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ABSTRACT

The olfaction system of insects plays an important role in mediating various phys-
iological behaviors, including locating hosts, avoiding predators, and recognizing
mates and oviposition sites. Therefore, some key genes in the system present valuable
opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid
moth can feed on more than 30 different host plants making it a serious polyphagous
pest worldwide, and it has become one of the major maize pests in northern China
since 2011. However, there are no reports on effective and environmentally friendly
pesticides for the control of this pest. In this study, we identified 28 genes encoding
putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes
based on our previous A. lepigone transcriptomic data. A tissue expression investigation
and phylogenetic analysis were conducted in an effort to postulate the functions of these
genes. Our results show that nearly half (46.4%) of the AIOBPs exhibited antennae-
biased expression while many of the AICSPs were highly abundant in non-antennal
tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone
and developing environmentally friendly pesticides against this pest in the future.

Subjects Entomology, Genomics, Molecular Biology

Keywords Chemosensory genes, Antennae, Phylogenetic analysis, Athetis lepigone, Gene
expression pattern

INTRODUCTION

The olfaction system of insects mediates a host of physiological behaviors, such as host
location, predator avoidance, and mate and oviposition site recognition (Leal, 2013).
Many studies show that the periphery process of insect olfaction requires a set of genes,
including those that encode odorant binding proteins (OBPs), chemosensory proteins
(CSPs), and chemosensory receptors (Elfekih et al., 2016; Glaser et al., 2015; Larter, Sun &
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Carlson, 2016; Li et al., 2015; Paula et al., 2016; Zhang et al., 2013). Generally, OBPs/CSPs
located in the antennal sensillar lymph can recognize and bind external odorants that can
then be transferred by OBPs/CSPs through the sensillar lymph to chemosensory receptors,
odorant receptors (ORs) and ionotropic receptors (IRs). Therefore, OBPs and CSPs play
key roles in helping insects recognize various odorants and regulate their behaviors (Dani et
al., 20115 Zhou, 2010). These functions also suggest that these protein families may present
valuable opportunities as target genes for developing novel green pesticides.

Insect OBPs are a class of small, abundant, and water-soluble extracellular proteins of
~14 KDa. Most OBPs use six positionally conserved cysteines to form three interlocking
disulphide bridges that stabilize the protein’s three-dimensional structure (Lagarde et al.,
2011; Leal, Nikonova ¢ Peng, 1999; Pelosi & Maida, 1995; Vogt & Riddiford, 1981). Since
the first OBP was identified in Antheraea polyphemus (Vogt ¢ Riddiford, 1981), many OBPs
have been found in various insects based on genomic or transcriptomic methods in recent
years. Based on the structural features and similarity in protein sequences, insect OBPs can
be divided into three major subclasses (Li et al., 2013; Schultze et al., 2012; Spinelli et al.,
20125 Zhou, 2010): classic OBPs, including pheromone binding proteins (PBPs), general
odorant binding proteins (GOBPs), and two OBPs involved in the recognition of female
sex pheromones and host volatiles; plus-C OBPs; and minus-C OBPs, which may also
participate in the binding of host volatiles as suggested by an in vitro competitive binding
assay.

Olfactory specific protein D (OS-D), the first insect CSP gene, was discovered in
Drosophila melanogaster (McKenna et al., 1994). By using similar methods as for OBP
identification, many CSPs have been discovered in distinct insects (Guo et al., 2011; Iovinella
et al., 2013; Jacquin-Joly et al., 2001; Liu et al., 2010; Missbach et al., 2015; Picimbon et al.,
2001; Wanner et al., 2004). Unlike OBPs, CSPs are smaller and more conserved in distinct
insects, which only have four conserved cysteines that form two interlocking disulphide
bridges (Bohbot et al., 1998; Lartigue et al., 2002; Maleszka & Stange, 1997; Pelosi, Calvello &
Ban, 2005; Zhang et al., 2014). Furthermore, OBPs are usually specifically or predominately
expressed in the antennae, whereas many CSPs are expressed in the antennae and other
tissues (Pelosi, Calvello & Ban, 2005; Vogt, 2005; Zhang et al., 2016a; Zhang et al., 2013),
suggesting insect CSPs have both chemosensation and non-chemosensation functions as
is illustrated by their association with chemosensation in moths (Jacquin-joly et al., 2001;
Sun et al., 2015; Zhang et al., 2014), limb regeneration in Periplaneta eparate (Nomura et
al., 1992), embryo development in Apis mellifera (Maleszka et al., 2007), behavioral phase
change in Locusta migratoria (Guo et al., 2011), and female moth survival and reproduction
in Spodoptera exigua (Gong et al., 2012).

