). However, the time

increment over which slope is measured affects the size,

shape, and location of the body, and therefore Fc and Sc

as well. In AnalookW, this increment is controlled by the

Body Over setting, but the same principle applies to other

software that estimates a body and related parameters,

including software designed for analyzing full-spectrum

data (e.g., Sonobat; Corcoran 2007). Therefore, Body

Over settings likely played a large role in the different

pulse measurements we report. Furthermore, the effect of

filters on some parameters was similar to the previously

reported effect of geographic regions (Murray et al.

2001), reinforcing the importance of filters to acoustic

analysis.

We found that filter settings had the potential to signif-

icantly affect qDFA results, although different filters can

produce similar results. Specifically, results obtained with

the BM filter were significantly worse than the other fil-

ters. We attribute this to the BM filter having been devel-

oped in an earlier version of Analook, which had fewer

filtering capabilities. As a result, the BM filter selected

some non-bat sounds that probably impaired its ability to

distinguish among bat species. Overall correct classifica-

tion rates from the other three filters were similar, sug-

gesting that classifications are moderately robust to

differences among filters. While the WEST 2 filter pro-

duced the highest correct classifications in this study, it

also selected the fewest pulse sequences, which could result

in more false negatives during surveys. Furthermore,T
a
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the relative performance could change under different

conditions, such as a different set of bat species, or a differ-

ent statistical method for classification. However, we

expect that the ability of the WEST 2 filter to exclude noise

could lead to better performance on passively recorded bat

calls.

Although we completed our analysis with no manual

review of the filter output, there remains the question of

whether an automated system or a manual system is pref-

erable. In this study, all filters allowed some noise, and

theoretically, a human observer could remove this noise.

However, previous research shows that human observers

do not consistently demarcate noise (Britzke and Murray

2000; Fritsch and Bruckner 2014), suggesting that manual

review is not a simple solution to the issue of excluding

noise. Human observers might be more sensitive at

detecting weak, fragmented, or low-quality pulses (Corco-

ran 2007; Digby et al. 2013). However, such low quality

pulses may be of little value for species identification

(Jennings et al. 2008). Although filters in this study may

have incorrectly included or excluded some sounds, cor-

rect classification rates for the better filters were reason-

ably robust to differences in the sounds selected

(Table 3). Furthermore, correct classification rates were

similar to those reported in previous studies (e.g., Preato-

ni et al. 2005; Corcoran 2007; Armitage and Ober 2010;
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(B)

Fig. 2. Results of a discriminant function

analyses using different AnalookW filters (open

square: Britzke-Murray, open diamond: BCID,

filled triangle: WEST 1, filled circle: WEST 2).

(A) Percent of bat calls selected by each filter

that were correctly classified, with

bootstrapped 90% confidence intervals. (B)

Percent of bat calls selected by each filter that

were incorrectly classified, with bootstrapped

90% confidence intervals. Remaining bat calls

were classified as “unknown.” Species codes

given in Table 2.

EPFU
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(B)

Fig. 3. Results of a discriminant function

analysis using the WEST 2 filter and different

validation data sets (open square: training data

used for model validation, closed circle:

validation data independent of training data).

(A) Early library, collected between 1999 and

2002, used for model training. (B) Late library,

collected between 2005 and 2011, used for

model training. Values are percent of bat calls

correctly identified, with bootstrapped 90%

confidence interval. Species codes given in

Table 2.
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Britzke et al. 2011; Walters et al. 2012), suggesting that

automated filters can compete against expert observers.

Most importantly, we argue that the ultimate goal of a

classification model is not to accurately classify known

calls, but to classify unknown calls. If we mistakenly con-

flate these two goals, we may be tempted to select pulses

from a library that maximize classification of known calls,

but reduce classification of unknown calls (Berk 1983;

Morrison et al. 1987; Fielding and Haworth 1995). If we

use objective filters instead of subjective techniques, we

can reduce the temptation and better achieve our goal of

classifying unknown calls.

We also found that the composition of the call library

significantly affected estimates of correct classification

rates. Previous work has shown that bat calls collected

under different circumstances have different characteris-

tics. For example, pulse parameters may differ due to

bat calls being collected in different regions (Murray

et al. 2001), at different distances from obstacles

(Broders et al. 2004; Siemers and Kerth 2006), while

bats engage in different behaviors (Berger-Tal et al.

