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China has been suffering from serious air pollution for years in response to the rapid industrialization
and urbanization. Notably Beijing is one of the most polluted capitals in the world. Hence, the focus
of the study area is on Beijing. In the first stage, we analyze spatial and temporal characteristics of air

. pollution of the 6 cities while in the second stage the Granger causality test is applied to investigate

. whether air pollution of a city is affected by its neighbors, and vice versa. The findings are the following.

. Overall, AQl values are high in winter and early spring while low in summer and autumn. Among the 6

. cities, Baoding is the major contributor to air pollution in this entire area. Besides, Granger causality

. testresults show that there is a unidirectional relationship running from Baoding to Beijing and a

. bidirectional relationship between Beijing and Tianjin. In other words, apart from local air pollutants,

. for example, exhaust gas, air quality of Beijing is affected by air pollution of Tianjin, and vice versa.

. However, regarding the relationship between Beijing and Baoding, air quality of Beijing is just affected
by air pollution of Baoding, since Baoding is much polluted than Beijing.

China, the largest developing country, has been suffering from severe air pollution for years as a result of the rapid
economic growth, the large scale of industrialization and urbanization'?. A large number of Chinese people is at
. risk of air pollution, since China is the most populous country all over the world. In particular, in 2013 January
: the North China experienced severe and persistent haze pollution attack. This extreme haze event influenced 800
million people, covering 1.4 million square kilometers of China’. At present, large parts of China are frequently
- affected by air pollution events, notably in the economically developed regions, such as the North China Plain,
. the Yangtze River Delta, and the Pearl River Delta*". The frequent air pollution is one of the top environmental
: concerns. It has posed a huge threaten to health, and even life. Furthermore, air pollution has become the fourth
© primary risk factor in all deaths after heart attack, dietary risk and smoking in China according to latest statis-
© tics®’. Moreover, it is able to cause other diseases, for example, reversible respiratory problems, asthma, lung
. and heart failure-related mortality®®. Consequently, air quality degradation in Chinese cities has attracted great
. attention in recent years'’.
: In a bid to address the severe issue of air pollution, a growing number of studies on various primary air
. pollutants has surged in recent years, for example, total particulate matter. According to the official statistics
: by the Ministry of Environmental Protection of China, approximately 85-90% of the primary air pollutants in
: most Chinese cities are particulate matter'!, notably PM, ; and PM,,. A recent study by Chen et al.* showed that
. long-term exposure to high particulate matter might reduce life expectancy by about 3 years. PM, ; is particulate
. matter with an aerodynamic diameter less than 2.5 pm. High PM, 5 concentrations not only pose a huge threat
to human health!>!, but also impair visibility'®, even leading to traffic accidents. Hence, forecast of PM, ; levels
is of vital importance for issuing pollution alerts that inform the public to reduce exposure to high PM, 5 con-
* centrations and restrict outdoor activities. For instance, Zhou et al.'® applied ensemble empirical mode decom-
. position method and regression neural network to predict PM, 5 concentration based on a time series data set
. of Xi’an China from January 1 to November 1 in 2013. The accurate results were obtained by using the hybrid
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model. Besides, Fang et al.'” investigated spatio-temporal characteristics of PM, ; in China by using observed data
from 945 monitoring sites in 2014. They found that PM, ; concentrations showed significant seasonal variation.
Specifically, it is high in autumn and winter while low in spring and summer. Moreover, PM, 5 concentrations
presented distinct spatial agglomeration. Elser et al.? analyzed PM, 5 chemical composition and sources in major
cities, namely Beijing and Xi’an in China from the perspective of atmospheric chemistry and physics based on
a data collected when extreme haze events occurred during winter in 2013-2014. In addition to PM, 5, a large
number of studies have also concentrated on PM, in China, notably several Chinese cities'®!?, for example,
Beijing®?!, Shanghai?»*, Nanjing?, or urban clusters, for example, the Yangtze River Delta?>?%, and the Pearl
River Delta Region?”. According to official statistics, very few large cities in China meet environmental standards
according to the World Health Organization.

