
Various Nodal Lines in P63/mmc-type
TiTe Topological Metal and its (001)
Surface State
Peng Lin1, Fang Fang1, Li Zhang2*, Yang Li1,3* and Kai Wang1,3*

1Engineering and Technology Center, The Fourth Medical College of Harbin Medical University, Harbin, China, 2Changchun
Institute of Technology, Changchun, China, 3Nanoscience and Engineering and Technology Electrophysiology Research Center,
The Fourth Medical College of Harbin Medical University, Harbin, China

Searching for existing topological materials is a hot topic in quantum and computational
chemistry. This study uncovers P63/mmc type TiTe compound—an existing material—is
a newly discovered topological metal that hosts the various type of nodal line states.
Different nodal line states normally exhibit different properties; they may have their
individual applications. We report that TiTe hosts I, II, and hybrid type nodal line (NL)
states at its ground state without chemical doping and strain engineering effects.
Specifically, two type I NLs, two hybrid-type NLs, and one Γ—centered type II NL
can be found in the kz � 0 plane. Moreover, the spin-orbit coupling induced gaps for
these NLs are very small and within acceptable limits. The surface states of the TiTe (001)
plane were determined to provide strong evidence for the appearance of the three types
of NLs in TiTe. We also provide a reference for the data of the dynamic and mechanical
properties of TiTe. We expect that the proposed NL states in TiTe can be obtained in
future experiments.
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INTRODUCTION

Searching for topological materials in realistic materials in quantum and computational chemistry is
a hot research topic. Topological materials (TMs) (Cava et al., 2013; Kong and Cui, 2011; Xu et al.,
2015; Strambini et al., 2016; Wang et al., 2017; Banik et al., 2018; Kageyama et al., 2018; Schoop et al.,
2018; Culcer et al., 2020; Kumar et al., 2020; Li and Xia, 2020; Xu et al., 2020) enjoy nontrivial band-
crossings (BCs) in their low-energy region, giving rise to novel fermionic excitations. A series of TMs,
including nodal-point (Alcón et al., 2017; Fu et al., 2018a; Kong et al., 2018; Jin et al., 2019a; Jin et al.,
2019b; Wang et al., 2019; Fang et al., 2020; Zhang et al., 2020), nodal-line (Chen et al., 2018; Zhou
et al., 2018; Li et al., 2019; Liu et al., 2019; Sankar et al., 2019; Tang et al., 2019; Xu et al., 2019; Yi et al.,
2019;Wang et al., 2020a; Zhao et al., 2020), and nodal-surface (Wu et al., 2018; Qie et al., 2019;Wang
et al., 2020b) materials, have been predicted via symmetry and first-principle analysis. Some of them
have been verified via experiment.

Recently, many chemists and physicists have focused on studying the nodal line (NL) type
materials. The NL-type materials are very important because they can enjoy more sub-types than
other types of topological materials; moreover, different sub-types generally have their physical
behaviors. Many NL materials with different NL shapes have been proposed, including nodal ring
(Zhang et al., 2018a), nodal chain (Bzdušek et al., 2016), nodal link (Yan et al., 2017), nodal knot (Bi
et al., 2017; Ezawa, 2017), and nodal net materials (Wang et al., 2018a; Fu et al., 2018b; Feng et al.,
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2018). Different shapes of the NLs usually exhibit different
electronic and optical behaviors. Moreover, NLs can normally
be classified into the I, II, and hybrid types (Jin et al., 2020)
according to the slope of the bands around the band-crossing
points (BCPs).

The I type NL is composed of all the type I BCPs, and the II
type NL is formed by the type II BCPs. However, the hybrid-type
NL contains I and II type NLs simultaneously. The illustration of I
and II type BCPs are shown in Figures 1A,B, respectively. The I
type BCPs show a traditional conical dispersion, whereas the II
type BCPs show a titled dispersion.

A series of materials (Wang et al., 2018b; Wang et al., 2020c;
Jin et al., 2020), type I or II NLs, have been studied via symmetry
analysis and first-principles calculations. However, materials with
I and II type NLs have rarely been explored in the literature. It is
fascinating to investigate if I, II, and hybrid NLs can coexist in one
material without strain, chemical doping, or other controlling
methods.

