
Mol Ecol Resour. 2021;21:2689–2705.  | 2689wileyonlinelibrary.com/journal/men

1  |  INTRODUC TION

Simulation is a key component of population genetics. It helps to
train our intuition and is important for the development, testing
and comparison of inference methods. Because population genetic
models such as the ancestral recombination and selection graphs
(Griffiths & Marjoram, 1997; Neuhauser & Krone, 1997) are com-
putationally intractable for inference but relatively easy to sim-
ulate, simulations are also heavily used for parameter inference.
Approximate Bayesian Computation (ABC; Beaumont et al., 2002)
is a widely used example. Regardless of the application, the goal
is to simulate data that is ‘realistic’ in the sense that it resembles

real data from the population(s) of interest. Typically this is done by
fixing some parameters that are fairly well- known, then choosing
other parameters to match some property of the real data, usually
based on summary statistics. However, this involves a potential loss
of information in the reduction in summary statistics and then an
implicit weighting on the relative importance of different summary
statistics. Often, parameters that create simulations that match one
type of summary statistic (e.g. the site frequency spectrum) do not
match others (e.g. linkage disequilibrium patterns; Beichman et al.,
2017). Here, we present a novel parameter learning approach using
Generative Adversarial Networks (GANs). Our approach creates
both realistic simulated data and a quantitative way of determining

Received: 29 July 2020  | Accepted: 5 March 2021

DOI: 10.1111/1755-0998.13386

S P E C I A L I S S U E

Automatic inference of demographic parameters using
generative adversarial networks

Zhanpeng Wang1 | Jiaping Wang1 | Michael Kourakos2 | Nhung Hoang2 |
Hyong Hark Lee2 | Iain Mathieson3 | Sara Mathieson1

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

1Department of Computer Science,
Haverford College, Haverford, PA, USA
2Department of Computer Science,
Swarthmore College, Swarthmore, PA,
USA
3Department of Genetics, University of
Pennsylvania, Philadelphia, PA, USA

Correspondence
Sara Mathieson, Department of Computer
Science, Haverford College, Haverford,
PA, USA.
Email: smathieson@haverford.edu

Funding information
National Institutes of Health, Grant/
Award Number: R15HG011528 and
R35GM133708

Abstract
Population genetics relies heavily on simulated data for validation, inference and
intuition. In particular, since the evolutionary ‘ground truth’ for real data is always
limited, simulated data are crucial for training supervised machine learning methods.
Simulation software can accurately model evolutionary processes but requires many
hand- selected input parameters. As a result, simulated data often fail to mirror the
properties of real genetic data, which limits the scope of methods that rely on it.
Here, we develop a novel approach to estimating parameters in population genetic
models that automatically adapts to data from any population. Our method, pg- gan,
is based on a generative adversarial network that gradually learns to generate realistic
synthetic data. We demonstrate that our method is able to recover input parameters
in a simulated isolation- with- migration model. We then apply our method to human
data from the 1000 Genomes Project and show that we can accurately recapitulate
the features of real data.

K E Y W O R D S
demographic inference, evolutionary modelling, generative adversarial network, simulated
data

www.wileyonlinelibrary.com/journal/men
mailto:
https://orcid.org/0000-0002-0484-0838
http://creativecommons.org/licenses/by-nc/4.0/
mailto:smathieson@haverford.edu

2690  |    WANG et Al.

the match between any simulations proposed for a particular real
data set. For us, ‘realistic’ means ‘cannot be distinguished from real
data by a machine learning algorithm’, specifically a convolutional
neural network (CNN).

Machine learning (ML) methods have been emerging more
broadly as promising frameworks for population genetic inference.
The high- level goal of training a ML method is to learn a function
from the input (genetic data) to the output (evolutionary parameters).
Some early efforts used machine learning to account for issues that
arise with high- dimensional summary statistics (Blum & François,
2010; Sheehan & Song, 2016; Ronen et al., 2013). More recently, ma-
chine learning approaches have used various forms of convolutional,
recurrent and ‘deep’ neural networks to improve inference and visu-
alization (Adrion et al., 2020; Battey et al., 2021; Gower et al., 2020;
Flagel et al., 2019; Sanchez et al., 2020; Torada et al., 2019; Chan
et al., 2018). One of the goals of moving to these approaches was to
enable inference frameworks to operate on the ‘raw’ data (genotype
matrices), which avoids the loss of information that comes from re-
ducing genotypes to summary statistics. However, these algorithms
rely heavily on simulated data sets for training. In machine learning
more broadly, data are often hand- labelled with ‘true’ values— part of
these data are used to train the model, and part are held aside to test
the model. In population genetics, such ‘labelled’ training data are
extremely limited, because the evolutionary ground truth is rarely
known with certainty. Thus, all approaches rely on simulations to
train and validate ML models.

Current simulators (Kern & Schrider, 2016; Excoffier et al., 2013;
Hudson, 2002; Haller & Messer, 2019; Kelleher et al., 2016; Ewing
& Hermisson, 2010; Teshima & Innan, 2009) are well equipped to
replicate mechanisms of evolution but require many user- selected
input parameters including mutation rates, recombination and gene
conversion rates, population size changes, natural selection, migra-
tion rates and admixture proportions. We do not always have a good
sense of what these parameters should be, especially in understud-
ied populations and non- model species. For example, mutation and
recombination rates estimated in one population are frequently
used to simulate data for another, despite the fact that these rates
differ between populations (Adrion, Cole, et al., 2020; Harris, 2015;
Hinch et al., 2011; Harris & Pritchard, 2017; Kessler et al., 2020).

Generative models provide one route to simulating more realistic
population genetic data. Typically, generative models create artifi-
cial data based directly on observed data, without an explicit un-
derlying model. They have been used to create synthetic examples
in a wide range of fields, from images and natural language to mu-
tational effects (Riesselman et al., 2018) and single cell sequencing
(Lopez et al., 2018). In particular, Generative Adversarial Networks
(GANs) work by creating two networks that are trained together
(Mirza & Osindero, 2014; Goodfellow et al., 2014). One network (the
generator) generates simulated data, while the other network (the
discriminator) attempts to distinguish between ‘real’ data and ‘fake’
(synthetic) simulations. As training progresses, the generator learns
more about the real data and gets better at creating realistic exam-
ples, while the discriminator learns to pick up on subtle differences

and gets better at distinguishing examples. After training is com-
plete, the generator can be used to create new examples that are
indistinguishable (by the discriminator) from real data, but where the
ground truth is known (i.e. labelled data).

The use of GANs in population genetics is just beginning.
Recently, Yelmen et al. (2021) created a GAN that generates artificial
genomes that mirror the properties of real genomes. Their approach
does not include an evolutionary model, so the resulting artificial ge-
nomes are ‘unlabelled’. Such an approach is useful for creating proxy
genomes that preserve privacy but still maintain realistic aggregate
properties. However, this synthetic data could not be used down-
stream to train or validate supervised machine learning methods
since no evolutionary ground truth is known.

Here, we present a parametric GAN framework that combines
the ability to create realistic data with the interpretability that
comes from an explicit model of evolution. The discriminator is a
permutation- invariant CNN that takes as input a genotype matrix
(representing a genomic region) and classifies it as real data or syn-
thetic data. Throughout training, the discriminator tries to get bet-
ter at this binary classification task. The generator is a coalescent
simulator that generates genotype data from a parameterized de-
mographic history. The generator is trained using a simulated an-
nealing algorithm that proposes parameter updates leading to more
discriminator confusion. The discriminator is trained using a gradient
descent approach that is standard for neural networks. We apply
our method, called pg- gan, in a variety of scenarios to demonstrate
that it is able to recapitulate the features of real genetic data and
confuse a trained discriminator. Although we focus on humans, the
underlying methodology enables the simulation of any population or
species, regardless of how much is known a priori about their specific
evolutionary parameters.

