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Abstract: Alpine habitats are shaped by harsh abiotic conditions and cold climates. Temperature
stress can affect phenotypic plasticity, reproduction, and epigenetic profiles, which may affect
acclimation and adaptation. Distribution patterns suggest that polyploidy seems to be advantageous
under cold conditions. Nevertheless, whether temperature stress can induce gene expression changes
in different cytotypes, and how the response is initialized through gene set pathways and epigenetic
control remain vague for non-model plants. The perennial alpine plant Ranunculus kuepferi was
used to investigate the effect of cold stress on gene expression profiles. Diploid and autotetraploid
individuals were exposed to cold and warm conditions in climate growth chambers and analyzed via
transcriptome sequencing and qRT-PCR. Overall, cold stress changed gene expression profiles of both
cytotypes and induced cold acclimation. Diploids changed more gene set pathways than tetraploids,
and suppressed pathways involved in ion/cation homeostasis. Tetraploids mostly activated gene set
pathways related to cell wall and plasma membrane. An epigenetic background for gene regulation
in response to temperature conditions is indicated. Results suggest that perennial alpine plants can
respond to temperature extremes via altered gene expression. Tetraploids are better acclimated to
cold conditions, enabling them to colonize colder climatic areas in the Alps.

Keywords: alpine plants; cold stress; DNA methylation; gene expression; Gene Set Enrichment
Analysis; geographical parthenogenesis; polyploidy; Ranunculus kuepferi

1. Introduction

Temperature stress is affecting several developmental processes in the life cycle of
flowering plants [1] and is considered a key constraint to the geographical distribution of
species. Aside from distributional ranges, changes in average temperature can affect the
phenology, defense capacity, growth, and development of plants e.g., [2–6].

Cold temperature stress is defined as chilling (0–20 ◦C) or freezing (<0 ◦C) and repre-
sents a major abiotic stress, threatening growth and development e.g., [7,8]. Most notably, it
induces biochemical, physiological, structural, and morphological modifications e.g., [9–13]
such as changes in light use, ROS production, carbon assimilation, photosynthesis rate,
membrane permeability, fluidity, and cell wall architecture e.g., [7,14–19].

Flowering plants evolved various adaptation strategies to survive and reproduce
under adverse temperature conditions, such as plastic responses, which are observed to
be positively correlated with colonization of novel habitats e.g., [20,21] and subsequent
selection of fitting phenotypes over many generations [22–26]. In recent decades, a grow-
ing number of studies have been focused on phenotypic plasticity, one component of
which is thought to be changes in gene expression patterns, and its evolutionary aspects
e.g., [27–33]. A reliable subset of them focuses on the triggering role of environmental
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conditions [34,35] and the capacity of individuals for phenotypic accommodation [23,25]
as well as acclimation to the new conditions [36].

The molecular response of plants towards environmental conditions is dynamic and
extremely complex, as a typical plant cell possesses more than 30,000 genes [37]. Alter-
ations on a phenotype can be depicted in morphology, physiology, and gene expression,
as single changes or a combination of these [25,32,38–40]. The genes involved in these
procedures can be induced by cold per se or by the relative state of dehydration following
cold stress [41]. As plants are sessile organisms, the effects of cold stress seem to be of
great importance regarding the acclimation to environmental conditions e.g., [39,42,43],
with timing, combination, and intensity of the stress parameters presumably playing an
important role e.g., [44].

Cold acclimation, i.e., the acquisition of increased freezing tolerance upon prior expo-
sure to non-lethal low temperatures [45–47], is a sophisticated mechanism plants evolved
to endure cold stress. It is moderated via structural and functional remodeling. Profound
changes in gene expression profiles affect the composition of the transcriptome, proteome,
and metabolome e.g., [7,48]. Gene expression depicts the way phenotypes are determined
under particular environmental conditions [49]. The combination of environment and
genotype influences the expression of a phenotype in a world of continuously changing
conditions [39].

Polyploidy has several effects on vigor, physiology, morphology and other adaptive
traits and can result in increased survival fitness in harsher environments [50–53]. Poly-
ploids are specifically more abundant in high latitudes and regions with colder climates [54].
It is hypothesized that under cold temperature conditions polyploid plants are reducing
cell numbers and increasing cell size [51], thus adjusting their growth and exposure of
reproductive tissues towards the putative adaptive morphology of alpine dwarfism [13].
The shift to asexual reproduction modes in some polyploids and epigenetic modifications
are suggested to further improve their adaptation to stress conditions [13,55,56].