The North China Plain is frequently attacked by heavy air pollution every winter and early spring, which is
home to several of the world’s most polluted cities*®. More importantly, Beijing, the capital of China, is located
in the plain. It has long been one of the most polluted capitals in the world®, attracting great attention from the
Chinese central government and the public®, because it is a mega city with a population of 21.7 millions in 2015.
Consequently, the mounting complaints about air quality from the public have been rising for years. Hence, a lot
of studies have dedicated to analyzing the severe issue of air pollution in the region. Similarly, they have placed
emphasis on the atmospheric chemistry and physics of air pollutants, for example, PM, ; and PM,, and meteor-
ological factors’!.

The above-mentioned air pollutants, namely, particulate matter are main causes for air quality degradation.
The serious issue of air pollution in China has triggered public anxiety and has attracted official concerns. The
Chinese central government has been aware of air pollution for almost four decades. From 1998, it started to
report the weekly air pollution index (API), which takes into account three pollutants, namely, total suspend par-
ticle, nitrogen oxide, and sulfur dioxide*’. However, it was found that daily API values were often less than PM,,
concentrations. Moreover, the frequent haze-fog event contradicts public perception of air pollution, which has
forced the Ministry of Environmental Protection of China to release a new national ambient air quality evaluation
standard™.

In order to improve air quality evaluation index, an accurate, comprehensive and dimensionless indicator
for air pollution, viz. air quality index (AQI) was developed by the Ministry of Environmental Protection of
China with PM, 5, PM,, ozone, and carbon monoxide added to the new index, on the basis of the United States
Environmental Protection Agency AQI**%. Since then, the old API has been replaced by the new AQI evaluation
standard, since AQI is a better indicator of local air quality?’.

Basically, AQI has already served as a guide for the governments to inform the public to take protection meas-
ures in a bid to avoid long-time exposure to air pollution’®. Subsequently, it has gain popularity in measuring air
quality among the public and the academic circle. A growing number of literature on AQI in China has surged
in recent years. For example, Jiang et al.’” analyzed the relationship between AQI published officially and air
pollution posted in Chinese tweeter by using a new social media framework. They found that the filtered social
media messages were closely correlated with AQI. Interestingly, Li and Peng?® from the perspective of behavioral
finance investigated the effect of air pollution on stock returns of depressed moods, since environmental stimuli,
for example, air pollution, sunshine, can be used as proxies for collective mood swings. They found that air pollu-
tion was a behavioral factor with some connection to stock returns in China. Lin and Wang* analyzed the driving
factors of air pollution by using AQI data of 74 Chinese cities in 2014. They drew the conclusion that energy
consumption, industrialization and technological progress were attributed to reduced air quality while economic
development was a contributor to the improvement of air quality. Besides, a large number of prior works have
focused on the spatio-temporal distribution of AQI in some specific Chinese cities, for example, Bejing*.

The focus of this study is also on air pollution of Beijing. Generally, Beijing suffers from multiple air pollutants,
including sulfur dioxide, nitrogen dioxide, ozone, and particulate matter®’. Hence, one single pollutant cannot
reflect how polluted Beijing is. Since AQI value is determined by these mentioned-above criteria pollutants, itis a
best comprehensive index to exactly measure air quality. Besides, one possible shortcoming of these prior works
is that they ignore air pollutants from other cities when they analyze air pollution of one city. In other words, air
quality of a city is not only affected by its local air pollutants, but also by air pollutants diffused from neighboring
cities, since air pollutants disperse across borders. To sum up, air quality of a city tends to be affected by its pol-
luted neighbors.