We anticipate that the approach outlined in this work will be
useful in strengthening the match between simulated and real data,
especially for understudied populations that deviate from broad
geographic groups. In addition, our discriminator can be used on
its own (after training) to evaluate and compare different candidate
simulations for the same real data set. Downstream, our simulations
can be used as a starting point for other methods that seek to quan-
tify local evolutionary forces such as natural selection or mutation
rate heterogeneity. There has also been a push in the population
genetics community to standardize simulation resources (Adrion
et al., 2020)— we see our method as contributing to the assessment
and refinement of published models as they are applied to new data
sets.

2  |  MATERIAL S AND METHODS

At a high level, our method works by simulating data from an un-
derlying evolutionary model, then comparing it to real data via a
neural network discriminator. As the discriminator is trained, it tries
to minimize a loss function that incentivizes learning the difference
between real data and synthetic data. But at the same time, the

    |  2691WANG et Al.

generator refines the evolutionary model so that it recapitulates the
features of real data and attempts confuse the discriminator. At the
end, the evolutionary model can be used to simulate additional re-
alistic data for use in downstream applications or method compari-
sons. Additionally, the final parameters of the evolutionary model
can be interpreted to learn more about the population or species of
interest.

A GAN is not a traditional optimization problem— due to the dual
nature of the generator and discriminator there are two optimization
problems in a minimax framework, and it is difficult to evaluate the
final trained model. Often the ‘GAN confusion’ (discriminator clas-
sification accuracy) can be used to assess the success of the algo-
rithm— a high classification accuracy (close to 1) indicates that the
simulations are not capturing the real data and the discriminator is
easily able to tell the difference between the two types of data. A
low classification accuracy (close to 0.5) ideally indicates the evolu-
tionary model has created simulations that are well- matched to the
real data. However, an accuracy close to 0.5 could also mean that
the discriminator has not learned anything and is either flipping a
coin when classifying examples, or classifying all examples as the
same class.

Training a GAN is a delicate balance. If the discriminator learns
too quickly and becomes very good at identifying a specific setting
of the simulated data from the real, then all proposals by the gen-
erator may look equally confusing. As a result, many generator pro-
posals will be rejected and the discriminator will simply keep getting
better a distinguishing the current setting from real data. On the
other hand, if the discriminator learns too slowly, it may not be able
to identify any generator proposals as better or worse. This often
leads to a ‘random walk’ across the parameter space, with the dis-
criminator classifying everything as real or everything as simulated
regardless of the generator's proposals. Throughout the Methods
section, we outline techniques and strategies for balancing training
and identifying degenerate states.

In the Method subsections below, we first outline the notation
for pg- gan and discuss the general training strategy. Then, we
provide further details about the generator and discriminator archi-
tectures. Finally, we discuss applications of pg- gan to both simu-
lated and real training data, as well as methods for evaluating the
performance.

There are two inputs to the method, shown in orange in Figure 1.
The first input is an evolutionary model parameterized by vector Θ
. The parameters can be very flexible, including evolutionary event
times, effective population sizes and rates of mutation, recombina-
tion, migration and exponential growth. The parameters Θ can be
fed into the generator G to produce a simulated region z, which we
write as

The second input is a set of real data. We use xto denote a ge-
neric region from the real data. Both z and x have the same shape
(n, S, 2) where n is the number of haplotypes, S is the number of SNPs

in the region. The first channel represents the genotypes, and the
second channel represents the inter- SNP distances. The outputs of
pg- gan are the optimal evolutionary parameters Θ∗for the genera-
tor G, and a binary classifier D (the discriminator) which can predict
if genomic regions are real or fake. Specifically, D(x)is the predicted
probability that region xis real.

To incentivize the competing goals of the generator and discrim-
inator, we minimize binary cross- entropy loss functions. If we have
M regions of simulated data {z(1),⋯, z(M)} generated under G(Θ), then
the generator loss function is

This loss function is cross- entropy, but where we only have one
class (the generated data), which we want the discriminator to clas-
sify as real (label 1).

At the same time, the discriminator D is trying to classify the
generated regions as fake (label 0) and the real regions as label 1.
Therefore, the discriminator loss function for M regions of real data
X = {x(1),⋯, x(M)} and M regions of simulated data {z(1),⋯, z(M)} gener-
ated under G(Θ) is

Algorithm 1. (in the style of (Goodfellow et al., 2014)) shows the
overall training of pg- gan.

z ∼ G(Θ).

ℒG(Θ) = −
1

M

M
∑

m=1

logD(z(m)).

ℒD(Θ,X) = −
1

M

M
∑

m=1

[

logD(x(m)) + log(1 − D(z(m)))
]

.

F I G U R E 1  pg- gan algorithm overview. The inputs to our
method are an evolutionary model and a set of real data (orange).
The parameters of the generator and discriminator (green) are
updated in a unified training framework using simulated annealing
(generator) and backpropagation (discriminator). The generated
data and real data are analysed one genotype matrix at a time,
where n is the number of haplotypes and S is the number of
SNPs retained in each region. Inter- SNP distances are also fed
in as a second channel, which provides the discriminator with
information about SNP density [Colour figure can be viewed at
wileyonlinelibrary.com]

www.wileyonlinelibrary.com

2692  |    WANG et Al.

2.1  |  Generator

In image and video generation, the generator often takes the form
of a CNN, since a large array of pixel information must be generated
from a low- dimensional vector of noise (see Figure 1 of (Radford
et al., 2015) for the architecture of a CNN- based image generator).
For our purposes, we do not need to generate the individual geno-
types for each training example, but we do need to generate can-
didate parameters for input into an evolutionary simulator (we use
msprime (Kelleher et al., 2016) in this study).

Using this lens, we can view the generator learning problem as
minimizing the multivariate generator loss function ℒG(Θ) with re-
spect to Θ. We optimize the loss using simulated annealing (Pincus,
1970) due to its flexible parameter updates and lack of reliance on
an analytic gradient. In simulated annealing, initial parameter val-
ues are proposed and then gradually refined. A temperature is used
to control whether or not new parameter proposals are accepted.
The temperature usually begins at a high value, indicating that sub-
optimal parameter choices may be accepted liberally to facilitate
exploration of the parameter space. As training proceeds, the tem-
perature ‘cools’, reducing the chance of accepting a poor parameter
choice and allowing the method to converge on a set of parameters
that optimizes the desired function. Unlike ABC methods which re-
quire simulating from the entire parameter space before analysing
the real data, this simulated annealing approach uses the real data
to adaptively narrow the focus to promising regions of the search
space.

We use a pre- training phase (described in the Discriminator sub-
section) to choose a starting value for each evolutionary parameter,
which forms the initial parameter vector Θ(0). We set the tempera-
ture for simulated annealing T(0) = 1 and linearly decrease it to 0

over a fixed number of iterations. During each training iteration i ,
several new sets of candidate parameters are proposed, and eval-
uated based on the generator loss function ℒG(Θ). Each new set
of parameters is proposed by sampling from a normal distribution
around each current value, with variance based on the temperature.
This allows the algorithm to explore the parameter space quickly
in the beginning and refine the estimates towards the end of GAN
training. More formally, at iteration i , the candidate proposal for
parameter p is

where �2
p
 is the initial variance, which is based on the range of

plausible values for each parameter. Out of the several candidate
proposals, we choose the one that minimizes ℒG(Θ). Then, we com-
pare this loss to the loss of the previous iteration. If the proposal
reduces or maintains the generator loss, we always accept it. If
not, we use the simulated annealing temperature to help define
a threshold for acceptance. Formally, if the proposal is Θ and the
current set of parameter values at iteration i is Θ(i), then the accep-
tance probability is

If the proposed parameters are accepted we train the discrimina-
tor using several mini- batches (with the simulated regions generated
under Θ), then we set Θ(i+ 1)

← Θ. An important point is that we do
not train the discriminator using the new parameter proposal unless
it is accepted. During the candidate proposal phase, we are evaluat-
ing the parameter choices through the generator loss only.