Epigenetic modifications, such as DNA methylation, histone modifications, and chro-
matin rearrangement can directly or obliquely regulate gene expression e.g., [57–61]. In
plants, DNA methylation is a documented epigenetic mechanism, which could medi-
ate phenotypic plasticity within a single generation [62] and between generations [63].
DNA methylation changes can be induced by environmental stimuli, either biotic or
abiotic e.g., [64–66], while DNA methylation profiles could be somewhat fixed e.g., for
transgenerational inheritance e.g., [67–70]. Furthermore, DNA methylation changes,
e.g., gene silencing, can also be triggered by genomic stresses, such as polyploidiza-
tion and hybridization, which could also result in genome-wide transcriptional rewiring
e.g., [50,71–75]. Thus, DNA methylation can be beneficial in the procedures following
polyploidization events concerning the re-establishment of genomic balance and structural
and functional remodeling [76–79].

Phenotypic plasticity, here defined as the ability of a single genotype to differentially
respond to environmental stimuli [28,80], is thought to be under genetic and epigenetic
control e.g., [43] and often correlated with transcriptional differentiation [33,81]. An epi-
genetic background of phenotypic plasticity suggests that DNA methylation provides a
plant with a more rapid reaction to variable environmental conditions compared to DNA
mutation. However, the resulting phenotype is not necessarily stable [34].

Most studies on gene expression under temperature stress were so far conducted on
annual model organisms such as Arabidopsis thaliana or on crop plants e.g., [47,82,83]. Little
is known on the plasticity of perennial plants growing under natural, extreme conditions.
Ranunculus kuepferi Greuter & Burdet is an alpine perennial herb appropriate for studying
acclimation to cold conditions. The species is primarily distributed across the European
Alps, in altitudes between 1300–2800 m [84–88] along a pronounced geographical partheno-
genesis scenario [89]. Geographical Parthenogenesis in general describes related sexual
and asexual organisms with different geographical distributions [90]. In R. kuepferi, diploid
plants are predominantly sexual and restricted to the warmer Southwestern Alps, whereas
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autotetraploid plants are facultative apomicts (aposporous), with varying proportions of
sexual and asexual seeds, and colonize previously glaciated areas, i.e., the northern, central
and eastern Alps as well as the northern Apennines and Corsica [84,85,88,91]. Tetraploid
populations occur at higher elevations in the European Alps than diploids and exhibit
a pronounced niche shift towards colder temperatures [87,88]. High alpine habitats are
characterized by short growth periods and cold spells, eventually with nocturnal frost
during flowering time (spring or summer). It was suggested that the niche differentiation
between the cytotypes is associated with a combination of climatic conditions and repro-
duction mode, with the asexual taxa having a distributional advantage towards cooler
conditions [92].

Previous studies revealed that the tetraploid cytotype originated 10–80 kyears ago [92],
presumably by multiple and recurrent autopolyploidization events [86,93]. The genetic
differentiation between cytotypes, regardless of reproduction mode, is very low and on
a similar level within cytotypes (Fst values ~0.3 for both cytotypes) [89]. The epigenetic
background of the species proposes a differentiation of the cytotypes, but also a correlation
of abiotic environmental conditions with the epigenetic variation in natural populations
and in experimental conditions [94,95]. Thus, a putative epigenetic background of the niche
shift of the tetraploids in the Alps is indicated, with epigenetic variation being associated
with elevation in natural populations and higher persistence under cold treatments [94,95].
Syngelaki et al. [96] highlighted the potential of phenotypic plasticity, with changes of
growth parameters linked to DNA methylation patterns, for acclimation to environmental
conditions. These experiments confirmed the different niche preferences of cytotypes in
natural populations, as diploids grow better under warm conditions, while tetraploids
perform better in cold treatments.