In this work, we select P63/mmc type TiTe material as an
example and to show that the I, II, and hybrid types of NLs
can coexist in realistic TiTe material (Ehrlish, 1949). The
TiTe has already been realized in the experiment. We show
that I, II, and hybrid NLs can be found in the kz � 0 plane of
TiTe. The structural model of hexagonal P63/mmc type TiTe
with a primitive cell is exhibited in Figures 2A,B under
different view sides. TiTe contains two Ti and two Te
atoms, located at the (0 0 0)/(0, 0, 0.5) sites and the (1/3,
2/3, 0.25)/(2/3, 1/3, 0.75) sites, respectively. We optimized
the lattice constants and the atomic positions based on the
first-principle calculation. The obtained lattice constants of
TiTe were a � b � 3.66 Å and c � 7.27 Å, agreeing well with the
calculated values in the database1.

This study reports the band structures, phonon dispersions,
and topological signatures of TiTe. We uncover that TiTe is an
NLmetal with one pair of type I NLs, one type II NL, and one pair
of hybrid NLs in the kz � 0 plane. We also examine the influence
of spin-orbit coupling (SOC) on the band structures. Finally, we
calculate the projected spectrum on the (001) surface of TiTe

show the occurrence of drum-head-like surface states connected
to the BCPs. More details about the computational methods can
be found in Supplementary Material.

DYNAMICAL STABILITY AND
MECHANICAL STABILITY

In this section, we present the study of the stabilities of TiTe with
respect to dynamical and mechanical properties. Based on the
bulk Brillouin zone and the selected symmetry points in
Figure 2C. The phonon dispersion of TiTe was calculated
through the force-constants method; the result is given in
Figure 3. We conclude that the TiTe is dynamically stable
because its phonon dispersion does not include imaginary
frequencies.

Subsequently, the mechanical stability of TiTe is examined
according to elastic stability criteria. TiTe has a P63/mmc
structure with five elastic constants—C11, C12, C13, C33, C44,
and C66. The computed values of C11, C12, C13, C33, C44, and
C66 were 133.543, 47.021, 78.611, 173.304, 43.206, and 107.550
GPa, respectively. We conclude based on the obtained elastic
constants that they meet the criteria for elastic stability, as
mentioned below:

i) C11 > |C12|;
ii) 2 × C2

13 < C33(C11 + C12);
iii) C44 > 0.

Hence, TiTe is mechanically stable theoretically.

ELECTRONIC STRUCTURES AND
TOPOLOGICAL SIGNATURES OF BULK
TITE
Figure 4A shows the calculated total and projected density of
states (DOSs). We conclude that a small peak appears at the
Fermi level (EF). Therefore, TiTe is a metallic material. The
band structure of the TiTe metal is given in Figure 4B. We
primarily focus on the bands closed to the EF. We observe that
the Ti-d orbitals dominate the total DOSs in this region (-2 to
1 eV), as shown in Figure 4A with a green background.
However, within the −5 to −2 eV energy range, the
dominating factors contributing to the total DOSs are the
Ti-d and Te-p orbitals. There exists a strong hybrid
phenomenon between the Ti-d and Te-p orbitals in this
energy range.

We show the band structure of the TiTe in Figure 4B
ignoring the SOC. The band structure shows a series of BCPs
above and below the EF. For clarity, we divided these BCPs
into region A, region B, and region C, respectively. A, B, and
C regions are marked by different colors. Two obvious
BCPs—A1 and A2—located above the EF can be found in
region A. Two BCPs—B1 and B2—located very close to and
below the EF appear in region B. There are also two BCPs—C1

FIGURE 1 | Illustration of the type (A) I and (B) II NLs.

1.https://materialsproject.org/materials/mp-567832
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and C2—in region C. However, they are slightly further away
from the EF than the other BCPs—A1, A2, B1, and B2.

Different types of BCPs are discussed in regions A, B, and C.
The two BCPs in region A are I type nodal points (NPs). Weng et al.
(Weng et al., 2015) stated that these doubly degenerated crossing
points (A1 and A2) are not isolated points; they should belong to a
line.We conclude based on the plotted Brillouin zone of 3D bulk TiTe
in Figure 2C that the A1 and A2 NPs are located in the kz � 0 plane.

We show the K-centered 3D plotting of the band dispersion
in region A of the kz � 0 plane in Figure 5A to demonstrate that the
A1 and A2 NPs reside on an NL. We conclude that the energy
variation of theNL in regionA is very small. Such a flatNL is expected
to host novel behaviors. Figures 5A,B show the highlighted NL (see
the white dotted line) and the shape of the NL in region A,
respectively. We conclude that the NL in region A is a type I.
Furthermore, the NLs in region A are protected by two
independent mechanisms: i) mirror symmetry and ii) inversion

FIGURE 3 | Phonon dispersion of TiTe bulk.