Θ(proposal)
p

∼ 𝒩 Θ(i)
p
, �2

p
⋅ T

(i)

paccept =
ℒG(Θ

(i))

ℒG(Θ)
⋅ T

(i).

    |  2693WANG et Al.

2.2  |  Discriminator

For the architecture of the discriminator, we use a permutation-
invariant CNN based on defiNETti (Chan et al., 2018). Each region
x (real) or z (simulated) has shape (n, S, 2) where n is the number of
haplotypes in the sample, S is the number of retained SNPs, and 2
indicates there is one channel for the genotypes and one channel for
inter- SNP distances. The inter- SNP distances are duplicated down
each column to allow this slice of the tensor to have the same shape
as the genotype information. This also ensures that each convolu-
tional filter processes the genotypes and associated distances at the
same time. Alternatively, the convolutional layers can be used on the
genotypes only, and the distances concatenated later as a vector.
However, this approach does not allow the processing of the two
channels to be as tightly coupled. We use convolutional filters of
shape 1 × 5 (1 haplotype, 5 SNPs) to ensure that the order of hap-
lotypes does not impact the results. We use ReLU as the activation
function for all layers and also use dropout (Srivastava et al., 2014)
during training to guard against overfitting. After several convolu-
tional layers, we condense the output by applying a column- wise
permutation- invariant function. We experimented with both max
and sum as permutation- invariant functions and decided to use
sum throughout. It generally causes the discriminator to learn more
slowly than max, allowing the generator time to find good param-
eter choices. max sometimes causes the discriminator to converge
quickly, easily distinguishing the real from simulated data before the
generator can move to a promising location in the parameter space.
Note that we need a fixed number of SNPs in each region to make
sure the discriminator output is always of the same size. However,
we do not need a consistent number of haplotypes, provided that
the permutation- invariant function used is not sensitive to this num-
ber (i.e. max or avg would be fine but sum would not).

For models that consider multiple populations, we augment this
framework to include separate permutation- invariant components
for each population, then concatenate the flattened output before

input into the dense layers at the end of the network. An illustra-
tion of our discriminator architecture for two populations is shown
in Figure 2.

Through discriminator training, we seek to minimize the loss
function ℒD(Θ,X), with a small entropy term subtracted to disin-
centivize predicting all the same class. This entropy term is differ-
ent from the entropy regularization used to prevent mode collapse
(Dieng et al., 2019), a common problem in GAN training. In such
cases, the goal is to increase the entropy of the generator so it can
produce a multi- modal distribution (e.g. different types of images
such as hand- written digits). Mode collapse is not an issue for pg-
gan, as a single set of evolutionary parameters is desired. To min-
imize our discriminator loss function, we use gradient descent (via
backpropagation) with mini- batches of 100 training examples (half
are real and half are simulated). For each training iteration, we per-
form 100 mini- batch training updates if the proposed parameters
are accepted. This allows the discriminator to learn gradually, as the
parameters are being refined. While a classification accuracy close
to 0.5 is desired by the end of training, the discriminator accuracy
may be close to this value early on in the training process simply be-
cause it has not learned anything yet. The goal is for the discrimina-
tor to be optimized to distinguish real from simulated data as much
as possible and still be wrong half the time.

Due to the simulated annealing training of the generator, initial
step sizes of the parameters can be large to explore the parame-
ter space more quickly. This can present a problem for discriminator
training. If the parameters change too quickly, the discriminator does
not have time to learn the difference between the real data and data
simulated under a wide variety of parameter setting. In some sit-
uations, this leads the discriminator to fail to learn anything and it
predicts the same class (either real or fake) for all regions. To combat
this issue, before GAN training begins we pre- train the discriminator
only, using a variety of randomly sampled parameter values. We find
that pre- training gives the discriminator an overall sense of the data,
so that when generator training begins the discriminator is able to

F I G U R E 2  Multi- population CNN discriminator architecture. Each example region is of shape (n, S, 2), where n is the number of haplotypes
(usually with n∕2 from population 1 and n∕2 from population 2). The convolutional filters for population 1 and 2 are shared (i.e. not separate
weights) so that haplotype commonalities can be more easily identified. The final output of the discriminator is the probability the region
is real (which can be subtracted from 1 to find the probability the region is simulated). This CNN can be reduced for one population or
extended for three populations [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

2694  |    WANG et Al.

identify which generated regions were closer to the real and which
were further away. We run the combined (generator and discrimina-
tor) training for 300 iterations.

2.3  |  Simulation study

To validate our approach, we first select the training data set to be a
simulated one, so that we can test whether the inferred parameters
are correct. To assess a variety of different types of parameters, we
choose an isolation- with- migration model (see Figure 3a) with six pa-
rameters. The parameters include three effective population sizes:
Nanc for the ancestral population size, and N1 and N2 for the sizes
of each population after the split. We also infer the split time Tsplit,
and the strength of a directional migration pulse (mig) at time Tsplit∕2
. Finally, we infer the per- base, per- generation recombination rate
(reco). We evaluate the inferred parameters based on how well they
match the true parameters. See Table 1 for the ranges and units of
each parameter.

2.4  |  1000 Genomes data analysis

To demonstrate the effectiveness of our method on real data, we
use pg- gan to infer demographic parameters for both single- and
multi- population models in humans. To ensure that the real data
are as similar as possible to the simulated data, we run several pre-
processing steps. To avoid processing the real data on- the- fly during
training, we follow a data extraction pipeline to convert the real data
into HDF5 format (Miles, 2015, 2017). Before converting VCF infor-
mation into HDF5 format, we select haplotypes from each popula-
tion and filter non- segregating and multi- allelic sites. The number of
haplotypes is flexible (due to the permutation- invariant framework).

We use between 196 and 198, matching the minimum number of
individuals in each 1000 Genomes population.

During training, for each region x fed into pg- gan, we select
a start SNP randomly from the entire genome. This random start
point mitigates the effects of correlated nearby regions and local
variations in mutation and recombination rate. Starting with this
SNP, S = 36 biallelic SNPs are retained (along with their inter- SNP
distances), which means the region has a flexible length. If 36 SNPs
would cause the region to extend past the end of a chromosome,

TA B L E 1  Parameter ranges

Parameter Min Max Units

Ne 1000 30,000 Individuals

reco 1 × 10− 9 1 × 10− 7 Per base per
generation

mut 1 × 10− 9 1 × 10− 7 Per base per
generation

Nanc 1000 25,000 Individuals

Tsplit 500 20,000 Generations

mig −0.2 0.2 Fraction of
individuals

N1 1000 30,000 Individuals

N2 1000 30,000 Individuals

growth 0 0.05 Per generation

N3 1000 30,000 Individuals

T1 1500 5000 Generations

T2 100 1500 Generations

When inferring a parameter, we initialize its value by drawing a value
uniformly from the given ranges. For each parameter update, we do
not allow the parameter to go up to or outside its range. Overall, the
ranges are meant to be plausible values based on previous studies or
reasonable evolutionary events.

F I G U R E 3  Set of models. (a) A six- parameter, two- population isolation- with- migration model, which we use in the simulation study.
The migration event is a single pulse at time Tsplit∕2, and can be in either direction. The final parameter (not shown in this diagram) is the
recombination rate. (b) A five- parameter, single- population exponential growth model, which we use to infer histories for YRI, CEU and CHB
separately. (c) A seven- parameter, two- population model, which we fit separately for YRI/CHB and YRI/CEU. The migration can be in either
direction. (d) A seven- parameter, two population model which we fit to CEU/CHB. Migration occurs at T2∕2 and can be in either direction
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

www.wileyonlinelibrary.com

    |  2695WANG et Al.

we reject the start SNP and sample a new one. For each region,
we retain it if at least 50% of the bases are inside callable regions,
as defined by the ‘20120824’ strict mask (1000 Genomes Project
Consortium, 2015).