Herein, we employed diploid and tetraploid plants already used by Syngelaki
et al. [95,96] and exposed them to different controlled temperature treatments, to assess the
gene expression profiles of individuals. We aim to investigate whether cold temperature
stress influences gene expression and try to gain further insights into the expression dy-
namics. A temperature-sensitivity of gene expression profiles is speculated, which could
act as a rapid response towards stressful environments. We also investigated the differenti-
ation of the gene expression profiles according to the ploidy level of the individuals. We
hypothesize that the observed niche shift of the tetraploid cytotype has the physiological
background of a better cold acclimation. Finally, we associated the gene expression results
with DNA methylation, on a transcriptomic level, as a correlation between them would
explain the potential of tetraploid R. kuepferi to adapt to cold conditions at higher altitudes
during the postglacial recolonization of the European Alps.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Diploid and tetraploid plants of R. kuepferi used in the present study were part of a
long-term temperature stress experiment, as described in Klatt et al. [97] and Syngelaki
et al. [95,96]. Plants were collected throughout the distribution range of the species in
the European Alps [87] during the growing seasons of 2013 & 2014. Subsequently, the
plants were re-potted in garden soil at the Old Botanical Garden of Göttingen University,
where their ploidy level was defined via Flow Cytometry of silica gel dried leaf material
collected in the field [88]. For the scope of the current experimental design, which was
conducted from 2014 onwards, the plants were exposed to different temperature conditions
during the sprouting and flowering period, while the rest of the parameters were kept
equal. The settings for the transcriptome study were as in Syngelaki et al. [95,96] (Table 1).
The temperature conditions were simulating the natural environment of the species in the
Alps, including freezing during some nights.
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Table 1. Temperature treatment conditions during plant growth and sampling collection. Light
regime was measured with a Quantum light meter (Spectrum Technologies Inc., Aurora, IL, USA)
during the full light period (100% intensity) at the level of early leaf tips and first buds. Plants were
rotated weekly in the cabinet to avoid effects of light and temperature gradients.

No. Plants

Cold Treatment Warm Treatment
164 189

Diploid Tetraploid Diploid Tetraploid
74 90 92 97

Light regime (µmol m−2 s−1, SAR) ~700
Photoperiod (h) 16; 10 of full light and 3 + 3 of twilight

Temperature during the light/dark
period (◦C)

Daytime 7 15

Night
2

−1 (cold shocks for three
nights per week)

10

Altogether 262 individuals were categorized into four groups corresponding to their
ploidy level and treatment: cold diploids (CD, 63 plants), warm diploids (WD, 79 plants),
cold tetraploids (CT, 71 plants), and warm tetraploids (WT, 49 plants). At the peak of the
flowering season in beginning of summer 2019, leaf tissue was collected simultaneously
from three individuals per group, each originating from different natural populations,
immediately frozen in liquid nitrogen and stored in −80 ◦C. Sample collection localities
can be found in Supplementary Table S1.

2.2. RNA Extraction and Sequencing

Frozen leaf tissue was pulverized in liquid nitrogen and a maximum of 100 mg of
powder was used for RNA isolation with the RNAeasy Plant® Mini Kit (QIAGEN, Hilden,
Germany) following the provided protocol. RNA quantity and quality were determined
with Nanodrop, a QubitTM with the RNA HS Assay Kit (ThermoFisher Scientific, Waltham,
MA, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Library preparation and sequencing with HiSeq 4000 (Illumina, San Diego, CA, USA) was
conducted at the Transcriptome and Genome Analysis Laboratory of the Microarray &
Deep-Sequencing Core Facility (UMG, Georg-August-Universität, Göttingen, Germany)
producing 50 bp single end reads.

2.3. Bioinformatics

The quality of reads was assessed using FastQC v.0.11.4 [98]. Raw reads were trimmed
with CutAdapt v.2.3 [99], removing adapters and bases with a phred score below 30 and
removing reads shorter than 30bp after trimming. As there is no available genomic reference
for R. kuepferi, the transcriptomes from all diploid individuals were pooled for a de novo
assembly with Trinity v.2.8.6 and default parameters, except for max. memory was set to
50Gb [100,101] to produce a pseudoreference. The quality of the resulting assembly was
verified with BUSCO v.3.0.2 [102] (Supplementary Figure S1). TransDecoder v.5.5.0 [103]
was used to identify the longest Open Reading Frame per assembled contig. Coding
sequences were annotated using the blastp algorithm under NCBI-BLAST v.2.10.0 [104] and
the December 2020 release of Uniprot as reference. Annotation reports were produced using
Trinotate v.3.2.1 [105]. Trimmed reads of each sample were mapped against the annotated
pseudoreference individually using Bowtie2 v.2.3.5.1 with default parameters [106].

Raw counts of mapped reads were calculated employing the Rsubread/Subread pack-
age v.2.4.0 [107] in R/Bioconductor (v.4.0.3 and v.4.1.0/v.3.12 and v.3.13, respectively) [108]
in R Studio [109]. Resulting matrices were further analyzed with DESeq2 v.1.30.0 [110]
with a false discovery rate (FDR) threshold of < 0.05 and the Benjamini–Hochberg p-value
normalization adjustment [111]. Loci were identified as differentially expressed regarding
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the comparison of interest (cytotypes, treatments), with the group of warm diploids (WD)
used as reference, and were visualized in a heatmap with ggplot2 v.3.3.5 [112].