Athetis lepigone Moschler (Lepidoptera: Noctuidae) is a serious polyphagous pest found
worldwide (Fu et al., 2014; Karsholt, Van Nieukerken ¢ De Jong, 2013; Lindeborg, 2008;
Nikolaevitch ¢ Vjatcheslavovna, 2003; Zhang, Zhao ¢ Ding, 2009) that can feed on more
than 30 different host plants species and has become one of the major maize pests in
northern China since 2011 (Jiang et al., 2011; Ma et al., 2012; Shi et al., 2011). However,
there are no reports on the chemosensory mechanism mediated by OBPs/CSPs between
the pests and host plants. In this study, we identified 28 and 20 genes encoding putative
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AlOBPs (A. lepigone OBPs) and AICSPs (A. lepigone CSPs), respectively, based on our
previous transcriptomic data of A. lepigone (Zhang et al., 2016b). Tissue expression and
phylogenetic analyses were conducted in an effort to postulate the function of these genes.
We found that most AIOBPs and AICSPs had high identities with those in other moths
(Campanacci et al., 2001; Gu et al., 2013; Liu et al., 2015¢; Zhang et al., 2015a; Zhang et al.,
2013; Zhang et al., 2015b); nearly half of the AIOBPs exhibited antennae-biased expression,
and many AICSPs were found in various tissues and were highly expressed in proboscises,
legs, and wings, which will help us explore the chemosensory mechanism of A. lepigone
and develop environmentally friendly pesticides against this pest in the future.

MATERIALS & METHODS

Insect rearing and tissue collection

A. lepigone were fed an noctuid artificial diet (Huang et al., 2002) at a temperature of 26
£ 1 °Cin a 14:10 h, light:dark photoperiod. Pupae were sexed, and males and females
were placed into separate enclosures. Adult moths were given a 10% honey solution after
emergence. We collected 25-30 female antennae (FA), 25-30 male antennae (MA), 50-60
proboscises (Pr, 9:0" =1:1), 10-12 abdomen (Ab, ¢:d" = 1:1), 28-30 legs (Le, 9:d" = 1:1),
and 28-30 wings (Wi, 9:0" = 1:1) from three-day-old virgin adults. All samples were
immediately frozen in liquid nitrogen and stored at —80 °C until use.

RNA isolation and cDNA synthesis

Total RNA was extracted using the MiniBEST Universal RNA Extraction Kit (TaKaRa,
Dalian, China) following the manufacturer’s instructions, and the RNA quality was
checked using a spectrophotometer (NanoDrop™ 2000; Thermo Fisher Scientific, USA).
The single-stranded cDNA templates were synthesized from 1 pg total RNA from various
tissue samples using the PrimeScriptTM RT Master Mix (TaKaRa, Dalian, China).

Sequence analyses

The open reading frames (ORFs) of the putative chemosensory genes were predicted
using ORF Finder (http://www.ncbi.nlm.nih.gov/gort/gorf.html). The similarity
searches were performed with NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/). Putative
N-terminal signal peptides for AIOBPs and AICSPs were predicted by SignalP 4.1
(http://www.cbs.dtu.dk/services/SignalP/) (Petersen et al., 2011).

Phylogenetic analysis

Phylogenetic trees were reconstructed for the analysis of AIOBPs and AICSPs, based on the
gene sequences of A. lepigone and those of other insects. The OBP data set contained 28
sequences from A. lepigone (Table S1), and 100 from other insects including Bombyx mori
(Gong et al., 2009), Manduca sexta (Grosse-Wilde et al., 2011), Sesamia inferens (Zhang

et al., 2013), and Spodoptera littoralis (Legeai et al., 2011). The CSP dataset contained

20 sequences from A. lepigone (Table S1) and 68 from other insects including B. mori
(Gong et al., 2007), M. sexta (Grosse-Wilde et al., 2011), S. inferens (Zhang et al., 2013), and
S. littoralis (Legeai et al., 2011). Amino acid sequences were aligned with MAFFT version
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7 (http://mafft.cbrcjp/alignment/server/), and phylogenetic trees were constructed using