2008), or under different recording protocols (Parsons

and Szewczak 2009). While these studies showed that

recording circumstances affected pulse characteristics,

our results show that these differences significantly affect

classification. In particular, external validation indicated

much lower correct classification rates than internal

cross-validation.

Testing model classification ability with independent

data is recommended as a more rigorous approach than

cross-validation (Chatfield 1995; Pearce and Ferrier 2000).

When we compared these two approaches, correct classifi-

cation rates were significantly lower when we used exter-

nal rather than internal cross-validation (Fig. 3). If this

pattern is common, then reported classification rates

based on internal validation may be too optimistic. Sev-

eral other ecological studies have also found that model

accuracy decreased when applied to independent data.

For example, an evaluation of models of bird abundance

found prediction errors of 25–75% when tested with

independent data (Morrison et al. 1987). A study of clas-

sification models designed to predict bird habitat also

showed that prediction success was highly variable when

models were applied to independent data (Fielding and

Haworth 1995). An attempt to identify individual bats

from their echolocation calls found that classification per-

formance dropped dramatically when independent valida-

tion data were used (Siemers and Kerth 2006).

The lower classification rates estimated with indepen-

dent validation data arise when the training data are not

representative of the target population (Fielding and

Haworth 1995). In the current study, both the training

and validation data were recorded with active techniques

(i.e., detectors were continually monitored and oriented

toward active bats) in open areas. However, in many

applications, the population of interest will include pas-

sively recorded bat calls in various habitats (e.g., Loeb

and O’Keefe 2006). In addition, surveys are often

conducted with weather-proofing devices, while library

calls may be recorded without them. Given that habitat

(Siemers and Kerth 2006), active recording techniques

(O’Farrell et al. 1999), and weather-proofing (Britzke

et al. 2010) are known to affect pulse characteristics,

external validation with passively recorded pulse

sequences may generate even lower correct classification

rates than we report.

Efforts to compile libraries and filter calls for other

taxa likely share some challenges with bats, but differ

in other ways. The basic approach of comparing survey

data to known calls is similar among taxa, as are many

of the statistical methods used (e.g., Oswald et al.

2003). Furthermore, the problem of assuring a library

is representative when vocalizations are affected by

many covariates exists for other taxa as well. These

similarities suggest that identification of other taxa will

also be sensitive to the filter and library used. However,

acoustic surveys for other taxa more commonly focus

on territorial or mating calls, which are intended to

communicate the species of the caller and therefore are

stereotyped. In contrast, the primary function of bat

echolocation is to enable foraging and orientation in

darkness (Barclay 1999). Accordingly, bat echolocation

is relatively plastic and bat species occupying similar

foraging niches often produce similar calls (Siemers

et al. 2001). Therefore, surveys of territorial or mating

calls may be less sensitive to the filter and library used,

relative to surveys of orientation calls, alarm calls, or

other less distinct calls.

Recommendations

Given that filters affect pulse selection, pulse measure-

ment, correct classification rates, and model generality,

filter design should be treated as an integral part of the

acoustic identification process. Filters are often described

as quantitative, objective, and repeatable, but we believe

there is room for improvement (Fritsch and Bruckner

2014). First, filter descriptions in publications should be

adequate to assist others in recreating them, which is not

the current practice. Second, researchers should strive to

eliminate manual filtering, as we have performed here.

Although we used single filters, we can imagine cases

where several filters would be used in a series to isolate

bat calls. If manual filtering is the only practical

approach, then the filtering criteria should be written in

an explicit, objective, and repeatable manner. Finally, the
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effect of filters on results should be acknowledged. For

example, a filter that seeks frequency-modulated pulses

may exclude a disproportionate share of species with less

frequency-modulated pulses (Table 2). In a study of com-

munity composition, this type of bias could affect results

and conclusions.

We found that validating with independent data yielded

much lower estimates of correct classification rates. There-

fore, when identifying bat calls, it may not be possible to

extend inference beyond the training data set. Such limited

inference has important implications. For example, acous-

tic-only surveys, such as those used for endangered Indiana

bats (U.S. Fish and Wildlife Service 2014) may produce

inaccurate estimates of the probability of presence. Fortu-

nately, alternative approaches, such as newly developed

false-positive occupancy models (Miller et al. 2011) can

provide unbiased occupancy estimates even when identifi-

cation errors occur, if acoustic surveys can feasibly be com-

bined with capture surveys (Clement et al. 2014).
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