For both the real and simulated data, we recode the genotypes
by setting the minor allele to the value ‘1’ and the major allele to the
value ‘−’ so that the discriminator cannot learn to distinguish real
data based on reference bias or ancestrally misidentified states. For
the simulations where we must specify a region length L, we choose
L = 50kb, which ensures that in the majority of situations we have at
least S = 36 SNPs. The middle 36 SNPs are retained, and any regions
with insufficient SNPs are centred and zero- padded. Such regions
would automatically look very different from the real data, so the
generator quickly learns to avoid parameters that cause insufficient
SNPs.

We test four models: Figure 3b– d, as well as a three- population
Out- of- Africa model originally specified in (Gutenkunst et al., 2009).
The single- population model has five parameters: two effective pop-
ulation sizes N1 and N2, two size- change points T1 and T2, and the rate
of exponential growth in the recent past. We fit this model to three
human populations from the 1000 Genomes project: YRI (West
African), CEU (European), and CHB (East Asian). The second model
(OOA2) is a simplified two- population Out- of- Africa model. There are
seven parameters: four effective population sizes, two time- change
points and a migration pulse that can be in either direction, allowing
for migration between African and non- African populations. We fit
this model to two pairs of populations: YRI/CEU and YRI/CHB. The
third model (POST) represents the post- out- of- Africa split between
the ancestors of Europeans and East Asians. In this seven- parameter
model, we allow a pre- split bottleneck and directional migration. We
fit this model to the pair of populations CEU/CHB. Finally, we apply
the three- population Out- of- Africa model (OOA3) to YRI/CEU/CHB,
as implemented in stdpopsim (Adrion et al., 2020).

2.5  |  Evaluation metrics

One pervasive issue with GANs is the lack of a natural evaluation
metric (see (Borji, 2019) for a comprehensive overview of GAN
evaluation metrics). Many GANs have been evaluated qualitatively
through user studies designed to see whether humans find the gen-
erated data realistic (Xu et al., 2018). For images, videos or text, this
type of evaluation can be informative (although it tends to favour
generators that memorize specific real examples; Borji, 2019), but
this is not directly possible in the case of genetic data.

Visualizing summary statistics is an alternative, although since
we do not know which statistics are sufficient for the model, it
is dangerous to rely on these alone as a final evaluation metric.
It is possible the discriminator is learning other statistics or rep-
resentations of the data that we are not aware of. In addition,
explicitly matching some types of statistics can bias the resulting
fitted model. For example, Beichman et al. (2017) found that SFS-
matching methods like �a�i (Gutenkunst et al., 2009) and SMC++

(Terhorst et al., 2017) are not able to recapitulate LD statistics.
Further, we currently do not have an exhaustive or sufficient set
of summary statistics that could be used to identify model param-
eters directly in a likelihood framework. However, as a qualitative
assessment of our results, we compare summary statistics com-
puted on the real data and data simulated under our inferred pa-
rameters. This gives us a sense of which features of real data agree
with our simulations and which do not.

To that end, we use seven types of summary statistics. In all
cases, we use 5000 regions of real data (chosen randomly) and 5000
regions of simulated data (each simulated independently under our
inferred parameters) to compute the statistics. All pre- processing is
the same as for GAN training, except for Tajima's D where we fix the
region length, not the number of SNPs.

• SFS: We compute the site frequency spectrum (SFS) by counting
the number of singletons, doubletons, etc in each of 5000 regions
of real and simulated data. We plot the first 10 entries.

• Inter- SNP distances: We plot the distribution of inter- SNP dis-
tances for both the real and simulated data (measured in base
pairs). This provides a general measure of SNP density.

• LD: We compute linkage disequilibrium (LD) by clustering pairs
of SNPs based on their inter- SNP distance. We divide these dis-
tances into 15 bins and average the correlation r2 within each one.

• Pairwise heterozygosity: We plot the distribution of pairwise het-
erozygosity (�), computed separately for each region.

• Tajima's D: We plot the distribution of Tajima's D, computed sepa-
rately for each region. Here, we fix the region length to L = 50 kb
instead of fixing the number of SNPs, as otherwise the distribu-
tion would be the same as pairwise heterozygosity.

• Number of haplotypes: We plot the distribution of number of
haplotypes for each region.

• Hudson's Fst: For the two- population split models, we use Fst to
measure population differentiation (Hudson et al., 1992).

As a more quantitative evaluation, we also report the final dis-
criminator classification accuracy. However, even this metric is not
easy to interpret, as an accuracy close to 0.5 may indicate a degen-
erate situation where the discriminator has not learned anything (see
Figure S1 for an example). Thus, for each model and data set we run
pg- ganK = 10 times and select the model that minimizes the classi-
fication accuracy of the discriminator on the final generated data (not
using any real data). The more generated data that the discriminator
classifies as real– that is, the lower the discriminator accuracy– the
better the generator. This metric was inspired by the Inception Score
(Salimans et al., 2016) used to evaluate GANs, where generated data
are fed into a more powerful discriminator. Since no generated re-
gion has ever been seen by the discriminator before, all generated
regions are implicitly ‘test data’. In this way, we avoid relying on a
held- aside real data set for evaluation, which allows us to use the
(limited) real data exclusively for training.

Finally, we also ran a comparison study against the ABC method
fastsimcoal (Excoffier & Foll, 2011). We provided fastsimcoal

2696  |    WANG et Al.

with three of the same models (IM, OOA2, and POST) as well as a
simulated joint SFS, and the full genome joint SFS for YRI/CEU, YRI/
CHB, and CEU/CHB. Then, we compared the parameters and sum-
mary statistics from fastsimcoal to those from pg- gan.

3  |  RESULTS

3.1  |  Simulation study

To validate our method, we first simulated the training data set, so
we knew the true evolutionary parameters. We fit the six- parameter
IM model from Figure 3a, using the parameter ranges in Table 1.
Throughout, we usually fix the mutation rate to 1.25 × 10− 8 per
base per generation, but it could be inferred along with the other
parameters in species or populations where it is less established. See
Figure S2 for example where we infer mutation rate as well as the
other six parameters of the IM model.

During the pre- training phase, we train the discriminator on up
to 10 different parameter sets, randomly chosen from the ranges in

Table 1. We select Θ(0) to be the first set that achieves at least 90%
discriminator classification accuracy (or the set that maximizes accu-
racy in the case when we do not achieve 90% after 10 pre- training
iterations). This enables the discriminator to gain some structure
that is relevant to the data before combined training begins. During
each main training iteration, we choose 10 independent proposals
for each parameter, keeping the other parameters fixed. This creates
10 × P possible parameter sets, where P is the number of parameters
(P = 6 for the IM model). We select the set that minimizes the gen-
erator loss, which has the effect of modifying one parameter each
iteration. We also tested modifying all the parameters each iteration,
but generally found that updating one at a time led to more stable
and consistent results. For each parameter p, we set the initial vari-
ance �2

p
 to the parameter range divided by 15.

We performed 10 independent initializations of pg- gan on the
full set of six parameters for the IM model. We selected the results
that minimized discriminator accuracy on the final generated data.
The results are shown in Figures 4,5 and Table 2. The first subplot in
Figure 4 shows the losses for both the generator and discriminator.
Since the generator loss considers half as many regions, it is multiplied

F I G U R E 4  IM model parameter inference on simulated training data. In this scenario, we jointly infer the six parameters of the IM model
from Figure 3a. The top plot shows both loss functions over the course of GAN training, and the second plot shows classification accuracy
for both simulated and training data. The remaining plots show the model parameters as they are refined throughout GAN training. The
inferred values are taken at the final iteration [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

    |  2697WANG et Al.

by two to be on same scale as the discriminator loss. At first, the gen-
erator loss is high and the discriminator loss is low, because the dis-
criminator is easily able to detect the difference between simulated
and training data. The second plot shows the discriminator accuracy
on both simulated and training data. Both accuracies are initially high
and then reduce to around 0.5. We see that here, pg- gan is able to
find parameter values that bring the discriminator close to an accu-
racy of 0.5. The final classification accuracy on generated data here
was 0.54, and the overall accuracy (considering both generated and
training data) was 0.46. Our inferred parameter values are close to

the true values (Table 2) and the site frequency spectrum and other
summary statistics of data simulated with these parameter values
closely match the summary statistics of the training data (Figure 5).