PhyML (Guindon et al., 2010) based on the LG substitution model (Le ¢ Gascuel, 2008) with
Nearest Neighbour Interchange (NNI), and branch support estimated by a Bayesian-like

transformation of the aLRT (aBayes) method. Dendrograms were created and colored in

FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Quantitative real time-PCR

Expression profiling of AIOBPs and AICSPs was performed using quantitative real time-PCR
(qRT-PCR) performed in a LightCycler® 96 (Roche, Switzerland) with a mixture of 5 pL
2X SYBR® Premix Ex Taq (Tli RNaseH Plus) (TaKaRa, Dalian), 0.2 wL of each primer
(10 pM), 2.5 ng of sample cDNA, and 3.6 pL of sterilized ultrapure H,O. The reaction
program was as follows: 30 s at 95 °C, 40 cycles of 95 °C for 5 s, and 60 °C for 20 s. The
results were analyzed using a LightCycler® 96 SW 1.1. The qRT-PCR primers (Table 52)
were designed with Beacon Designer 7.9 (PREMIER Biosoft International, CA, USA). This
was followed by the measurement of fluorescence over a 55 to 95 °C melting curve to
detect a single gene-specific peak and to check the absence of primer dimer peaks, and a
single and discrete peak was detected for all primers tested. Negative controls consisted of
non-template reactions where the cDNA was replaced with H,O.

Expression levels of AIOBPs and AICSPs were calculated relative to the reference genes
AIGAPDH (A. lepigone glyceraldehyde-3-phosphate dehydrogenase) and AIEF (A. lepigone
elongation factor-1 alpha) using the Q-Gene method in the Microsoft Excel-based software
Visual Basic (Muller et al., 2002; Simon, 2003). For each sample, three biological replicates
were performed with three technical replicates per biological replicate.

Statistical analysis

Data (mean £ SE) from various samples were subjected to one-way nested analysis
of variance (ANOVA) followed by a least significant difference test (LSD) for mean
comparisons using the SPSS Statistics 22.0 software (SPSS Inc., Chicago, IL, USA).