Many researchers also focused on air pollution of Beijing metropolitan area or Beijing-Tianjin-Hebei region
since it is one of the most heavily polluted regions in China. For example, Li et al.*! applied source apportionment
and source sensitivity methods to identify source regions for PM, ; exposure in Beijing-Tianjin-Hebei region
in 2013. Li et al.*? used the WRF-CHEM model to evaluate the contributions of trans-boundary transport to the
air quality in Beijing. These aforementioned studies tend to employ atmosphere simulation method since it can
clearly involve the effect of climate conditions and provide more details about the mechanisms of transbound-
ary air pollution of the Beijing metropolitan area. However, in this study we aim to provide a novel insight into
trans-boundary air pollution of Beijing and its neighbors from the econometric point of view. Its advantages lie in
two aspects. One is that the econometric model, specifically Granger causality test, avoids to taking into account
the complicated dynamic mechanism in the trans-boundary air pollution. If the current air quality of y city can
be explained by past air quality of its neighbor x city, it implies that air pollution of x city causes air pollution of y
city. The other is that Granger causality test requires a smaller data size than simulation model, but has a strong
econometric explanation that can disclose how air pollution of cities affects each other.

Hence, the main objectives of this study lie in two aspects. One is to analyze spatial and temporal charac-
teristics of AQI values of Beijing and its neighboring cities. This is because understanding spatial distribution
and temporal variation of air pollution contributes to implementing city targeted and effective policies to miti-
gate air pollutants in the most polluted cities when meteorological conditions are the worst. The other one is to
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investigate how air pollution of these cities interacts by means of an econometric method, different from prior
works. In other words, this study attempts to disclose if air quality of a city is affected by its neighbors, or vice
versa. Moreover, it may provide a novel insight into how air quality of Beijing is affected and shed light on the
mechanism from the viewpoint of empirical econometrics. Besides, the findings may help policy-makers effec-
tively and efficiently predict and control air pollution of the most polluted city, since it may be the major contrib-
utor to air pollution of the entire area. To sum up, this research is of great significance to pave a possible way for
the solution to air pollution of Beijing.

The rest of this paper is organized as follows. Section 2 introduces methods used in this study and data
sources. Section 3 presents spatial and temporal characteristics of AQI and discusses empirical results. Section 4
concludes.

Methods and Data Sources

One aim of this study is to test for causal relationships between air pollution of Beijing and its neighboring cities
by means of a time-series econometric method, specifically, Granger causality test. However, the first step is to
test if all AQI values are stationary and integrated of the same order. Hence, a unit root test, namely, augmented
Dickey Fuller (ADF) test is first introduced, followed by Granger causality test. Then, the data sources are given.

Unit root test. Before testing for causal relationships of air pollution of these cities, the first step is to test if
all variables are stationary and integrated of the same order. Hence, a unit root test is needed to test if AQI of each
city is a stationary time series.

In this study we employ ADF unit root test proposed by Dickey and Fuller®>**, which is most widely applied in
empirical studies. The null hypothesis of the ADF test is that “the time series has a unit root”. If the null hypothesis
is rejected, the series is a stationary time series, or said to be integrated of order zero, or I(0) for short. On the
other hand, if the null cannot be rejected, and the first difference of the series is stationary, the series is said to be
integrated of order one, or I(1).

The ADF test has three types of assumptions, namely, no intercept and no trend (Equation 1), intercept
(Equation 2), and intercept and trend (Equation 3).

P
Ay, =0y + D Ny + "
i=1

where y, is the series in time t; § denotes the first difference; y is the error term with a mean 0 and a variance o2

P
Ay =a+ 0y + > Ny + g @
i=1

where o denotes the intercept term.

P
Ay =a+Bt+0y  +>NAY  + g, 3
i=1

where 3 denotes the time trend. The null hypothesis of the ADF test is Hy: § =0, and the alternative hypothesis
isH;: 0<0.