As a comparison, we performed ABC inference using fast-
simcoal using the same IM model, fitting the joint SFS from data
simulated under the true model parameters. fastsimcoal closely
matches the SFS and true parameters (Figure 6, Table 2), although
it is not able to infer recombination rate. If we give it the correct
recombination rate, then it closely matches the other summary sta-
tistics in Figure 5 as well.

F I G U R E 5  IM model statistics on simulated training data. Summary statistics for data simulated under our inferred parameters (‘simulated
data’), compared with data simulated under the true parameters (‘training data’). Subfigures on the left correspond to statistics from the
first population, and those on the right correspond to the second population. In the bottom panel, we show Fst between the two populations
[Colour figure can be viewed at wileyonlinelibrary.com]

N1 N2 Nanc Tsplit mig reco

TRUE 9,000 5,000 15,000 2,000 0.050 1.25e−08

pg- gan 9,563 5,719 14,406 2,321 0.056 1.40e−08

fastsimcoal 8,455 4,864 15,395 1,887 0.028 –

Inferred parameters for the IM model (see Figure 3a). pg- gan results correspond to Figures 4,5,
and fastsimcoal results correspond to Figure 6. For fastsimcoal, recombination rate is not
shown, since it cannot be inferred from the SFS.

TA B L E 2  Comparison of pg- gan and
fastsimcoal

www.wileyonlinelibrary.com

2698  |    WANG et Al.

3.2  |  1000 Genomes data analysis

We analysed three populations (YRI, CEU and CHB) separately, each
under the five- parameter model with recent exponential growth
(EXP; Figure 3b). For all single- population results, we used n = 198
(size of CEU) and S = 36. Unlike the simulated example above, we
fix the distribution of recombination rates by sampling from the dis-
tribution of HapMap combined recombination rates (International
HapMap Consortium, 2007), whereas in principle this distribution
could also be inferred.

To assess the impact of the model on our evaluation metrics (classi-
fication accuracy and summary statistics), we first fit a one- parameter
demographic model with a single constant population size Ne. We
then contrast this result with the five- parameter exponential growth
model (EXP). The summary statistics for these results are shown in
Figure 7 for YRI and CHB, and a summary for all populations is shown
in Figure 8a. Inferred parameters for each population under the five-
parameter exponential growth model are shown in Table 3. The ef-
fect of the Out- of- Africa bottleneck (N2) is very apparent in CEU and
CHB, but absent in YRI. Data simulated with fitted parameters for YRI
contain many more singletons than the real data, possibly indicating
the recent exponential growth rate (or the time of onset T2) is overes-
timated. On the other hand, low power to detect rare variants in the
real data could explain a lack of singletons in YRI or other populations.

We also compared summary statistics (Methods) between the
real data and data simulated under the parameter choices corre-
sponding to the two scenarios from Figure 8a. In Figure 7, we show
two sets of summary statistics each for YRI and CHB. On the left, we
show the one- parameter demography results, and on the right we
show the five- parameter results (using HapMap recombination rates
in both cases). While some statistics match closely, others are less
well- matched, consistent with the discriminator being imperfectly
confused. Summary statistics for CEU are shown in Figure S3. For
CEU, both the one- and five- parameter models produced low classifi-
cation accuracy, but the summary statistics are imperfect. This likely
indicates that the discriminator did not learn as well in this scenario,
not that the generator is producing high- quality simulated data.

For all our results, we discard any run where the discriminator
classifies all regions in the same way (either all real or all simulated)

at the end of training. For each set of 10 runs, 0– 2 runs typically fail
in this way. See Figure S1 for example of a failed run for YRI. For the
remaining runs, we see a range of final classifications accuracies. For
the five- parameter models, in YRI this range was 0.5– 0.77 (mean
0.619) and for CHB this range was 0.49– 0.67 (mean 0.564). To pick
the final result, we use the accuracy on the generated data only (i.e.
not including the training data); 0.64– 1.0 with mean 0.742 for YRI
and 0.54– 0.9 with mean 0.707 for CHB.

Next, we ran pg- gan on 1000 Genomes data from two popula-
tions. To model the split of African and non- African populations, we use
two pairs of populations separately: YRI/CEU and YRI/CHB, using the
OOA2 model from Figure 3c. We use CEU/CHB with the POST model
from Figure 3d to represent the post- out- of- Africa split between the
ancestors of Europeans and East Asians. The resulting classification
accuracies are shown in Figure 8b. The YRI/CEU and YRI/CHB results
are comparable to the single- population analysis, but the CEU/CHB
classification accuracy is much higher. For all pairs of populations, we
provide the parameter inference results in Table 4. Summary statistics
for the YRI/CEU split (Figure 9) match the real data closely. YRI/CHB
statistics are shown in Figure S4— for the YRI samples these statistics
are not quite as closely matched, consistent with the slightly higher
classification accuracy for this scenario. CEU/CHB statistics are shown
in Figure S5 and are less well- matched to the real data, consistent
with the relatively high classification accuracy and suggesting that this
model does not contain all the important features for these population,
for example archaic admixture or exponential growth.

We also ran fastsimcoal on the joint SFS from YRI/CEU, YRI/
CHB (using the OOA2 model from Figure 3c), and CEU/CHB (using the
POST model from Figure 3d). We used the inferred parameters to cre-
ate new simulations (with the same fixed mutation rate and HapMap
recombination rate distribution used for pg- gan). The resulting sum-
mary statistics for YRI/CEU are shown in Figure 10, demonstrating
that fastsimcoal also matches the real data very well. The other
fastsimcoal results are shown in Figure S6 (YRI/CHB) and Figure
S7 (CEU/CHB). For YRI/CHB, fastsimcoal produces a slightly bet-
ter fit than pg- gan, but for CEU/CHB the two methods produce very
different parameter estimates and neither method matches the sum-
mary statistics very well, supporting the suggestion that the genera-
tive model is missing some key features of the data.

F I G U R E 6  IM model SFS as inferred by fastsimcoal. Here, we compare the true SFS (‘training data’) with the SFS computed from data
simulated under the parameters learned by fastsimcoal (‘simulated data’) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

    |  2699WANG et Al.

Finally, we ran all three populations through the OOA3 model,
which was originally described in (Gutenkunst et al., 2009) and re-
cently implemented in stdpopsim (Adrion et al., 2020). This required
using a 3- population CNN discriminator, which contains many more
weights to optimize relative to the two population CNN. In addition,

the OOA3 model requires 14 parameters. We inferred 10 of these
parameters, fixing the four migration rate parameters and running
pg- gan for 500 iterations. We also changed the mutation rate
from 2.35 × 10− 8 (which was used in (Gutenkunst et al., 2009)) to
1.29 × 10− 8 (the recommended human mutation rate from (Adrion

F I G U R E 7  Single- population model. Summary statistic comparisons between 1000 Genomes Project data and data simulated under
our pg- gan inferred parameters for a variety of scenarios. Top left: YRI vs. data simulated under the one- parameter constant population
size model. Simulated accuracy: 0.52, overall accuracy: 0.63. Top right: YRI vs. data simulated under the five- parameter exponential growth
model. Simulated accuracy: 0.72, overall accuracy: 0.58. Bottom left: CHB vs. data simulated under the one- parameter constant population
size model. Simulated accuracy: 0.68, overall accuracy: 0.66. Bottom right: CHB vs. data simulated under the five- parameter exponential
growth model. Simulated accuracy: 0.54, overall accuracy: 0.49 [Colour figure can be viewed at wileyonlinelibrary.com]

YRI 1-param demography (accuracy=0.63) YRI 5-param demography (accuracy=0.58)

CHB 1-param demography (accuracy=0.66) CHB 5-param demography (accuracy=0.49)

www.wileyonlinelibrary.com

2700  |    WANG et Al.

et al., 2020)). The inferred parameters and summary statistics are
shown in Figure S8, as well as a diagram of the demographic model
(reproduced from Figure 2b in (Gutenkunst et al., 2009)). We find a
discriminator accuracy of 0.65 and fit some but not all statistics well,
suggesting model misspecification, or the difficulty of exploring a
relatively high- dimensional parameter space.