ClusterProfiler v.4.0.2 [113] was used for Gene Set Enrichment Analysis. This package
currently only accepts single organism references via AnnotationDbi v.1.55.1 [114]. Of the
currently accepted reference genomes, A. thaliana is most closely related to R. kuepferi [115].
Consequently, the pseudoreference was annotated again as described above using the
updated TAIR 10 release [The Arabidopsis Information Resource (TAIR), http://www.
arabidopsis.org; accessed on 11 March 2021] and the resulting annotations were employed
in ClusterProfiler for a separate run for each cytotype, checking all subontologies and with
several 1 Mio. permutations. For these analyses, the warm treatment was set as the control
condition. Dot plots were generated with enrichplot v.1.13.1 [116].

2.4. qRT-PCR

Quantitative real-time RT-PCR was conducted to validate the differential gene expres-
sion revealed by bioinformatic analyses. The annotation reports of the pseudoreference
were screened for possible genes of interest (GOIs), which are stated to be related, directly
or indirectly, to DNA methylation and gene regulation [12,60,61,82,117–123], as well as
housekeeping genes [124,125]. Primers were designed for two methyltransferases (CAMT3,
PMT2), two demethylases (JM706, JMJ25), the AGO4B gene, which is participating in the
RNA-directed DNA methylation (RdDM) pathway in Arabidopsis and rice [121] and the
housekeeping gene Actin (Supplementary Table S2). Primer specificity was tested with a
touch-down PCR; products were sequenced and compared to the respective gene in the
pseudoreference.

Complementary DNA synthesis and qRT-PCR was performed using QuantiTect Re-
verse Transcription Kit (QIAGEN, Hilden, Germany) and the Rotor-Gene SYBR Green
PCR kit (QIAGEN, Hilden, Germany) in QIAGEN Rotor-Gene Q cycler, equipped with
Q-Rex Software and following the instructions of the manufacturer for two cycling steps
and a 45 cycles PCR program for three technical replicates per sample. To evaluate the
differential gene expression, the amplification performance as the log of fold change was
calculated with the ∆∆Ct method [126] in Excel 2016, using the housekeeping gene Actin
as endogenous control for normalization and warm diploid individuals were considered
the reference.

3. Results
3.1. Pseudoreference and Mapping

In the current study, gene expression profiles of six diploid and six tetraploid in-
dividuals of R. kuepferi, under cold (stress) and warm (control) temperature treatments
were explored. Sequencing of the samples resulted in a mean of 31,918,319 raw reads
per sample with a mean of 31,707,039 reads retained after trimming. The assembly of the
pseudoreference resulted in 71,444 transcripts, with 15,224 of them functionally annotated.
Through Bowtie2 mapping, we obtained an average mapping rate of 93.08% per sample
(Table 2).

http://www.arabidopsis.org
http://www.arabidopsis.org
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Table 2. Summary of sequencing and mapping data for the R. kuepferi transcriptomes, against the
pseudoreference resulting from Trinity de novo assembly of all reads from diploid samples.

Group † Sample ID Untrimmed
Reads

Total Trimmed
Reads

Mapped
Reads

Mapped
Reads (%)

CD 30_1_2 1,335,657 1,326,485 1,214,557 91.56
CD 115_4_2 39,260,122 39,044,345 37,240,848 95.38
CD 116_3_1 46,805,434 46,545,107 43,938,918 94.4

CT 41_2_2 37,813,775 37,625,107 34,877,792 92.7
CT 90_2_3 35,989,875 35,824,317 33,353,051 93.1
CT 108_3_3 36,888,834 36,687,214 33,980,212 92.62

WD 24_4_3 29,197,541 29,058,835 27,467,724 94.52
WD 29_1_2 34,122,764 33,708,095 31,629,139 93.83
WD 33_3_3 29,530,425 29,378,666 27,521,885 93.68

WT 42_1_2 29,277,225 29,108,345 26,919,488 92.48
WT 74_1_2 31,858,591 31,626,671 28,839,855 91.19
WT 106_4_1 30,939,580 30,551,281 27,988,255 91.61

† WD: warm diploid, CD: cold diploid, WT: warm tetraploid, CT: cold tetraploid.

3.2. Differential Gene Expression

A total of 2617 significantly differentially expressed genes were identified between the
four predefined groups. Among all groups, more genes were found to be down-regulated
compared to up-regulated (Table 3).