Granger causality test. Granger causality test, firstly proposed by Granger*, is a commonly-used test to
investigate causal relationships between two variables. It is a statistical hypothesis test for the question of if one
variable affects the other. Technically speaking, x and y are two time series. If “x causes y” by means of a set of
statistics, it indicates that the current y can be explained by past values of x and that adding lagged values of x can
enhance the explanation. When it comes to air pollution, air quality of a city may be affected not only by the past
air quality, but also by air pollution of its neighbors. Hence, in this study it is applied to test for if air pollution of
one city affects the other, and vice versa. The Granger causality test model reads as follows.

r P
Y=o+ Zaiytfj + Zﬁixt—j + &
j=1 j=1 (4)

P p
X =y + Zaixt—j + Zﬂ;}’,_j +é&
=1 j=1

)

The null hypothesis is that “x does not Granger cause y” in the first regression. Similarly, the null hypothesis of the
second equation is that “y does not Granger cause x”.

Technically speaking, F-statistics are the Wald statistics for the joint hypothesis. The null joint hypothesis is
given below.

Hy By =0,=-=0,=0 (6)

On the other hand, the alternative hypothesis is that at least one estimated parameter is not zero. It can be
given as follows.

H;: At least one ﬂ] =0 7)
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Figure 1. Map of study area. The map was generated using ArcGIS (Version 10.3.1., https://www.arcgis.com).
The source of the map is GADM database of Global Administrative Areas (http://www.gadm.org/). The study
area is part of the map of China.

Beijing 104.49 | 70.18 2429 | 429.96 | 58.47%
Tianjin 101.99 |59.74 |31.00 |389.29 |63.11%
Baoding 128.34 | 76.10 | 29.67 |438.46 |44.26%
Zhangjiakou 71.63 | 30.71 28.83 |236.39 |85.25%
Chengde 71.55 | 33.89 23.08 248.50 | 83.06%
Langfang 100.66 | 64.23 28.38 | 431.25 | 62.02%

Table 1. Descriptive statistics of AQI.

Study area and data sources. The focus of the study area is on Beijing and its neighboring cities, part of
Jing-Jin-Ji region. The Jing-Jin-Ji region covers two municipalities, namely, Beijing (Jing for short) and Tianjin
(Jin for short), and a province, namely, Hebei province (Ji for short). The region had a population of more than
110 million in 2015 that accounted for about 8.1% of Chinas total. It is located in the North China Plain, one
of the China’s largest metropolitan areas. It has an area of 216, 600 square kilometers, about 2.25% of the entire
nation.

The Jing-Jin-Ji region is an economically developed metropolitan area in China with a high economic growth
rate. Its gross regional product (GRP) amounted to 6935.89 billion Yuan in 2015. It has been playing an important
role in China’s economy. Specifically, its GRP accounted for more than 10% of China’s GDP in 2015.

On the other hand, it has also been suffering from the serious issue of environmental pollution, notably air
pollution for years, due to its rapid industrialization and urbanization. For example, industrial sulfur dioxide
emissions amounted to 1.365 million tons in 2015, accounting for 7.3% of the China’s total. It is attributed to a
large deal of energy consumed. For example, it consumed 443.26 billion tons of standard coal equivalent (SCE),
accounting for 10% of the total energy consumption of China. It is worth noting that Hebei province in the region
is well-known for its steel industry. The steel production of Hebei province in 2015 amounted to more than 250
million tons, accounting for almost one quarter of China’s total output. The single industrial sector emitted quite a
lot of pollutants, contributing to air quality degradation as a result of more than 100 millions tons SCE consumed
in 2015. It has been the main reason for air pollution in this region.

Beijing is one of the most polluted capitals all over the world. Apart from its traffic exhaust gas, another main
reason is that it is surrounded by the polluted neighbors. In a bid to solve the serious problem of air pollution,
it is of great significance to research on if air quality of Beijing is affected by its neighbors. Hence, we select its 5
neighboring cities, viz., Tianjin, Baoding, Zhangjiakou, Chengde, Langfang. In other words, Beijing is surrounded
by the 5 cites. The study area is shown in Fig. 1.