3.3  |  Computational resources

The runtime of our method is around 5– 6 h using a Quadro P5000
GPU. Pre- processing the real data takes several hours for each set
of populations (YRI, CEU, CHB, YRI/CEU, YRI/CHB, CEU/CHB and
YRI/CEU/CHB). The resulting file sizes are 540 M- 944 M, but these
do not need to be loaded into memory due to the HDF5 format. The
runtime for fastsimcoal was around 55 min.

4  |  DISCUSSION

We present a method for automatically learning parameters that can
be used to simulate realistic genetic data. Most existing methods

optimize parameters to match summary statistics like the SFS. Our
algorithm, pg- gan, is a more holistic approach, which finds param-
eters that generate data that are systematically indistinguishable
from the input data, although in practice it also often matches the
summary statistics.

Our generative adversarial framework simultaneously trains
a generator to produce reasonable evolutionary parameters and a
discriminator to distinguish real data from simulated. We use real
data during training to make sure the simulations capture realistic
genomic features. We demonstrate the use of our method in an
isolation- with- migration simulation setting and create simulated
data that mirrors three human populations individually, in pairs, and
all together. The discriminator often achieves accuracy between
50% and 70%, indicating strong, albeit incomplete, confusion be-
tween the real and simulated data. The approach is highly flexible
and can automatically fit any parameterized model to any genomic
data. We anticipate it will be particularly useful for understudied
populations or species, since any unknown parameters can be in-
cluded in the model and learned.

Our approach yields a natural way of evaluating and refining
simulation pipelines. If simulations are easily distinguished from real
data, then the model is not producing realistic data. We easily reach
essentially complete (50%) discriminator confusion and good sum-
mary statistic matching in simulations. But with real data, the fit is
imperfect. This could be because there are features of the real data
that our models do not include, for example false negatives and other
genotyping errors, phasing errors, missing data and inaccessible re-
gions of the genome. Through changes to the generative model, it
would be possible to incorporate these effects and evaluate their
impact. To handle limited power to detect rare variants (likely why
we see more singletons and rare variants in the simulations than the
real data), we experimented with filtering a fraction of singletons

F I G U R E 8  GAN confusion for 1- and 2- population models. (a) Comparison of one- and five- parameter models. We use a constant
population size for the first group of bars, then move to the five- parameter exponential growth model (Figure 3b). We sample recombination
rates from HapMap in both scenarios, instead of fixing the recombination rate. (b) Classification accuracy results on the population split
models for YRI/CEU, YRI/CHB and CEU/CHB. The Out- of- Africa models and parameter inference for YRI/CEU and YRI/CHB generally seem
to do well, but the CEU/CHB split model and/or parameter inference does not result in simulated data that matches real data [Colour figure
can be viewed at wileyonlinelibrary.com]

(b)(a)

TA B L E 3  1000 Genomes single- population parameter inference

Population N1 N2 growth T1 T2

YRI 23,676 20,837 0.0379 2498 1214

CEU 25,127 4676 0.0061 1673 949

CHB 21,136 3150 0.0242 2584 645

Inferred parameters for the exponential growth model (see Figure 3b) in
YRI, CEU and CHB. We generally infer similar parameters for CEU and
CHB.

www.wileyonlinelibrary.com

    |  2701WANG et Al.

from the simulations. This improved the results for YRI, but not for
CEU or CHB. Such filtering could be more adaptive in a future it-
eration. Features such as missing data could be important in some
contexts (see ReLERNN (Adrion et al., 2020) for example of how to
handle missing data). In general, such data quality- related features

are dangerous for our approach, because they provide a way for the
discriminator to easily distinguish real and simulated data. For exam-
ple, if the generative model had data missing at random but the real
data are missing in a non- random fashion, then the discriminator will
use this signal for classification. It would be important to make the

Populations Nanc mig N1 N2 N3 T1 T2

YRI/CEU 18,693 −0.0627 4030 27,213 29,863 3501 1132

fastsimcoal 21,017 0.0342 3106 21,954 33,078 2844 1042

YRI/CHB 23,916 0.0738 2422 25,228 27,375 3036 529

fastsimcoal 20,950 0.0167 2959 31,871 32,511 2948 863

CEU/CHB 19,688 −0.0350 16,313 6613 9092 4733 966

fastsimcoal 17,761 0.0240 4044 11,405 15,675 3695 2336

Inferred parameters for the OOA2 model (see Figure 3c) fit to YRI/CEU and YRI/CHB, as well
as the POST model (see Figure 3d) fit to CEU/CHB. Results for both pg- gan and fastsimcoal
are included. For pg- gan, we generally see similar results for YRI/CEU and YRI/CHB, with a
lower classification accuracy for YRI/CEU, indicating a closer match to the real data. Our results
are broadly consistent with fastsimcoal, except for CEU/CHB, where neither method produces
statistics that match the real data (see Figures S5 and S7).

TA B L E 4  1000 Genomes two-
population parameter inference

F I G U R E 9  YRI/CEU: two- population model. Summary statistic comparison real 1000 Genomes data and data simulated under the
inferred parameters from Table 4 (first row). Left: statistics computed on YRI samples only. Right: statistics computed on CEU samples only.
Sites with count zero are segregating in only one population. Fst between the two populations is shown in the bottom panel. Simulated
accuracy: 0.68, overall accuracy: 0.54 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

2702  |    WANG et Al.

generative model sufficiently flexible that it could learn to replicate
the distinguishing features of the real data.

Some subsets of populations were more difficult to fit than oth-
ers. The CEU/CHB split proved particularly difficult for both pg- gan
and fastsimcoal. Since data quality should be similar between
populations, this probably indicates that our model does not include
demographic features that are important for patterns of variation
in these populations, for example archaic admixture or exponential
growth. More generally, our model ignores many important biolog-
ical features, for example heterogeneity in the mutation rate and
other parameters, and natural selection. We assumed that mutation
and recombination rates were known, but they can easily be added
as parameters to the generative model and inferred (Figure S9).
Heterogeneity could be modelled by fitting a distribution from which
to draw parameters, rather than a point estimate. Natural selection,
which can bias estimates of demographic parameters (Schrider et al.,
2016), is more difficult to model. The effects of regions under strong
positive selection or long- term balancing selection can be minimized
by removing them from the training data. However, background

selection affects the majority of the genome and completely re-
stricting to ‘truly neutral’ regions of the genome is impractical. One
simple but somewhat unsatisfactory solution is to approximate the
effects of background selection across the genome by scaling effec-
tive population sizes with a factor drawn from empirical estimates
of the effect of background selection across the genome (McVicker
et al., 2009). A better solution would be to estimate the distribution
of selection coefficients as part of the model (Johri et al., 2021). This
requires a generator that can simulate selection, for example SLiM
(Haller & Messer, 2019) but would be much more computationally
intensive than the coalescent simulations in the current approach.
Efficiently incorporating selection into the model is a key area for
future development.