Table 3. Differentially expressed genes of R. kuepferi transcriptomes regarding the comparison of
interest (cytotypes, treatments).

Gene Count Percentage (%)

Expressed genes 19,033
Differentially expressed genes 2617 13.75

Up-regulated 1055 5.5
Down-regulated 1562 8.2

Outliers 469 2.5

Gene expression was correlated with temperature, while the ploidy level of the plants
under the same environmental conditions did not affect the gene expression strongly
(Figure 1). One WD individual (WD2443) seems to present gene expression patterns
different from all the other samples. The same individual seems to be an outlier also in the
qRT-PCR analysis.



Genes 2021, 12, 1818 7 of 19Genes 2021, 12, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 1. Heat map showing the expression of transcriptomes of diploid and tetraploid R. kuepferi 
plants under warm (control) and cold (stress) conditions. Regarding the sample IDs the capital let-
ters stand for the predefined groups (WD: warm diploid, CD: cold diploid, WT: warm tetraploid, 
CT: cold tetraploid) and the numbers stand for the populations in the wild (Supplementary Table 
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of all resulted enriched pathways is shown due to graphical purposes and a dotplot of all 
pathways is provided in Supplementary Data (Supplementary Figure S2). Overall, 25 and 
13 pathways have been activated in diploid and tetraploid individuals, respectively. Path-
ways which are linked to the plasma membrane e.g., ‘anchored component of plasma 
membrane’, ‘(cation) transmembrane transporter activity’ and the cell wall e.g., ‘cell wall 
organization or biogenesis’, ‘plant-type cell wall’, as well as the ‘cold acclimation’ and 
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pathways related to ion/cation homeostasis and enzymic activity, such as ‘(cellular) metal 
ion homeostasis’ and ‘protein serine/threonine kinase activity’ are enriched only in dip-
loids, while pathways such ‘histone/chromatin modification’ and ‘lipid transport’ are en-
riched only in tetraploid individuals. 

Figure 1. Heat map showing the expression of transcriptomes of diploid and tetraploid R. kuepferi
plants under warm (control) and cold (stress) conditions. Regarding the sample IDs the capital letters
stand for the predefined groups (WD: warm diploid, CD: cold diploid, WT: warm tetraploid, CT:
cold tetraploid) and the numbers stand for the populations in the wild (Supplementary Table S1).

3.3. Gene Set Enrichment Analyses

Gene set enrichment was successfully assigned and statistically significant for 59 path-
ways in the diploids and 20 pathways in the tetraploids. Enriched gene sets with higher
GeneRatios, which in ClusterProfiler are defined as ‘count/setSize,’ where ‘count’ is the
number of genes that belong to a given gene set, while ‘setSize’ is the total number of
genes in the gene set, are presented in Figures 2 and 3. Regarding Figure 2, an extract
of all resulted enriched pathways is shown due to graphical purposes and a dotplot of
all pathways is provided in Supplementary Data (Supplementary Figure S2). Overall, 25
and 13 pathways have been activated in diploid and tetraploid individuals, respectively.
Pathways which are linked to the plasma membrane e.g., ‘anchored component of plasma
membrane’, ‘(cation) transmembrane transporter activity’ and the cell wall e.g., ‘cell wall
organization or biogenesis’, ‘plant-type cell wall’, as well as the ‘cold acclimation’ and
‘hydrolase activity’ pathways, are activated in both cytotypes (Figures 2 and 3). How-
ever, pathways related to ion/cation homeostasis and enzymic activity, such as ‘(cellular)
metal ion homeostasis’ and ‘protein serine/threonine kinase activity’ are enriched only in
diploids, while pathways such ‘histone/chromatin modification’ and ‘lipid transport’ are
enriched only in tetraploid individuals.
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Figure 3. Significantly enriched gene set pathways resulting from the analysis of differentially expressed genes in tetraploid
individuals of R. kuepferi.

3.4. Genes of Interest and qRT-PCR

A total of 38 genes of interest, identified by their involvement in DNA methylation,
were significantly differentially expressed among the four predefined groups (Table 4).

Table 4. List of differentially expressed genes related to DNA methylation in R. kuepferi leaves. Annotation is according to
UniProt. The genes which are highlighted are employed as genes of interest (GOIs) for the real-time qRT-PCR.