RESULTS

Identification of putative OBP genes in A. lepigone

Based on our previous antennal transcriptomic data (NCBI-SRX number: 2543665) for
A. lepigone (Zhang et al., 2016b), we first identified 28 genes encoding putative OBPs
including three PBPs and two GOBPs (Table 1). Among the 28 AIOBPs, 24 sequences
were predicted to be full-length genes that encoded 133 to 246 amino acids; all 24 genes
had a predicted signal peptide at the N-terminus. According to the number and position
of conserved cysteines, insect OBPs can be divided into different subclasses: classic OBPs,
Plus-C OBPs, and Minus-C OBPs (Zhou, 2010). Here, AIOBP4 and AIOBP9 had no
conserved cysteines at the C2 and C5 positions, and, therefore, belonged to the Minus-C
OBP subfamily; AIOBP2, AIOBP7, and AIOBP14 had cysteines in addition to the six
conserved cysteines; therefore, they belonged to the Plus-C OBP subfamily; the other
19 full-length AIOBPs belonged to the Classic OBP subfamily, which had six conserved
cysteines at the corresponding positions (Fig. S1).
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Table 1 The BLASTX match of OBP genes in A. lepigone.
Gene ORF Signal Complete Best blastx match
name (aa) peptide ORF
Name Acc. No. Species E value Identity
(%)
GOBP1 163 1-18 Y general odorant binding protein 1 ABI24160.1 Agrotis ipsilon 8.00E-83 95
GOBP2 162 1-21 Y general odorant binding protein 2 AHC72380.1 Sesamia inferens 2.00E-92 91
PBP1 167 1-23 Y pheromone binding protein 1 precursor AAC05702.2 Mamestra brassicae 3.00E-88 90
PBP2 170 1-24 Y pheromone binding protein 2 precursor AAC05701.2 Mamestra brassicae 5.00E-58 90
PBP3 164 1-22 Y pheromone-binding protein 3 AFM36758.1 Agrotis ipsilon 2.00E-85 90
OBP1 116 N N SexiOBP14 AGP03460.1 Spodoptera exigua 7.00E-54 88
OBP2 146 1-17 Y odorant binding protein 6 AGR39569.1 Agrotis ipsilon 2.00E-84 88
OBP3 120 N N odorant binding protein 8 AKI87969.1 Spodoptera litura 5.00E-79 85
OBP4 138 1-16 Y odorant-binding protein 18 AFI57167.1 Helicoverpa armigera 2.00E-52 85
OBP5 147 1-21 Y pheromone binding protein 4 AAL66739.1 Mamestra brassicae 1.00E-81 84
OBP6 134 1-17 Y ABPX AGS36754.1 Sesamia inferens 2.00E-54 83
OBP7 203 1-20 Y odorant-binding protein 19 AGC92793.1 Helicoverpa assulta 2.00E-69 83
OBP8 147 1-20 Y oderant binding protein 6 AFM77984.1 Spodoptera exigua 4.00E-56 82
OBP9 133 1-16 Y odorant binding protein 9 AGH70105.1 Spodoptera exigua 5.00E-84 80
OBP10 96 N N odorant binding protein 1 AGR39564.1 Agrotis ipsilon 2.00E-58 79
OBP5 147 1-21 Y pheromone binding protein 4 AAL66739.1 Mamestra brassicae 1.00E-81 84
OBP11 152 1-21 Y pheromone binding protein 4 AAL66739.1 Mamestra brassicae 1.00E-30 78
OBP12 141 1-26 Y odorant binding protein 8 AGH70104.1 Spodoptera exigua 9.00E-78 77
OBP13 184 1-20 Y odorant binding protein AII00978.1 Dendrolimus houi 1.00E-106 75
OBP14 186 1-17 Y odorant binding protein 1 AGR39564.1 Agrotis ipsilon 8.00E-97 75
OBP15 155 1-24 Y SexiOBP11 AGP03457.1 Spodoptera exigua 2.00E-82 73
OBP16 148 1-21 Y OBP7 AEB54591.1 Helicoverpa armigera 7.00E-54 70
OBP17 246 1-19 Y odorant binding protein AII100994.1 Dendrolimus kikuchii 2.00E-74 67
OBP18 149 1-22 Y OBP5 AEB54581.1 Helicoverpa armigera 8.00E-58 65
OBP19 71 1-22 N OBP6 AGS36748.1 Sesamia inferens 2.00E-25 65
OBP20 170 1-23 Y odorant binding protein 4 AKI87965.1 Spodoptera litura 2.00E-76 61
OBP21 153 1-21 Y SexiOBP9 AGP03455.1 Spodoptera exigua 2.00E-77 59
OBP22 146 1-25 Y SexiOBP12 AGP03458.1 Spodoptera exigua 1.00E-72 58
OBP23 145 1-17 Y odorant binding protein ADY17886.1 Spodoptera exigua 1.00E-85 40
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Figure 1 Phylogenetic tree of moth OBPs. The A. lepigone translated genes are shown in blue. This tree

was constructed using phyML based on alignment results of MAFFT. Al, A. lepigone; Bm, B. mori; Si, S. in-
ferens; S, S. littorali; Ms, M. sexta.

Identification of putative CSP genes in A. lepigone

Twenty putative genes encoding CSPs were identified in A. lepigone via antennal
transcriptome analysis (Table 2). Eighteen of these had full length ORFs with 4 conserved
cysteines in corresponding positions (Fig. 52), and seventeen genes (except AICSP14) had
a predicted signal peptide at the N-terminus. The results of a BLASTX match showed that
80% of these CSPs (n=16) had >70% identity with other CSPs from different moths and
that this was higher than the sequence identities of the OBPs (75%) (Table 2).

Phylogenetic analyses of moth OBPs and CSPs

Two phylogenetic trees, one of moth OBPs and one of moth CSPs, were constructed using
protein sequences from A. lepigone, B. mori, S. inferens, S. littoralis, and M. sexta, (Figs. 1
and 2). Similar to other studies (He et al., 2010; Pelosi et al., 2014b; Vogt, Rybczynski e
Lerner, 1991; Xiu & Dong, 2007), the OBP tree showed that moth OBPs can be divided
into PBP/GOBP, Minus-C OBP, and Plus-C OBP subfamilies. AIPBP1-3 clustered into
the PBP subfamily and the AIGOBPs (1 and 2) clustered into the GOBP subfamily. Two
AlOBPs (AIOBP4 and AIOBP9) clustered into the moth Minus-C OBP subfamily, and four
AlOBPs (AIOBP2, AIOBP7, AIOBP10, and AIOBP14) clustered into the moth Plus-C OBP
subfamily. The rest of the AIOBPs clustered with at least one orthologous moth gene. In
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Table 2 The BLASTX match of CSP genes in A. lepigone.