There are several areas of future exploration that involve algo-
rithmic modifications. In our current implementation, the topology
of the demographic model needs to be specified ahead of time.
However, it would be possible to extend our method to explore a
space of demographic models, which would allow both the topol-
ogy and the model parameters to be learned automatically. Although

F I G U R E 1 0  YRI/CEU: two- population model (fastsimcoal). Summary statistic comparison between YRI/CEU and data simulated
under the OOA2 model parameters inferred by fastsimcoal. Here, we include all the statistics (unlike Figure 6) since we are providing
fastsimcoal with a recombination rate distribution. Left: statistics computed on YRI samples only. Right: statistics computed on CEU samples
only. Sites with count zero are segregating in only one population. Fst between the two populations is shown in the bottom panel [Colour
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com

    |  2703WANG et Al.

we mitigate overfitting by selecting real data regions at random (as
opposed to a fixed sliding window), it is still a concern for the dis-
criminator due to the fundamental data imbalance. The amount of
real data is fixed, but the number of simulated examples is unlimited.
There are many ways to guard against overfitting neural networks,
including regularization and architecture modifications. An import-
ant line of future research is to optimize the training procedure in the
presence of limited real data.

Another asymmetry comes from the potentially different learn-
ing rates of the generator and discriminator. The training of both
components needs to be balanced— if the discriminator learns the
difference between real and simulated data too quickly, the gen-
erator might not have a chance to explore a parameter space that
would actually cause confusion. On the other hand, if the discrimi-
nator learns too slowly, all generator updates might look equally con-
fusing. It would be interesting to explore adaptively controlling the
learning rate— slowing down either the generator or the discrimina-
tor as needed through fewer parameter proposals or mini- batches.
Understanding the behaviour of the discriminator is itself an import-
ant area of future work, which could help us investigate alignment
between its hidden layers and traditional summary statistics.

Some idea of the uncertainty in the parameter space can be
obtained by looking at the distribution of replicate estimates. In
principle, this approach could be extended to provide bootstrap
confidence intervals by fitting the model to resampled data. A more
general approach would be to fix the discriminator and vary the gen-
erator parameters to identify the parameter space over which the
discriminator has low accuracy.

Our approach could be incorporated into a transfer learning (Pan
& Yang, 2010) framework. In transfer learning, the parameters of an
ML model are initialized by training on a large data set, then ‘fine-
tuned’ by training on a smaller number of examples from the target
data set. In our case, a large data set like the 1000 Genomes could
be used to find an initial guess for discriminator weights, then these
weights could be fine- tuned using data with fewer regions or se-
quenced individuals. The evolutionary model could still be modified,
as transfer learning would be used for the discriminator, not the gen-
erator. The only restriction would be that the number of populations
would need to match between the larger data set and the smaller
data set. The original learning on the larger data set would primarily
assist the discriminator in learning general features of genomic data
sets— population- level specifics would be learned in the fine- tuning
phase.

It is our hope that others will build upon this initial exploration
into parametric GANs for population genetics. Future developments
will include integrating more realistic features of real data, con-
structing bootstrap confidence intervals for parameter estimates,
and applying our approach to non- human species. In terms of meth-
odological development, we aim to integrate transfer learning and
develop interpretative approaches for the CNN discriminator, in
order to investigate alignment between its hidden layers and tradi-
tional summary statistics. Modern machine learning has proved to
be powerful in many domains, and our work emphasizes that this

is true for population genetics as well. However, machine learning
in population genetics requires novel architectures, for example
our parametric generator and multi- population CNN discriminator—
innovations that will be useful for future development of ML meth-
ods in the field.

ACKNOWLEDG EMENTS
The authors would like to thank Joe Cammisa for extensive
computational support and Ke Wang for assistance with com-
paring pg- gan to other methods. SM is funded in part by NIH
grant R15HG011528, and IM is funded in part by NIH grant
R35GM133708. MK was funded through a David Robbins ‘83 Big
Data/Social Change Lang Center Internship. The content is solely
the responsibility of the authors and does not necessarily repre-
sent the official views of the National Institutes of Health or other
funding sources.

DATA AVAIL ABILIT Y S TATEMENT
Our pg- gan software uses a tensorflow (Abadi et al., 2015)
backend and is available open- source at https://github.com/mathi
esonl ab/pg- gan. All data included in this work are publicly available
through the 1000 Genomes Project https://www.inter natio nalge
nome.org/ (1000 Genomes Project Consortium, 2015).

ORCID
Sara Mathieson https://orcid.org/0000-0002-0484-0838

R E FE R E N C E S
1000 Genomes Project Consortium. (2015). A global reference for

human genetic variation. Nature, 526(7571), 68– 74.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., & Jia, Y., … Zheng, X.
(2015). TensorFlow: Large- scale machine learning on heteroge-
neous systems. Available from: https://www.tenso rflow.org/Softw
arete nsorf low.org

Adrion, J. R., Cole, C. B., Dukler, N., Galloway, J. G., Gladstein, A. L.,
Gower, G., Kyriazis, C. C., Ragsdale, A. P., Tsambos, G., Baumdicker,
F., Carlson, J., Cartwright, R. A., Durvasula, A., Gronau, I., Kim, B.
Y., McKenzie, P., Messer, P. W., Noskova, E., Ortega- Del Vecchyo,
D., … Kern, A. D. (2020). A community- maintained standard library
of population genetic models. eLife, 9, https://doi.org/10.7554/
eLife.54967

Adrion, J. R., Galloway, J. G., & Kern, A. D. (2020). Predicting the land-
scape of recombination using deep learning. Molecular Biology and
Evolution, 37(6), 1790– 1808.

Battey, C. J., Coffing, G. C., & Kern, A. D. (2021). Visualizing popula-
tion structure with variational autoencoders. G3 Genes, Genomes,
Genetics, 11(1), 1– 11. https://doi.org/10.1093/g3jou rnal/jkaa036

Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate
Bayesian computation in population genetics. Genetics, 162(4),
2025– 2035.

Beichman, A. C., Phung, T. N., & Lohmueller, K. E. (2017). Comparison of
single genome and allele frequency data reveals discordant demo-
graphic histories. G3: Genes, Genomes, Genetics, 7(11), 3605– 3620.

Blum, M. G. B., & François, O. (2010). Non- linear regression models
for Approximate Bayesian Computation. Statistics and Computing,
20(1), 63– 73.

https://github.com/mathiesonlab/pg-gan
https://github.com/mathiesonlab/pg-gan
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://orcid.org/0000-0002-0484-0838
https://orcid.org/0000-0002-0484-0838
https://www.tensorflow.org/Softwaretensorflow.org
https://www.tensorflow.org/Softwaretensorflow.org
https://doi.org/10.7554/eLife.54967
https://doi.org/10.7554/eLife.54967
https://doi.org/10.1093/g3journal/jkaa036

2704  |    WANG et Al.

Borji, A. (2019). Pros and cons of gan evaluation measures. Computer
Vision and Image Understanding, 179, 41– 65.

Chan, J., Perrone, V., Spence, J., Jenkins, P., Mathieson, S., & Song, Y.
(2018). A likelihood- free inference framework for population ge-
netic data using exchangeable neural networks. Advances in Neural
Information Processing Systems, 8594– 8605.

Dieng, A. B., Ruiz, F. J. R., Blei, D. M., & Titsias, M. K. (2019). Prescribed
generative adversarial networks. arXiv preprint arXiv:1910.04302.

Ewing, G., & Hermisson, J. (2010). MSMS: a coalescent simulation pro-
gram including recombination, demographic structure and selec-
tion at a single locus. Bioinformatics, 26(16), 2064– 2065.

Excoffier, L., Dupanloup, I., Huerta- Sánchez, E., Sousa, V. C., & Foll, M.
(2013). Robust demographic inference from genomic and SNP data.
PLoS Genetics, 9(10), e1003905.

Excoffier, L., & Foll, M. (2011). Fastsimcoal: a continuous- time coalescent
simulator of genomic diversity under arbitrarily complex evolution-
ary scenarios. Bioinformatics, 27(9), 1332– 1334.

Flagel, L., Brandvain, Y., & Schrider, D. R. (2019). The unreasonable ef-
fectiveness of convolutional neural networks in population genetic
inference. Molecular Biology and Evolution, 36(2), 220– 238.