GeneID Organism ‡ Function Regulation

AGL15 BRANA Agamous-like MADS-box protein Down
AGL62 ARATH Agamous-like MADS-box protein Down
AGO1A ORYSJ Protein argonaute 1A Down
AGO4B ORYSJ Protein argonaute 4B Down
ALKB2 ARATH DNA oxidative demethylase Down

AP1 VITVI Agamous-like MADS-box protein Down
ATX4 ARATH Histone-lysine N-methyltransferase Up

CAMT3 PETHY Caffeoyl-CoA O-methyltransferase 3 Down
CMTA3 ARATH Calmodulin-binding transcription activator Down
COMT1 POPKI Caffeic acid 3-O-methyltransferase Down
DRM1L ARATH DNA (cytosine-5)-methyltransferase Down
EPFL2 ARATH EPIDERMAL PATTERNING FACTOR-like protein 2 Down
EPFL6 ARATH EPIDERMAL PATTERNING FACTOR-like protein 6 Down
EPFL9 ARATH EPIDERMAL PATTERNING FACTOR-like protein 9 Down
FDM1 ARATH Factor of DNA methylation 1 Up
JM706 ORYSJ Lysine-specific demethylase Down
JMJ25 ARATH Lysine-specific demethylase Down
LAMT CATRO Loganic acid O-methyltransferase Down

MADS1 VITVI Agamous-like MADS-box protein Up
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Table 4. Cont.

GeneID Organism ‡ Function Regulation

MBD2 ARATH Methyl-CpG-binding domain-containing protein 2 Up
MBD6 ARATH Methyl-CpG-binding domain-containing protein 6 Down
METE CATRO 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase Down

METE2 ORYSJ 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase 2 Down
PEAM1 ARATH Phosphoethanolamine N-methyltransferase 1 Down
PMT1 ARATH Probable methyltransferase PMT1 Down
PMT2 ARATH Probable methyltransferase Down
PMT4 ARATH Probable methyltransferase Down
PMT7 ARATH Probable methyltransferase Down
PMT8 ARATH Probable methyltransferase Down
PMTB ARATH Probable methyltransferase Down
PMTD ARATH Probable pectin methyltransferase Down
PMTI ARATH Probable methyltransferase Down
PMTQ ARATH Probable methyltransferase Down
PMTT ARATH Probable pectin methyltransferase Down
RP6L1 ARATH Protein RRP6-like 1 Up
RP6L2 ARATH Protein RRP6-like 2 Up
RRP8 ARATH Ribosomal RNA-processing protein 8 Up

SUVR1 ARATH Probable inactive histone-lysine N-methyltransferase Down
‡ Abbreviations: ARATH = Arabidopsis thaliana, BRANA = Brassica napus, CATRO = Catharanthus roseus, PETHY = Petunia hybrida,
POPKI = Populus kitakamiensis, ORYSJ = Oryza sativa ssp. japonica, VITVI = Vitis vinifera.

The correlation of differential gene expression analysis with epigenetics was validated
via qRT-PCR. For almost all individuals the expression of all five of the selected genes was
down-regulated (Supplementary Table S3), corresponding to the differential expression
analysis results of DESeq2. Only for one individual, an up-regulation of all the genes was
detected. This individual is the same that separates from the rest of the samples under cold
treatment (Figure 1).

4. Discussion

Plant acclimation to cold stress induces various cellular processes through a cascade
of change in gene expression and protein synthesis e.g., [127,128]. It is estimated that
between 4% and 12% of the transcriptome of A. thaliana changes after a respective period
of several hours, days or weeks of exposure to chilling temperatures [129,130]. This
differentiation in gene expression combined with the observation of different gene clusters
being up-regulated during different times of the stress exposure indicates a hierarchy in the
functional response, with signaling of harmful conditions or increasing freezing tolerance
comes first [129,131,132], while circadian clocks being hypothesized to play an important
role in general regulation [117,133]. Polyploidy may affect cold acclimation as polyploids
are thought to perform better under cold conditions e.g., [54]. We analyzed here for the first
time gene expression of a perennial alpine plant under different temperature conditions,
and evaluated effects of different ploidy levels on the response to cold stress.