AQI level is determined by six criteria pollutants, namely, SO,, NO,, CO, O3, PM, 5, and PM, according to
the Ambient Air Quality Index (AQI) Technical Provisions issued by the Ministry of Environmental Protection
of China. Data for AQI are obtained from the national platform of the Ministry of Environmental Protection
(http://106.37.208.233:20035/ (in Chinese)). The time series data are from January 1 to December 31 in 2016. In
other words, there are 366 observations. The descriptive statistics for AQI values of the 6 cities (means, standard
deviations (S.D), minimum (Min) and maximum (Max) values) are presented in Table 1.
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Figure 2. Daily AQI values of the 6 cities in 2016.

0-50 Excellent 23.22 10.38 7.92 25.41 32.24 14.75
51-100 Good 35.25 52.73 36.34 59.84 50.82 47.27
101-150 Lightly polluted 21.58 21.86 25.96 12.57 13.39 23.22
151-200 Moderately polluted 10.38 6.28 15.30 1.64 2.46 7.10
201-300 Heavily polluted 7.10 7.10 10.11 0.55 1.09 4.92
300+ Severely polluted 2.46 1.64 4.37 0.00 0.00 2.73

Table 2. Air pollution level by city (Unit: %).

Empirical Results and Discussions

The empirical analysis section consists of two stages. In the first stage we present spatial and temporal variation
of AQI values of the 6 cities in order to understand how air pollution changes during the whole year, and then in
the second stage causal relationships result.

Temporal variation analysis. We simply plot time series of AQI of each city in order to explicitly disclose
their fluctuation patterns. It is shown in Fig. 2.

Figure 2 displays the panorama of the time series dataset. Specifically, it shows daily AQI values of the 6 cities
from January 1 to December 31 in 2016. Note that there is a horizontal bar displayed in Fig. 2 where AQI value
in the y-axis is equal to 100, implying it is a critical criterion value. According to the Ambient Air Quality Index
(AQI) Technical Provisions (Trial), if the observed value of AQI is less than 100, it applies that the city’s air quality
is good, and otherwise polluted. Hence, there is a formula to calculate the excellence rate of air quality, that is, the
ratio of the number of days with AQI value less than 100 to the whole days of the year. Also, the AQI level crite-
rion and air pollution level by city are given in Table 2.

In order to better understand how AQI values change during the whole year, the monthly average AQI values
from January to December are given in Fig. 3. We find that it presents a W-shaped curve. Specifically, it went
down from January to February, and then increased to March, and declined to August, and finally continued to
increase till December. To sum up, in summer and autumn, AQI values are low, indicating good air quality while
in winter and early spring AQI values are high, implying serious air pollution. One biggest possible explanation is
that central heating service is provided in winter and early spring in these cities, heavily depending on a large deal
of coal combustion. Consequently, various pollutants degrade air quality.

In North China, heating is heavily dependent on coal combustion and approximately 40% of air pollutants
comes from coal dust*®. In particular, central heating service is commonly offered in winter and early spring when
the meteorological conditions are just the worst during the whole year. As a consequence, AQI values are usually
the highest from November to next January, even to March, since the central heating service is provided from
November to next March every year. It should be noted that the entire China is also heavily dependent on fossil
fuel, notably coal, which has acted as the major contributor to air quality degradation®’.

Spatial distribution analysis. We next turn to the spatial distribution analysis in a bid to investigate where
air pollution occurs and how it changes. We apply the geovisualization technique to map the monthly average
AQI values of the 6 cities from January to December. From Fig. 4, we find that Changde and Zhangjiakou have
good air quality throughout the whole year. In January, November and December, Baodings air quality is highly
polluted. Similarly, in winter Baoding’s close neighboring cities, namely, Beijing, Langfang and Tianjin also face
serious air pollution.