Gene ORF  Signal Complete Best blastx match
name (aa) peptide ORF

Name Acc. No. Species E value Identity

(%)

CSP1 124 1-16 Y chemosensory protein 15 AGH20053.1 Helicoverpa armigera 5.00E-62 83
CSP2 124 1-15 Y chemosensory protein precursor NP_001037066.1 Bombyx mori 2.00E-38 61
CSP3 122 1-18 Y ejaculatory bulb-specific protein 3-like XP_012549936.1 Bombyx mori 2.00E-45 74
CSP4 294 1-16 Y chemosensory protein AIW65104.1 Helicoverpa armigera 2.00E-130 78
CSP5 56 N N chemosensory protein ATI01011.1 Dendrolimus houi 3.00E-17 62
CSP6 150 1-19 Y putative chemosensory protein AGY49270.1 Sesamia inferens 6.00E-72 78
CSP7 114 1-19 Y sensory appendage protein-like protein AAK14793.1 Mamestra brassicae 1.00E-28 61
CSP8 127 1-18 Y chemosensory protein 6 AGR39576.1 Agrotis ipsilon 5.00E-63 91
CSP9 127 1-16 Y chemosensory protein AAF71289.1 Mamestra brassicae 3.00E-59 83
CSP10 123 1-18 Y chemosensory protein 8 AGR39578.1 Agrotis ipsilon 4.00E-68 85
CSP11 123 1-16 Y chemosensory protein AIW65100.1 Helicoverpa armigera 2.00E-65 76
CSP12 128 1-18 Y chemosensory protein CSP2 ABM67689.1 Spodoptera exigua 4.00E-70 81
CSP13 123 1-19 Y chemosensory protein AIX97829.1 Cnaphalocrocis medinalis 1.00E-56 81
CSP14 46 N N putative chemosensory protein AGY49260.1 Sesamia inferens 3.00E-25 100
CSP15 122 1-16 Y chemosensory protein 10 AFR92094.1 Helicoverpa armigera 1.00E-73 89
CSP16 130 N Y chemosensory protein 15 NP_001091781.1 Bombyx mori 3.00E-42 59
CSP17 127 1-18 Y putative chemosensory protein AGY49267.1 Sesamia inferens 1.00E-70 81
CSP18 123 1-18 Y chemosensory protein 8 AFR92092.1 Helicoverpa armigera 8.00E—43 74
CSP19 120 1-16 Y chemosensory protein 4 AGR39574.1 Agrotis ipsilon 1.00E-60 79
CSP20 107 1-18 Y chemosensory protein 5 AGR39575.1 Agrotis ipsilon 4.00E-53 97
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Figure 2 Phylogenetic tree of moth CSPs. The A. lepigone translated genes are shown in blue. This tree
was constructed using phyML based on alignment results of MAFFT. Al, A. lepigone; Bm, B. mori; Si, S. in-
ferens; Sl, S. littorali; Ms, M. sexta.

the constructed CSP tree, our results indicated that all 20 AICSPs were distributed along
various branches and each clustered with at least one other moth ortholog.

OBPs and CSPs expression patterns in A. lepigone

We used the qRT-PCR results to investigate the expression profiles of all AIOBPs and
AICSPs. The results showed that all the OBPs and CSPs were expressed in the adult
antennae of A. lepigone. Among the 28 AIOBPs, 13 AIOBPs (including PBPs and GOBPs)
were significantly highly expressed in the antennae (p < 0.05, ANOVA, LSD), including
5 male-biased (AIPBP1, AIPBP2, AIOBP6, AIOBP17, and AIOBP20) and 3 female-biased
(AIOBP1, AIOBP3, and AIOBP19) OBP genes. In all 28 AIOBPs, AIGOBPI and AIPBPI
(male antennae) exhibited the highest expression levels, and AIOBP19 exhibited the lowest
expression abundance (Fig. 3). In addition, eight AIOBPs (AIOBP4, 8, 11, 14, 16, 21, 22, and
23) exhibited proboscis-biased expression, AIOBP10 was expressed significantly more in
the adult abdomen, and four AIOBPs (AIOBP2, 9, 13, and 18) displayed higher expression
levels in adult wings than in other tissues (Fig. 3).
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Figure 3 Expression patterns of OBP genes in A. lepigone. The relative expression level is indicated
as mean =+ SE (N = 3). Different capital letters mean significant difference between tissues (p < 0.05,
ANOVA, LSD). FA, female antennae; MA, male antennae; Pr, proboscises; Ab, abdomen; Le, legs; Wi,
wings.