4.1. Ploidy Effects on Gene Expression and the Distribution Pattern

The ploidy level of the individuals per se does not appear to be a significant contributor
to the observed differential gene expression (Figure 1). This differs from previous studies
on DNA methylation patterns, mode of reproduction, and morphological traits of R.
kuepferi which revealed significant ploidy effects [95–97]. The congeneric species of the
Ranunculus auricomus complex also showed strong ploidy effects in gene expression profiles
of ovules [134]. In our study, the main effects in gene expression changes are due to
treatments, not to ploidy. In autopolyploids, transcription profiles can be influenced by
a multitude of factors, which are caused by genome duplication e.g., dosage effects due
to the presence of additional copies of genes [78]. However, autotetraploid rice does
seemingly not show a genome-wide dosage effect on gene expression; likely because
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subfunctionalization maintains the functional pleonasm of duplicated genes and avoids
any energy waste [135–138]. Regarding the WD individual, which is an outlier for both
the gene expression profiles and qRT-PCR analysis, there was no indication of lower RNA
quality during wet and dry lab manipulation of the specimen. Probably, the conditional
plasticity and the gene-environment interaction [39,139] of the individual, as well as the
micro site of origin of the natural population, which belongs to the sympatric zone of the
two cytotypes [88], could play the major role for its observed phenotype.

To investigate further how the two cytotypes cope with stress conditions, gene set
enrichment for each ploidy level was assessed. Several key regulatory pathways and
their interactions have been documented previously e.g., [37,117,140–142]. In R. kuepferi,
diploids respond more intensively to temperature treatments compared to the tetraploids,
as a higher number of gene sets is significantly differentially expressed (Figures 2 and
3). Hence, diploids appear to be more stressed by cold conditions than tetraploids. The
cold stress treatments of our experiments are quite similar to the natural habitat conditions
of the tetraploid R. kuepferi plants in the Alps [95]. As the cold adapted genotypes are
thought to have a distinct advantage over non-adapted ones in frost-prone environments,
such as high mountain areas [9], we hypothesize that the postglacial colonization of the
Alps by autotetraploid populations of R. kuepferi [88] did rely to a large extent on the
phenotypic variation towards the climatic conditions, pronounced also as differential gene
expression [143]. Thus, the geographical parthenogenesis scenario, which interrelates
the cytotypes with different ecological backgrounds [88,92], is further supported. Results
support the simulation study of postglacial recolonization in the Alps, which identified the
acclimation/adaptation of tetraploids to a colder climatic niche in higher and more northern
parts of the Alps as one decisive character of the geographical parthenogenesis pattern [92].
Our results here suggest that this niche shift has a direct physiological background of
cold tolerance and is less likely due other characteristics of alpine habitats (like a lower
pathogen pressure, among others).

4.2. Functional Aspects of Gene Expression Related to Cold Acclimation

Although some of the differentially expressed gene sets overlap between ploidy levels,
there are some characteristics for either group. In diploids, most pathways are linked
to ion/cation homeostasis and activity and are suppressed. Additional pathways are
connected to the plasma membrane, cell wall, and hydrolase activity. Similar pathways
are present in tetraploid individuals, with a greater focus on membranes and cell wall.
In contrast to diploids, the tetraploids suppressed only six pathways, mostly related to
chromatin and histone modification. In both cytotypes the cold acclimation pathway is
activated.

As access point of the cell, membranes are injured by adverse environmental condi-
tions, yet their stability contributes to cell behavior and activity maintenance [16,117,144].
Pathways related to cell lipid composition, such as the ones activated in the tetraploids,
play an important role in the maintenance of plasma membrane functionality e.g., [145,146]
and are affecting the downstream expression of genes linked to resilience to lower tem-
perature [147]. Maintenance of plasma membrane functionality is especially important
for freezing tolerance in alpine plants, as a fluid membrane allows transfer of water from
the protoplast into the intercellular space, where extracellular ice nucleation takes place,
leaving the protoplast unfrozen [13]. We suppose that our short freezing treatments (−1 ◦C
during three nights per week) induced these expression changes. However, we observed
no apparent damage of leaves in cold treatments [96], and hence both cytotypes are tolerant
to short-term freezing and thawing during the day.

Decreasing membrane fluidity, coupled with its interaction with the cell wall, is
considered to be one of the first cold sensors [148–150]. The connection of membrane
rigidification to cytoskeletal rearrangements, calcium influxes and kinases, acts as trig-
ger for the subsequent low-temperature response e.g., [151,152]. Changes in the com-
position of the cell wall can strongly affect plant stress resistance [153] as stress can up-
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regulate the expression of e.g., expansins and xyloglycan-modifying enzymes, which are
acting on cell wall remodeling [154]. The hydrolase activity pathways activated in both
ploidy levels in R. kuepferi under cold stress may indicate their unique roles in cell wall
modification [155,156]. The cytoskeleton is also affected by cold stress [150,157] and its
interactions with membranes and the cell wall play a distinctive role in cold stress toler-
ance [18,47,158]. The ‘cell wall organization or biogenesis’ pathway, which is activated
in both diploid and tetraploid R. kuepferi individuals (Figures 2 and 3) is relevant to the
cytoskeleton and its modifications under cold stress.