In order to explicitly disclose air quality of each city in space, the spatial distribution of the excellence rate of
air quality of the 6 cities is given in Fig. 5. From Fig. 5, We find that Baoding has the lowest excellence rate (44.26),
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indicating that it is the most polluted city among these 6 cities. On the other hand, Zhangjiakou has the highest
excellence rate (85.25), implying that its air quality is the best. Notably the rate of Beijing amounts to 62.02, sug-
gesting that during the whole year 2016 the number of days with AQI values less than 100 is more than a half year.

Granger causality test results. Figure 5 displays that AQI values of each city seems to fluctuate up and
down during the whole year. In other words, these time series present a pattern with an intercept. Hence, the
intercept term should be taken into account when testing for unit roots. The results of the ADF test are shown in
Table 3.

In Table 3 t statistics are reported, followed by the critical values for the t test at the 1%, 5%, and 10% signif-
icance level. In the second column it can be found that t statistics for AQI time series of each city is far less than
the critical value at the 1% significance level (Note: t-statistic is negative.). In other words, the null hypothesis is
strongly rejected, indicating that each time series is I(0). For robustness, the results of the ADF test with a trend
and an intercept are also reported in the third column of Table 3. Similarly, the null hypothesis is also strongly
rejected. To sum up, AQI time series of each city has no unit root, or I(0).

After unit root tests, naturally the next step is to conduct the cointegration test. An easy way to test for the
cointegration relationships between two cities is to perform the Engle-Granger two-step method. Since these
time series are 1(0), linear combination of them must be stationary. In other words, the residual series for the
cointegration regression is likely stationary. Hence, the cointegation test may not work well. On the other hand,
in this research we pay only attention to the causal relationships between two cities which have common borders.
In other words, we are incapable of taking these 6 cities as an integrated region to perform the cointegration test.
This is because the mechanism of air pollution may be complicated and even inexplainable by these time series
data. In addition, it is also beyond the scope of this research. The main aim of this research is to explore the causal
relationships between the time series data from the viewpoint of the econometric method.

Before causal relationships, we turn our eyes to the correlation relationships between AQI values of cities. The
Pearson correlation coeflicient test is then performed. In order to explicitly display how close these time series
are, the correlation coefficients and their magnitude are plotted in Table 4 and Fig. 6. Note that all coeflicients are
significant and positive.

The second column of Table 4 reports the Pearson correlation coefficients between Beijing and its neighbors,
namely, Tianjin, Baoding, Zhangjiakou, Chengde, and Langfang, implying that how closely related these time
series are. Technically, the high coefficient value, the more related. It can be found that these coeflicients are larger
than 0.6, indicating that Beijing’s AQI is closely related with its neighbors” AQI values.

More interestingly, for three pairs of cities without common borders, their coefficients are smaller, specifically,
Chengde and Baoding (0.5194), Zhangjiakou and Tianjin (0.4513), Zhangjiakou and Langfang (0.4499). Besides,
the relationship between Zhangjiakou and Baoding is also not too closed, having a weak coefficient of 0.3481. This
is because Baoding is seriously polluted with high AQI values throughout the whole year while Zhangjiakou is
not, presenting a good environment.

In order to explicitly present the relationships between cities with common borders, we use geovisualization
technique to plot the Pearson coeflicients and the magnitude. It is presented in Fig. 6.

Although the Pearson coefficients present a measure of the pairwise correlation between two time series, it is
unable to capture which one is affected by the other, or vice versa. What’s more, the strong correlation coefficient
does not imply causality. Hence, we use the Granger causality test to discover the causal relationships between cit-
ies with and without common borders. In order to better present the causality results, we exhibit a map of causal
relationships between cities also by means of employing the geovisualization technique (See Fig. 7). Note that the
double-headed arrow represents a bidirectional causal relationship, implying that they are affected by each other.
Moreover, the single-headed arrow indicates a unidirectional causal relationship. Besides, to better understand
causal relationships, the average value of AQI of each city is also considered and given in the Fig. 7.
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Figure 4. Spatial distribution of monthly average values of AQI. The maps were generated using ArcGIS
(Version 10.3.1., https://www.arcgis.com). The source of the map is GADM database of Global Administrative
Areas (http://www.gadm.org/). The study area is part of the map of China.