Compared to AIOBPs, AICSPs were highly expressed in adult antennae as well as in
non-antennae tissues. Of the 20 identified AICSP genes, only AICSP2, AICSP6, and AICSP18
had antennae-biased expression; AICSP2 was male-biased and AICSP18 was female-biased
in their expression. Six AICSP genes (AICSPI, 9, 12, 15, 16 and 20) were highly expressed
in the proboscises, and nine (AICSP3-5, 7, 8, 10, 13, 14 and 19) were highly expressed in the
wings; among the 20 total AICSPs, AICSP14 and AICSP5 displayed the highest and lowest
expression levels in the antennae, respectively (Fig. 4).
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Figure 4 Expression patterns of CSP genes in A. lepigone. The relative expression level is indicated as mean £ SE (N = 3). Different capital letters
mean significant difference between tissues (p < 0.05, ANOVA, LSD). FA, female antennae; MA, male antennae; Pr, proboscises; Ab, abdomen; Le,
legs; Wi, wings.

DISCUSSION

In this study, we first identified 28 and 20 genes encoding putative AIOBPs and AICSPs,
respectively, based on our previous A. lepigone transcriptomic data (Zhang et al., 2016D).
The number of AIOBP and AICSP genes identified for this species are similar to some
reported moths, such as C. suppressalis (Cao et al., 2014), H. armigera (Liu ef al., 2012),
and B. mori (Gong et al., 2007), but there are certain different from S. litura (Gu et al.,
2015), S. inferens (Zhang et al., 2013), H. armigera (Liu et al., 2012) and B. mori (Gong et
al., 2009). The reasons for the differences in gene number may be due to: (1) the different
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chemosensory behaviors of different moths requiring distinct molecular mechanisms that
have developed over evolutionary time; (2) the genomic data will help us identify more
genes from A. lepigone as well as from other moths in the future.

Many studies have shown that insect OBPs are mainly expressed in the antennae of
both sexes and that they may play key roles in the process of host location, mating, and
oviposition by allowing the insect to accurately recognize environmental odorants (Larter,
Sun & Carlson, 2016; Leal, 2013; Qiao et al., 2009; Zhou et al., 2009). The phylogenetic tree
of moth OBPs showed that AIOBPs were divided into different subfamilies, including
the PBP/GOBP, Minus-C OBP, and Plus-C OBP proteins suggesting that the structural
diversity of AIOBPs may be involved in chemosensation and/or in other physiological
processes. Based on the qRT-PCR analyses, we found that 46% of the 28 AIOBPs were
highly expressed in the antennae indicating that these AIOBP proteins have putative roles
in the odorant reorganization of A. lepigone. Similar to our previous work and to other
studies (Gu et al., 2015; McKenzie, Oxley ¢ Kronauer, 2014; Zhang et al., 2016a; Zhang et
al., 2013), we found that there were five AIOBP genes highly expressed in non-antennal
tissues (legs and wings), including one abdomen-biased AIOBP-encoding gene and four
wing-biased AIOBP genes, indicating that these OBPs may have other non-chemosensory
functions.

Five AIPBP/GOBPs displayed higher expression in the adult antennae (especially
AIGOBPI and AIPBPI), which is consistent with that reported for PBP/GOBPs in
other moths (Liu, Liu ¢» Dong, 2013; Liu et al., 2015b; Zhang et al., 2013). According to
recent functional studies of moth PBP/GOBPs (Jin et al., 2014; Liu et al., 2015a; Liu, Liu ¢
Dong, 2013; Sun, Liu ¢» Wang, 2013; Zhu et al., 2016) and D. melanogaster LUSH protein
(OBP76a) (Ha & Smith, 20065 Stowers ¢ Logan, 2008; Zhou et al., 2004), we hypothesize
that the AIPBP/GOBPs may also play important roles in recognizing the sex pheromones of
female moths and some host plant volatiles. Additionally, there are three male-biased and
three female-biased AIOBP genes, indicating that these sex-biased OBPs may participate
in the reorganization of female or male sex pheromones, plant volatiles from oviposition
sites, or other sex-related odorants, and need further analysis to explore their exact roles
such as through fluorescence competitive binding assays (Liu ef al., 2015b), CRISPR/Cas9
mediated genome editing (Zhu et al., 2016), and gene mutations (Stowers & Logan, 2008).