Goodfellow, I., Pouget- Abadie, J., Mirza, M., Xu, B., Warde- Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In
Advances in Neural Information Processing Systems, 2672– 2680

Gower, G. R., Picazo, P. I., Fumagalli, M., & Racimo, F. (2020). Detecting
adaptive introgression in human evolution using convolutional neu-
ral networks. bioRxiv.

Griffiths, R. C., & Marjoram, P. (1997). An ancestral recombination graph.
IMA, 87, 257.

Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C.
D. (2009). Inferring the joint demographic history of multiple pop-
ulations from multidimensional SNP frequency data. PLoS Genetics,
5(10), e1000695

Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations
beyond the Wright- Fisher model. Molecular Biology and Evolution,
36(3), 632– 637.

Harris, K. (2015). Evidence for recent, population- specific evolution of
the human mutation rate. Proceedings of the National Academy of
Sciences, 112(11), 3439– 3444.

Harris, K., & Pritchard, J. K. (2017). Rapid evolution of the human muta-
tion spectrum. Elife, 6, e24284.

Hinch, A. G., Tandon, A., Patterson, N., Song, Y., Rohland, N., Palmer,
C. D., Chen, G. K., Wang, K., Buxbaum, S. G., Akylbekova, E. L.,
Aldrich, M. C., Ambrosone, C. B., Amos, C., Bandera, E. V., Berndt,
S. I., Bernstein, L., Blot, W. J., Bock, C. H., Boerwinkle, E., … Myers,
S. R. (2011). The landscape of recombination in African Americans.
Nature, 476(7359), 170– 175. https://doi.org/10.1038/natur e10336

Hudson, R. R. (2002). Generating samples under a Wright- Fisher neutral
model of genetic variation. Bioinformatics, 18(2), 337– 338.

Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels
of gene flow from DNA sequence data. Genetics, 132(2), 583– 589.

International HapMap Consortium, et al. (2007). A second generation
human haplotype map of over 3.1 million SNPs. Nature, 449(7164),
851.

Johri, P., Riall, K., Becher, H., Excoffier, L., Charlesworth, B., & Jensen, J.
D. (2021). The impact of purifying and background selection on the
inference of population history: problems and prospects. bioRxiv,
https://doi.org/10.1101/2020.04.28.066365. URL: https://www.
biorx iv.org/conte nt/early/ 2021/01/18/2020.04.28.066365

Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient coalescent
simulation and genealogical analysis for large sample sizes. PLoS
Computational Biology, 12(5), e1004842.

Kern, A. D., & Schrider, D. R. (2016). Discoal: flexible coalescent simula-
tions with selection. Bioinformatics, 32(24), 3839– 3841.

Kessler, M. D., Loesch, D. P., Perry, J. A., Heard- Costa, N. L., Taliun,
D., Cade, B. E., Wang, H., Daya, M., Ziniti, J., Datta, S., Celedón,

J. C., Soto- Quiros, M. E., Avila, L., Weiss, S. T., Barnes, K., Redline,
S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., … O’Connor, T. D.
(2020). De novo mutations across 1,465 diverse genomes reveal
mutational insights and reductions in the Amish founder popula-
tion. Proceedings of the National Academy of Sciences, 117(5), 2560–
2569. https://doi.org/10.1073/pnas.19027 66117

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., & Yosef, N. (2018).
Deep generative modeling for single- cell transcriptomics. Nature
Methods, 15(12), 1053– 1058.

Mathieson, I., & Reich, D. (2017). Differences in the rare variant spec-
trum among human populations. PLoS Genetics, 13(2), e1006581.

McVicker, G., Gordon, D., Davis, C., & Green, P. (2009). Widespread
genomic signatures of natural selection in hominid evolution.
PLoS Genetics, 5(5), e1000471. https://doi.org/10.1371/journ
al.pgen.1000471

Miles, A. (2015). Estimating Fst. http://alima nfoo.github.io/2015/09/21/
estim ating - fst.html

Miles, A. (2017). Extracting data from VCF files. http://alima nfoo.github.
io/2017/06/14/read- vcf.html

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.
arXiv Preprint arXiv:1411.1784.

Neuhauser, C., & Krone, S. M. (1997). Ancestral processes with selection.
Theoretical Population Biology, 51, 210– 237.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10), 1345– 1359.

Pincus, M. (1970). Letter to the editor— a Monte Carlo method for the
approximate solution of certain types of constrained optimization
problems. Operations Research, 18(6), 1225– 1228.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.

Riesselman, A. J., Ingraham, J. B., & Marks, D. S. (2018). Deep genera-
tive models of genetic variation capture the effects of mutations.
Nature Methods, 15(10), 816– 822.

Ronen, R., Udpa, N., Halperin, E., & Bafna, V. (2013). Learning natu-
ral selection from the site frequency spectrum. Genetics, 195(1),
181– 193.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., &
Chen, X. (2016). Improved techniques for training gans. arXiv pre-
print arXiv:1606.03498

Sanchez, T., Cury, J., & Charpiat, G., & Jay, F. (2020). Deep learning for
population size history inference: Design, comparison and combi-
nation with approximate Bayesian computation. Molecular Ecology
Resources. https://doi.org/10.1111/1755- 0998.13224

Schrider, D. R., Shanku, A. G., & Kern, A. D. (2016). Effects of linked
selective sweeps on demographic inference and model selec-
tion. Genetics, 204(3), 1207– 1223. https://doi.org/10.1534/genet
ics.116.190223

Sheehan, S., & Song, Y. S. (2016). Deep learning for population genetic
inference. PLOS Computational Biology, 12(3), e1004845. https://
doi.org/10.1371/journ al.pcbi.1004845

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1),
1929– 1958.

Terhorst, J., Kamm, J. A., & Song, Y. S. (2017). Robust and scalable in-
ference of population history from hundreds of unphased whole
genomes. Nature Genetics, 49(2), 303– 309.

Teshima, K. M., & Innan, H. (2009). mbs: modifying Hudson’s ms software
to generate samples of DNA sequences with a biallelic site under
selection. BMC Bioinformatics, 10(1), 166.

Torada, L., Lorenzon, L., Beddis, A., Isildak, U., Pattini, L., Mathieson, S., &
Fumagalli, M. (2019). ImaGene: A convolutional neural network to
quantify natural selection from genomic data. BMC Bioinformatics,
20(9), 337.

https://doi.org/10.1038/nature10336
https://doi.org/10.1101/2020.04.28.066365
https://www.biorxiv.org/content/early/2021/01/18/2020.04.28.066365
https://www.biorxiv.org/content/early/2021/01/18/2020.04.28.066365
https://doi.org/10.1073/pnas.1902766117
https://doi.org/10.1371/journal.pgen.1000471
https://doi.org/10.1371/journal.pgen.1000471
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
http://alimanfoo.github.io/2017/06/14/read-vcf.html
http://alimanfoo.github.io/2017/06/14/read-vcf.html
https://doi.org/10.1111/1755-0998.13224
https://doi.org/10.1534/genetics.116.190223
https://doi.org/10.1534/genetics.116.190223
https://doi.org/10.1371/journal.pcbi.1004845
https://doi.org/10.1371/journal.pcbi.1004845

    |  2705WANG et Al.

Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., & Weinberger, K.
(2018). An empirical study on evaluation metrics of generative ad-
versarial networks. arXiv preprint arXiv:1806.07755.

Yelmen, B., Decelle, A., Ongaro, L., Marnetto, D., Tallec, C., Montinaro, F.,
Furtlehner, C., Pagani, L., & Jay, F. (2021). Creating artificial human
genomes using generative models. PLoS Genetics, 17(2), e1009303.

SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Wang Z, Wang J, Kourakos M, et al.
Automatic inference of demographic parameters using
generative adversarial networks. Mol Ecol Resour.
2021;21:2689–2705. https://doi.org/10.1111/1755-
0998.13386

https://doi.org/10.1111/1755-0998.13386
https://doi.org/10.1111/1755-0998.13386