FIGURE 4 | (A) Total and projected density of states and (B) band structure of TiTe bulk.

FIGURE 2 | (A,B) Structural models. (C) The bulk and the (001) surface Brillouin zone.
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symmetry and time-reversal symmetry. TiTe possesses time-reversal
symmetry; therefore, one more K′-centered NL should appear in the
kz � 0 plane. The shape of one of the pairs of NLs, i.e., the K and K′
centered NLs, is shown in Figure 5C.

In region B, two type II NPs, B1 and B2, also belong
to a single NL and the Γ-centered 3D band dispersion in
region B of the kz � 0 plane and the shape of the NL in
region B are given in Figures 6A,B, respectively. We
highlight NL by a white dotted line. This Γ -centered band
dispersion has a small energy variation, similar to the NL in
region A. Figure 6 shows that the NL in region B is type II.

Finally, the K-centered 3D band dispersion in region C of the
kz � 0 plane and the shape of the NL in region C are exhibited in
Figures 7A–C to determine the topological signatures of the C1
and C2 NPs in region C. We conclude from the different

viewpoints of the K-centered 3-D band dispersion that the
energy variation of the NL is significantly large (from −0.8 to
−0.3 eV). The reason for such a large energy variation is because
it is a hybrid NL (Zhang et al., 2018b), containing type I and type
II NPs at the same time. Figure 4C shows that BCP C1 is a type I;
however, BCP C2 is type II. Moreover, another K′-centered
hybrid NL should be located in the kz � 0 plane as required by
the time-reversal symmetry (Figure 7D).

PROJECTED SPECTRUM ON THE TITE
(001) SURFACE

In this section, we provide strong evidence for the
appearance of the NLs in the three regions. NL materials

FIGURE 5 | (A) 3D band dispersion in region A of the kz � 0 plane; (B) the shape of the NL in region A of the kz � 0 plane; and (C) illustration of one pair of type I NLs
in the kz � 0 plane.
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usually host drum-head-like (D-H-L) surface states (Wang
et al., 2020d) connected to the ban-crossing points, one of its
most important characters. Figures 8A,B show the

projected spectrum on the TiTe (001) surface. We use the
black circles to indicate the positions of the BCPs. The D-H-
L surface states, connected to the BCPs and marked by

FIGURE 6 | (A) Γ-centered 3D band dispersion in region B of the kz � 0 plane and (B) shape of the NL in region B of the kz � 0 plane.
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arrows, can be observed. Such obvious D-H-L surface states
in TiTe benefit the experimental detection. It is expected
that angle-resolved optical emission spectroscopy (ARPES)
can be used to detect the D-H-L surface states in TiTe
directly.

EFFECT OF SOC

The SOC usually induces a gap in the BCPs in most NL
materials. The SOC-induced gap is particularly very large
(50–200 meV) when the material contains heavy elements
(Huang et al., 2016; Yamakage et al., 2016; Wang et al.,
2020e), which significantly damages the intrinsic electronic
properties of the NLs. Figure 8C shows the band structure with

SOC. Therefore, we conclude that the SOC-induced gap for
these band-crossings is smaller than 28 meV and within the
acceptable limits, reflecting that TiTe is an ideal NL material
with robust resistance to the effects of SOC.

CONCLUSION

We prove the existence of I, II, and hybrid types of NLs in TiTe at
the ground state. Moreover, TiTe is shown to be a dynamic and
mechanically stable material using first-principle calculations.
Furthermore, it is proved to be an ideal NL material with two
type I NLs: one Γ-centered type II NL and two hybrid-type NLs in
the kz � 0 plane. The BCPs are robust to the SOC, and the SOC-
induced gaps are quite small. The D-H-L surface states can be

FIGURE 7 | (A,B) K-centered 3D band dispersion in region C of the kz � 0 plane from different viewpoints. (C) The shape of the NL in region C of the kz � 0 plane.
(D) Illustration of one pair of hybrid type NLs in the kz � 0 plane.
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observed in (001) surface of the TiTe. We expect that the NLs and
the (001) surface states of TiTe can be verified in an experiment.
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