As shown in Fig. 7, there are four pairs of bidirectional causal relationships, namely, Beijing and Tianjin,
Tianjin and Langfang, Chengde and Langfang, and Zhangjiakou and Chengde. We find that the two cities with
bidirectional causal relationships have similar mean values of AQI. For example, Beijing’s AQI has a mean value of
104.49 and Tianjin 101.99. Moreover, the mean values of Zhangjiakou and Chengde are 71.63 and 71.55, respec-
tively. To conclude, two neighboring cities with similar mean values of AQI tend to have bidirectional causal
relationships.

We also find 6 unidirectional causal relationships running from Baoding to Beijing, from Baoding to Tianjin,
from Beijing to Chengde, from Beijing to Zhangjiakou, from Tianjin to Chengde, from Langfang to Beijing,
respectively. Overall, it clearly presents a pollution diffusion pattern, namely, from the highly polluted Baoding
to less polluted cities. Our empirical findings have important policy implications for the government. In order to
solve the serious issue of air pollution in this area, improvements of air quality and reduction of pollution sources
of Baoding is the first priority. To sum up, it follows the conclusions that highly-polluted cities affect ones with low
pollution and that for those cities which have similar AQI values, they tend to affect each other.

Also, we attempt to give an explanation of how air pollution between cities interacts from the perspective of
geography. The terrain’s surface of the study area is shown in Fig. 8. From Fig. 8, it can be found that the study area
is separated by the Yanshan Mountain Ridge into two parts. One is the mountainous area with high evaluation,
including two cities, namely, Zhangjiakou and Chengde. The rest is the plain area, part of the North China plain,
where air pollutants tend to concentrate. This is also the main reason why this area is highly polluted.

On the other hand, highly polluted Beijing affects air quality of Chengde and Zhangjiakou. However, the
influence of Beijing on them is relatively limited because they are separated by the Yanshan Mountain Ridge.
Moreover, interestingly it can be found that there is no causal relationship between highly-polluted Baoding and
Zhangjiakou. Hence, this is the major geography reason why Chengde and Zhangjiakou are not as polluted as
Baoding and Beijing.

Besides, we also find that there are no causal relationships between Zhangjiakou and Langfang, and Zhangjiakou
and Tianjin. In other words, more polluted Langfang and Tianjin cannot affect air quality of Zhangjiakou, and vice
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Figure 5. Spatial distribution of excellence rate of air quality. The map was generated using ArcGIS (Version
10.3.1., https://www.arcgis.com). The source of the map is GADM database of Global Administrative Areas
(http://www.gadm.org/). The study area is part of the map of China.

Beijing —11.355 —11.763
Tianjin —10.387 —10.686
Baoding —7.962 —8.149
Zhangjiakou —11.187 —11.173
Chengde —11.324 —11.314
Langfang —10.468 —10.886
1% level —3.448 —3.983
5% level —2.869 —3.422
10% level —2.571 —3.134

Table 3. Unit root test results.

Beijing 1.000

Tianjin 0.778 1.000

Baoding 0.714 0.791 1.000

Zhangjiakou 0.634 0.451 0.348 1.000

Chengde 0.789 0.617 0.519 0.728 1.000

Langfang 0.833 0.901 0.802 0.450 0.645 1.000

Table 4. Pearson correlation coefficients between cities.

versa. This lies in two possible reasons. One is that Tianjin and Langfang is much far away from Zhangjiakou in
geography. The other is that air pollution diffusion is blocked by the Yanshan Mountain Ridge.