The pathways of ion/cation homeostasis and activity, as well as the serine/threonine
protein kinase activity are thought to be temporal and spatial events downstream of Ca2+

signaling e.g., [159,160]. A change in intracellular calcium ion concentration is one of the
earliest signaling events triggering the response of plants to cold stress [130,161,162] with
Ca2+ dynamics being detected within 40s after cold stress exposure [163]. Presumably Ca2+

channels are primary sensors for cooling rate and Ca2+ efflux transporters are absolute
temperature sensors [164,165], while oscillations of Ca2+ are linked to stomatal closure in
Arabidopsis thaliana, as a response to cold stress [166]. Furthermore, the serine/threonine
protein kinases are plasma membrane receptor-like kinases (RLKs), several of which are
calcium-moderated and promote the expression of cold-responsive genes (COR) through
the activation of a mitogen-activated protein kinase (MAPK) cascade [153,167–169].

The intriguing suppression of the latter pathways, especially in diploid R. kuepferi,
corroborates the hypotheses of tangled information encoded through Ca2+ kinetics, which
are constantly changing as a complex mechanism of stress response and are also influenced
by ‘cold memory’, i.e., former exposure to cold stress conditions [130,170]. We hypothesize
that suppressed pathways of ion/cation homeostasis in diploids are probably linked to
stomatal closure and consequently reduction of CO2 uptake/carbon gain [171]. This would
explain the lower growth performance of diploids under cold conditions, as observed in
the experiments of Syngelaki et al. [96].

4.3. Gene Expression Related to the Epigenetic Mechanism of DNA Methylation

Deciphering the epigenetic background of plants, which are exposed to abiotic stress,
is a constantly developing field e.g., [43]. DNA methylation is correlated with histone
proteins and their post-transcriptional modifications, as the conversion of these modi-
fications to DNA methylation profiles is often thought to be more stable e.g., [75,172].
These interactions are associated with gene expression profiles and gene transcription in
general in response to cold stress [173,174] and could encompass changes in chromatin
structure and accessibility [175,176]. Chromatin remodeling has a putative function as
a plant thermometer, representing a relatively direct connection between cold and gene
expression [177,178]. In the present study, the pathways of histone and chromatin mod-
ifications are suppressed in the tetraploid individuals (Figure 3). Additionally, several
genes, directly or indirectly related to DNA methylation, are significantly differentially
expressed in both ploidy levels (Table 4). This result corroborates previous results of
methylation-sensitive AFLP screenings that the cytotypes exhibit different methylation
profiles [94,95].

The differential expression of genes correlated with DNA methylation is further val-
idated by the qRT-PCR results, where the two methyltransferases (CAMT3, PMT2), two
demethylases (JM706, JMJ25) and the argonaute protein AGO4B were all found to be
down-regulated, as expected from the bioinformatical analyses of the transcriptomes. This
fits the overall pattern of loss of methylated MS-AFLP fragments after dramatic temper-
ature changes [95]. Methylation patterns may conserve the transgenerational epigenetic
memory of response to cold treatments and hence differential acclimation and adaptation
of cytotypes [94,95].

To summarize, the present study demonstrates the responses of diploid and tetraploid
R. kuepferi plants towards cold stress in their gene expression patterns. Although both
ploidy levels activate genes related to cold acclimation, the gene set pathways differ
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between cytotypes, suggesting a better cold acclimation of tetraploids than diploids. Con-
sequently, our results strongly support the hypothesis of a physiological background of
the observed ecological and geographical differentiation patterns between cytotypes. Al-
together, cold stress induces differentially expressed gene profiles and several gene set
pathways are involved in the response, either being activated or suppressed. Seemingly,
these parallel mechanisms invoke energy conservation and help individuals to survive in
novel and/or extreme environments. Lastly, DNA methylation is indicated to contribute to
the regulation of gene expression and may preserve a different epigenetic memory for the
two cytotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12111818/s1, Table S1. List of individuals used for the laboratory work. Listed are
the sample and group ID, ploidy level, treatment, as well as country, province and altitude of
origin [88,97]; Table S2. List of primers used for qRT-PCR validation; Table S3. Results of qRT-PCR
and Delta-delta analyses; Figure S1. BUSCO (Benchmarking Universal Single-Copy Orthologs) plot
of the R. kuepferi transcriptome pseudoreference; Figure S2. All gene set pathways significantly
enriched from the analysis of differentially expressed genes in diploid individuals of R. kuepferi.
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