Studies on CSP genes in certain insects have shown that they are smaller and more
conserved than OBP genes and that they are widely expressed in different parts of the
insect body (Calvello et al., 2005; Gong et al., 2007; Pelosi et al., 2014a; Zhang et al., 2013).
Our BLASTX results showed that the AICSPs had relatively high identities with other moth
CSPs indicating high conservation of CSPs among moths. Our results agreed with those
from studies using ligand-binding assays that found that some CSPs in other Lepidopterans
have chemosensory roles including in Mamestra brassicae (Jacquin-Joly et al., 2001), B.
mori (Qiao et al., 2013), and S. inferens (Zhang et al., 2014). Compared to the AIOBP genes
highly expressed in the antennae, only three AICSPs had antennae-biased expression,
indicating that these three genes may be involved in the recognition and transmission of
sex pheromones, host volatiles, and other odorants. On the other hand, many insect CSPs
are broadly expressed in non-chemosensory tissues and have non-chemosensory functions,
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such as SexiCSP3, which has been shown to have effects on the survival and reproduction
of S. exigua (Gong et al., 2012), and AmelCSP5, which is involved in embryonic integument
formation in A. mellifera (Foret, Wanner ¢» Maleszka, 2007). In this study, many AICSPs
were found in various tissues and were highly expressed in non-chemosensory tissues
suggesting that these AICSPs (especially AICSP14, which had the highest expression) may
be involved in other physiological functions apart from chemosensory ones.

Furthermore, we found that there were eight AIOBPs (28.5% of all AIOBPs) and six
AICSPs (30.0% of all AICSPs) that displayed proboscis-biased expression. OBP and CSP
gene expression in the proboscis has been observed in other insects including Apolygus
lucorum (Hua et al., 2012), Lygus lineolaris (Hull, Perera ¢» Snodgrass, 2014), S. podoptera
(Liu et al., 2015c), and A. dissimilis (Sun et al., 2016). Further functional studies have also
confirmed the gustation function of some genes: OBP49a in D. melanogaster is involved
in the suppression of sweet taste by bitter chemicals (Jeong et al., 2013); some OBPs in D.
melanogaster can modulate sucrose intake in response to a panel of nine bitter compounds
by RNAi-mediated methods (Swarup et al., 2014); and CSP4, which is exclusively presented
in the proboscis of two sibling species—H. armigera and H. assulta—an act as a wetting
agent to reduce the surface tension of aqueous solutions (Liu et al., 2014). Therefore, the 14
AlOBPs and AICSPs with proboscis-biased expression may play similar gustation functions
in A. lepigone.

In the future, these AIOBPs and AICSPs can help us develop environmentally friendly
pesticides against A. lepigone based on reverse chemical ecology (Dominguez et al., 2016;
Zhou, 2010). We can explore the functions of candidate OBPs/CSPs in vitro to screen
compounds with high binding affinities (e.g., host plant volatiles or sex pheromones) to
target the OBPs/CSPs. These compounds could then be investigated as potential pesticides
or sexual attractants. Further, with genetic modification by the CRISPR/Cas9 editing
system (Hsu, Lander ¢ Zhang, 2014; Li et al., 2016; Zhu et al., 2016), we can knock out the
candidate OBPs and CSPs to construct various mutant strains and then release the effective
strains into the field to disrupt the chemical communication behaviors of the pest.

CONCLUSION

In conclusion, we identified an extensive set of putative OBP- and CSP-encoding genes
in A. lepigone based on our previous antennal transcriptomic data. As the first step
towards understanding the functions of these genes, we conducted comprehensive and
comparative phylogenetic analyses and developed gene expression profiles for OBPs and
CSPs and found that most of the AIOBPs and AICSPs had high identities with other moth
odorant genes. Nearly half of the AIOBPs displayed antennae-biased expression, but many
AICSPs were detected in all tissues tested and were highly expressed in non-antennal
tissues. Understanding the tissue and sex-biased expression patterns will help identify the
functions of AIOBPs and AICSPs, which in turn will aid in elucidating the chemosensory
mechanism of A. lepigone and developing environmentally friendly pesticides against this
pest in future.
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