Conclusions and Future Direction

In this paper, in the first stage we spatially and temporally analyzed AQI values of Beijing, Tianjin, Baoding,
Zhangjiakou, Chengde, and Langfang in 2016. From the temporal perspective, AQI values are found to be low in
summer and autumn, implying high air quality while air quality is the most serious in winter and early spring.
From the spatial and temporal perspective, Chengde and Zhangjiakou are found to have good air quality since
their AQI values are low throughout the whole year. Moreover, Baoding has the highest AQI values in winter.
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Figure 6. Correlation relationships between cities. The map was generated using ArcGIS (Version 10.3.1.,
https://www.arcgis.com). The source of the map is GADM database of Global Administrative Areas (http://
www.gadm.org/). The study area is part of the map of China. Note: Solid lines imply that two cities have
common borders while dash lines imply two cities without common borders.
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Figure 7. Causality relationships of air pollution between cities. The map was generated using ArcGIS (Version
10.3.1,, https://www.arcgis.com). The source of the map is GADM database of Global Administrative Areas
(http://www.gadm.org/). The study area is part of the map of China.

Among the 6 cities, it is the most polluted. However, in summer Baoding also enjoys good air quality. From the
spatial distribution of the excellence rate, it can also be found that Baoding is highly polluted since its excellence
rate is the lowest while Zhangjiakou has good air quality throughout the whole year. In the second stage we con-
ducted the Granger causality test to investigate how air pollution of these cities affects each other. The findings
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Figure 8. Evaluation of the study area. The map was generated using ArcGIS (Version 10.3.1., https://www.
arcgis.com). The source of the map is GADM database of Global Administrative Areas (http://www.gadm.org/).
The study area is part of the map of China.

are the following. There are bidirectional causal relationships between Beijing and Tianjin, Tianjin and Langfang,
Chengde and Langfang, and Zhangjiakou and Chengde. Moreover, 6 unidirectional causality relationships are
also found, namely, running from Baoding to Beijing, from Baoding to Tianjin, from Beijing to Chengde, from
Beijing to Zhangjiakou, from Tianjin to Chengde, and from Langfang to Beijing. From the above analysis, it fol-
lows that Baoding is mainly responsible for air pollution in the area.

Jing-Jin-Ji region is one the most heavily polluted regions in China as a result of rapid economic growth, the
large scale of industrialization, and urbanization. China’s income levels have been ever increasing since reforms
and opening-up policies. A massive number of energy-intensive products, like cars is consumed that leads to a
plenty of pollution emissions and environmental degradation. Hence, environmental protection education and
reinforcement environmental awareness are needed to encourage people to adopt a low carbon lifestyle. Besides,
the Chinese economy is greatly attributed to the large scale of industrialization. Consequently, the secondary
industry has long been the biggest energy consumer and pollution emitter in China. In other words, it should be
responsible for ever-deteriorating air quality and environment quality. Hence, the industrial transition moving
from the highly-polluted secondary industry to the high-value-added service industry should be encouraged by
the Chinese government. Moreover, a series of vital environmental policies are also urgently needed to enhance
environmental protection expenditure.

On the other hand, this study also suffers from three shortcomings. One is that we only consider those cit-
ies which have common borders with Beijing and ignore other polluted cities in Hebei province, for example,
Tangshan, Shijiazhuang, Handan etc, which also may affect air quality of Beijing and other cities. This is because
these polluted cities are far away from Beijing in geography that cannot influence Beijing as much as Beijing’s
neighboring cities. The second is that the mechanism of air pollution, notably the impacts of meteorological fac-
tors, such as wind and relative humidity, is unable to be taken into consideration since it is beyond the scope of
the research. We explore how air pollution of these cities affect each other by means of the time series data from
the viewpoint of the econometrics. We hope that this research sheds light on the interaction relationships of air
pollution between cities from the time series perspective and provide a possible research direction in the future.
The last is that the sample data may be limited since it has 366 observations. We in the future hope to enlarge sam-
ple size and re-study causal relationships of air pollution of more cities in a bid to obtain robust scientific results.
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